

It is Challenge that you can get 80+ Marks

1. If $f(x) = x^2 - 2x + 1$, then f(0) =

- (a) -1 (b) 0 (c) $1 \checkmark$ (d) 2

2. When we say that f is function from set X to set Y, then X is called

- (a) Domain of f ✓ (b) Range of f (c) Codomain of f (d) None of these

3. The term "Function" was recognized by____ to describe the dependence of one quantity to another.

- (a) Lebnitz ✓ (b) Euler (c) Newton (d) Lagrange

4. If $f(x) = x^2$ then the range of f is

- (a) $[0,\infty)$ \checkmark (b) $(-\infty,0]$ (c) $(0,\infty)$ (d) None of these

5. $Cosh^2x - Sinh^2x =$

- (a) -1

- (b) 0 (c) $1 \checkmark$ (d) None of these

6. cosechx is equal to

- (a) $\frac{2}{e^{x}+e^{-x}}$ (b) $\frac{1}{e^{x}-e^{-x}}$ (c) $\frac{2}{e^{x}-e^{-x}}$ (d) $\frac{2}{e^{-x}+e^{x}}$

7. The domain and range of identity function, I: $X \rightarrow X$ is

- (a)
- $X \checkmark$ (b) +iv real numbers (c) -iv real numbers (d) integers

8. The linear function f(x) = ax + b is constant function if

(a) $a \ne 0, b = 1$ (b) a = 1, b = 0 (c) a = 1, b = 1 (d) $a = 0 \checkmark$ If f(x) = 2x + 3, $g(x) = x^2 - 1$, then (gof)(x) = x + 39. If f(x) = 2x + 3, $g(x) = x^2 - 1$, then (gof)(x) =

- (a) $2x^2 1$ (b) $4x^2 + 4x$
- (d) $x^4 2x^2$

(a) $2x^2 - 1$ (b) $4x^2 + 4x$

- 10. If f(x) = 2x + 3, $g(x) = x^2 1$, then $(gog)(x) = x^2 1$
 - (c) 4x + 3 (d) $x^4 2x^2 \checkmark$

11. The inverse of a function exists only if it is

- (a) an into function (b) an onto function (c) (1-1) and into function (d) None of these

12. If $f(x) = 2 + \sqrt{x - 1}$, then domain of $f^{-1} =$

- (a)]2,∞[
- (b)\[2,∞[√
- (c) $[1,\infty[$ (d) $]1,\infty[$

13. $\lim_{x \to 0} e^x = 1$ $x \rightarrow \infty$

- (a) 1
- (b) ∞

- (c) $0 \checkmark$ (d) -1

14. $\lim_{x \to 0} \frac{\sin(x-3)}{x-3} =$

- (a) 1 ✓
- (b) ∞
- $\frac{\text{sin3}}{3}$
- (d) 3

15. $\lim_{x\to 0} \frac{\sin(x-a)}{x-a} =$

- (a) 1 ✓
- (b) ∞

- (c)
- (d) -3

16. If $f(x) = x^3 + x$ is:

- (a) Even
- (b) Odd ✓
- (c) Neither even nor odd (d) None
- 17. If $f: X \to Y$ is a function, then elements of x are called
 - (a) Images
- (b) Pre-Images ✓ (c) Constant (d) Ranges

 $18. \lim_{x \to 0} \left(\frac{x}{1+x} \right) =$

- (a) e
- (b) e^{-1}
- $(c) e^2$
- (d) \sqrt{e}

19. $\lim_{x\to 0} \frac{a^x-1}{x}$ is equal to

- (a) log_{e^x}
- (b) log_{a^x}
- (c) a
- (d) log_ea√

Mathematics Guess: Class 12th

- (a) $\frac{\pi}{180^{\circ}} \checkmark$ (b) $\frac{180^{\circ}}{\pi}$
- (c) 180π (d) 1

- 21. A function is said to be continuous at x = c if
 - (a) $\lim_{x\to c} f(x)$ exists (b) f(c) is defined
- (c) $\lim_{x\to c} f(x) = f(c)$ (d) All of these \checkmark

- 22. The function $f(x) = \frac{x^2 1}{x 1}$ is discontinuous at
 - (a) 1 ✓
- (b) 2

- (c) 3

- 23. L.H.L of f(x) = |x 5| at x = 5 is
 - (a) 5
- (b) 0 ✓
- (c) 2
- (d) 4
- 24. The change in variable x is called increment of x.It is denoted by δx which is

- (a) +iv only (b) -iv only (c) +iv or -iv \checkmark (d) none of these
- 25. The notation $\frac{dy}{dx}$ or $\frac{df}{dx}$ is used by

 - (a) Leibnitz ✓ (b) Newton
- (c) Lagrange (d) Cauchy

- 26. The notation f(x) is used by
 - (a) Leibnitz (b) Newton ✓
- (c) Lagrange (d) Cauchy

- 27. The notation f'(x) or y' is used by (a) Leibnitz
- (b) Newton
- (c) Lagrange ✓ (d) Cauchy

- 28. The notation Df(x) or Dy is used by (b) Newton
 - (a) Leibnitz

- (c) Lagrange (d) Cauchy ✓

- 29. $\lim_{x \to a} \frac{f(x) f(a)}{x a} =$
 - (a) $f'(x) \checkmark$ (b) f'(a)
- (c) f(0)
- (d) f(x-a)

- 30. $\frac{d}{dx}(x^n) = nx^{n-1}$ is called

 - (a) Power rule ✓ (b) Product rule
- (c) Quotient rule
- (d) Constant

31. The derivative of a constant function is

32. The process of finding derivatives is called

- (a) one
- (b) zero ✓
- (d) None of these
- (a) Differentiation ✓ (b) differential
- (c) Increment
 - (d) Integration

- (a) $-\frac{2}{(a)^3}$ (b) $-\frac{1}{a^2}$ (fog)'(x) = 33. If $f(x) = \frac{1}{x}$, then f''(a) =

- (c) $\frac{1}{a^2}$
- (d) $\frac{2}{a^3} \checkmark$

- 34. (fog)'(x) =
- (a) f'g' (b) f'g(x)
- (c) $f'(g(x))g'(x) \checkmark$ (d) cannot be calculated

- 35. $\frac{d}{dx}(g(x))^n =$
 - (a) $n[g(x)]^{n-1}$
- (b) $n[(g(x)]^{n-1}g(x)$ (c) $n[(g(x)]^{n-1}g'(x) \checkmark$ (d) $[g(x)]^{n-1}g'(x)$

- 36. $\frac{d}{dx}(3x^{\frac{4}{3}}) =$
- (a) $4x^{\frac{2}{3}}$ (b) $4x^{\frac{1}{3}}$
- (c) $2x^{\frac{1}{3}}$
- (d) $3x^{\frac{1}{3}}$

- 37. If $x = at^2$ and y = 2at then $\frac{dy}{dy} =$
- (a) $\frac{2}{ya}$ (b) $\frac{y}{2a}$
- (c) $\frac{2a}{v} \checkmark$
- (d) $\frac{2}{v}$

- 38. $\frac{d}{dx}(\tan^{-1}x \cot^{-1}x) =$
 - (a) $\frac{2}{\sqrt{1+x^2}}$ (b) $\frac{2}{1+x^2}$
- (c) 0
- (d) $\frac{-2}{1+x^2}$

- 39. If Sin \sqrt{x} , then $\frac{dy}{dx}$ is equal to
 - (a) $\frac{\cos\sqrt{x}}{2\sqrt{x}}$
- (b) $\frac{\cos\sqrt{x}}{\sqrt{x}}$
- (c) $\cos\sqrt{x}$
- (d)

- 40. $\frac{d}{dx} \sec^{-1} x =$ (a) $\frac{1}{|x|\sqrt{x^2-1}} \checkmark$
- (b) $\frac{-1}{|x|\sqrt{x^2-1}}$
- (c) $\frac{1}{|x|\sqrt{1+x^2}}$
- (d) $\frac{-1}{|x|\sqrt{1+x^2}}$

41.
$$\frac{d}{dx} \csc^{-1} x =$$

(a)
$$\frac{1}{|x|\sqrt{x^2-1}}$$

(a)
$$\frac{1}{|x|\sqrt{x^2-1}}$$
 (b) $\frac{-1}{|x|\sqrt{x^2-1}}$ (c) $\frac{1}{|x|\sqrt{1+x^2}}$ (d) $\frac{-1}{|x|\sqrt{1+x^2}}$

(c)
$$\frac{1}{|x|\sqrt{1+x^2}}$$

(d)
$$\frac{-1}{|x|\sqrt{1+x^2}}$$

42. Differentiating $\sin^3 x$ w.r.t $\cos^2 x$ is

(a)
$$-\frac{3}{2}\sin x$$
 (b) $\frac{3}{2}\sin x$

(b)
$$\frac{3}{2}\sin x$$

(c)
$$\frac{2}{3}$$
 cosx (d) $-\frac{2}{3}$ cosx

(d)
$$-\frac{2}{3}\cos x$$

43. If
$$\frac{y}{x} = Tan^{-1} \frac{x}{y}$$
 then $\frac{dy}{dx} =$

(a)
$$\frac{x}{y}$$
 (b) $-\frac{x}{y}$

(b)
$$-\frac{x}{y}$$

(c)
$$\frac{y}{x} \checkmark$$

$$(d) - \frac{y}{x}$$

44. If
$$tany(1 + tanx) = 1 - tanx$$
, show that $\frac{dy}{dx} =$

$$(c) - 1 \checkmark$$

45.
$$\frac{d}{dx}(Sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$
 is valid for

(a)
$$0 < x < 1$$

(b)
$$-1 < x < 0$$

(a)
$$0 < x < 1$$
 (b) $-1 < x < 0$ (c) $-1 < x < 1$ (d) None of these

46. If
$$y = x \sin^{-1} \left(\frac{x}{a}\right) + \sqrt{a^2 - x^2}$$
 then $\frac{dy}{dx} = x^2 + x^2 = x^2 + x^2 = x^2$

(a)
$$\cos^{-1} \frac{x}{a}$$
 (b) $\sec^{-1} \frac{x}{a}$

(b)
$$Sec^{-1} \frac{x}{a}$$

(c)
$$\operatorname{Sin}^{-1} \frac{x}{a} \checkmark$$
 (d) $\operatorname{Tan}^{-1} \frac{x}{a}$

(d)
$$Tan^{-1}\frac{x}{a}$$

47. If
$$y = e^{-ax}$$
, then $y \frac{dy}{dx} =$

(a) $-ae^{-2ax} \checkmark$ (b) $-a^2 e^{ax}$

(a)
$$-ae^{-2ax}$$

(b)
$$-a^2e^{ax}$$

(c)
$$a^2e^{-2ax}$$

(d)
$$-a^2e^{-2ax}$$

$$48. \ \frac{\mathrm{d}}{\mathrm{dx}} \left(10^{\mathrm{sinx}} \right) =$$

(a)
$$10^{\cos x}$$

(b)
$$10^{\text{sinx}} \cdot \cos x \cdot \ln 10 \checkmark$$
 (c) $10^{\text{sinx}} \cdot \ln 10$

(c)
$$10^{\sin x}$$
. $\ln 10$

49. If
$$y = e^{ax}$$
 then $\frac{dy}{dx} =$

(a)
$$\frac{1}{e^x}$$

(c)
$$e^{ax}$$

(d)
$$\frac{1}{a}e^{ax}$$

50.
$$\frac{d}{dx}(a^x) =$$

(c)
$$a^x$$
. lna \checkmark (d) x^a . lna

51. The function $f(x) = a^x$, a > 0, $a \ne 0$, and x is any real number is called

- (a) Exponential function ✓ (b) logarithmic function (c) algebraic function (d) composite function
- 52. If a > 0, $a \ne 1$, and $x = a^y$ then the function defined by $y = \log a^x$ (x > 0) is called a logarithmic function with base

52.
$$\log_{a^a} =$$

(c)
$$a^2$$

(d) not defined

53. $\frac{d}{dx} \log_{a^x} =$

(a)
$$\frac{1}{x} \log a$$
 (b) $\frac{1}{x \ln a} \checkmark$

(c)
$$\frac{\ln x}{x \ln x}$$

(d)
$$\frac{\ln a}{\ln x}$$

54.
$$\frac{d}{dx} \ln[f(x)] =$$

(a)
$$f'(x)$$
 (b) $\ln f'(x)$

(c)
$$\frac{f'(x)}{f(x)} \checkmark$$

(d)
$$f(x)$$
. $f'(x)$

55. If
$$y = \log 10^{(ax^2 + bx + c)}$$
 then $\frac{dy}{dx} =$

(a)
$$\frac{1}{(ax^2+bx+c)\ln 10}$$
 (b) $\frac{2ax+b}{(ax^2+bx+c)}$

(b)
$$\frac{2ax+b}{(ax^2+bx+b)}$$

(c)
$$10^{ax^2+bx+c} \ln 10$$

(d)
$$\frac{2ax+b}{(ax^2+bx+c)\ln a}$$

(b)
$$\frac{1}{\ln a} \checkmark$$

(c)
$$\frac{1}{\ln a^e}$$

57. If
$$y = e^{2x}$$
, then $y_4 =$

(c)
$$4e^{2x}$$

(d)
$$2e^{2x}$$

58. If
$$f(x) = e^{2x}$$
, then $f'''(x) =$

(b)
$$\frac{1}{6}e^{2x}$$

(d)
$$\frac{1}{8}e^{2x}$$

59. If
$$f(x) = x^3 + 2x + 9$$
 then $f''(x) =$

(a)
$$3x^2 + 2$$

(b)
$$3x^2$$

www.pakcity.org 60. If $y = x^7 + x^6 + x^5$ then $D^8(y) =$

Mathematics Guess: Class 12th

- - (a) 7!
- (b) 7! x
- (c) 7! + 6!
- (d) 0 \(\sqrt{}
- 61. $1 x + x^2 x^3 + x^4 + \dots + (-1)^n x^n + \dots$ is the expansion of

 - (a) $\frac{1}{1-x}$ (b) $\frac{1}{1+x}$ \checkmark (c) $\frac{1}{\sqrt{1-x}}$
- (d) $\frac{1}{\sqrt{1+x}}$
- 62. $f(x) = f(0) + xf'(x) + \frac{x^2}{2!}f''(x) + \frac{x^3}{3!}f'''(x) + \dots + \frac{x^n}{n!}f^n(x)$... is called____ series.
 - (a) Machlaurin's ✓ (b) Taylor's (c) Convergent (d) Divergent

- 63. $1 x + \frac{x^2}{2!} \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$ is an expression of
 - (a) e^x

66.

- (b) Sinx (c) Cosx \checkmark
- (d) e^{-x}

- $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$ is
 - (a) Maclaurin's series (b) Taylor Series (c) Power Series ✓ (d) Bionomial Serie

- A function f(x) is such that, at a point x = c, f'(x) > 0 at x = c, then f is said to be 65.
- (a) Increasing ✓ (b) decreasing (c) constant (d) 1-1 function
- A function f(x) is such that, at a point x = c, f'(x) < 0 at x = c, then f is said to be
- (a) Increasing (b) decreasing ✓ (c) constant (d) 1-1 function
- A function f(x) is such that, at a point x = c, f'(x) = 0 at x = c, then f is said to be 67.
- (a) Increasing (b) decreasing (c) constant ✓ (d) 1-1 function
- A stationary point is called _____ if it is either a maximum point or a minimum point 68.
 - (a) Stationary point (b) turning point ✓ (c) critical point (d) point of inflexion
- If f'(c) does not change before and after x = c, then this point is called_____ 69.
 - (a) Stationary point (b) turning point (c) critical point (d) point of inflexion ✓
- Let f be a differentiable function such that f'(c) = 0 then if f'(x) changes sign from -iv to 70. +iv i.e., before and after x = c, then it occurs relative ____ at x = c(b) minimum ✓ (c) point of inflexion (d) none

- Let f be a differentiable function such that f'(c) = 0 then if f'(x) does not change sign i.e., before and after x = c, then it occurs _____ at $x \Rightarrow c$ (b) minimum (c) point of inflexion ✓ (d) none (a) Maximum

 - Let f be differentiable function in neighborhood of c and f'(c) = 0 then f(x) has relative maxima
- (d) $f''(c) \neq 0$

- If $\int f(x)dx = \varphi(x) + c$, then f(x) is called
 - (a) Integral

at c if

(b) differential (c) derivative

(a) f''(c) > 0 (b) f''(c) < 0 (c) f''(c) = 0

- (d) integrand ✓

- Inverse of $\int \dots dx$ is: 74.
 - (a) $\frac{d}{dy} \checkmark$
- (b) $\frac{dy}{dx}$ (c) $\frac{d}{dy}$

(d) $\frac{dx}{dy}$

- Differentials are used to find: 75.
 - (a) Approximate value ✓ (b) exact value (c) Both (a) and (b)
- (d) None of these

- xdy + ydx =76.

 - (a) d(x + y) (b) $d\left(\frac{x}{y}\right) \checkmark$
- (c) d(x y)
- (d) d(xy)

- If $dy = \cos x dx$ then $\frac{dx}{dx} =$
 - (a) sinx
- (b) cosx
- (c) cscx
- (d) secx ✓

- If $\int f(x)dx = \varphi(x) + c$, then f(x) is called 78.
 - (a) Integral
- (b) differential (c) derivative
- (d) integrand ✓

- If y = f(x), then differential of y is 79.

 - (a) dy = f'(x) (b) $dy = f'(x)dx \checkmark$ (c) dy = f(x)dx
- (d) dy pakcity.org

- The inverse process of derivative is called: 80.
 - (a) Anti-derivative (b) Integration ✓ (c) Both (a) and (b) (d) None of these

- If $n \neq 1$, then $\int (ax + b)^n dx =$
 - (a) $\frac{n(ax+b)^{n-1}}{a} + c$
- (b) $\frac{n(ax+b)^{n+1}}{n} + c(c) \frac{(ax+b)^{n-1}}{n+1} + c$ (d) $\frac{(ax+b)^{n+1}}{a(n+1)} + c$

(a)
$$\frac{-1}{2}\cos(ax + b) + c$$

(b)
$$\frac{1}{3}$$
 cos(ax + b) + c

(a)
$$\frac{-1}{a}\cos(ax+b)+c$$
 (b) $\frac{1}{a}\cos(ax+b)+c$ (c) $a\cos(ax+b)+c$ (d) $-a\cos(ax+b)+c$

83.
$$\int e^{-\lambda x} dx =$$

(a)
$$\lambda e^{-\lambda x} + c$$

(b)
$$-\lambda e^{-\lambda x} + \epsilon$$

$$(c)\frac{e^{-\lambda x}}{\lambda} + c$$

(a)
$$\lambda e^{-\lambda x} + c$$
 (b) $-\lambda e^{-\lambda x} + c$ (c) $\frac{e^{-\lambda x}}{\lambda} + c$ (d) $\frac{e^{-\lambda x}}{-\lambda} + c$

84.
$$\int a^{\lambda x} dx =$$

(a)
$$\frac{a^{\lambda x}}{\lambda}$$

(b)
$$\frac{a^{\lambda x}}{\ln a}$$

(c)
$$\frac{a^{\lambda x}}{a \ln a} \checkmark$$
 (d) $a^{\lambda x} \lambda$. lna

(d)
$$a^{\lambda x} \lambda$$
. lna

85.
$$\int [f(x)]^n f'(x) dx =$$

(a)
$$\frac{f^{n}(x)}{n} + c$$
 (b) $f(x) + c$

(b)
$$f(x) + c$$

(c)
$$\frac{f^{n+1}(x)}{n+1} + c \checkmark$$
 (d) $nf^{n+1}(x) + c$

(d)
$$nf^{n+1}(x) + c$$

86.
$$\int \frac{f'(x)}{f(x)} dx =$$

(a)
$$f(x) + c$$

(b)
$$f'(x) + c$$

(c)
$$\ln |x| + c \checkmark$$

(b)
$$f'(x) + c$$
 (c) $\ln|x| + c \checkmark$ (d) $\ln|f'(x)| + c$

87.
$$\int \frac{dx}{\sqrt{x+a} + \sqrt{x}}$$
 can be evaluated if

(a)
$$x > 0, a > 0$$
 (b) $x < 0, a > 0$ (c) $x < 0, a < 0$ (d) $x > 0, a < 0$

(b)
$$x < 0, a > 0$$

(c)
$$x < 0$$
, $a < 0$

(d)
$$x > 0$$
, $a < 0$

$$88. \qquad \int \frac{x}{\sqrt{x^2 + 3}} \, \mathrm{d}x =$$

(a)
$$\sqrt{x^2 + 3} + c \checkmark$$

(a)
$$\sqrt{x^2 + 3} + c \checkmark$$
 (b) $-\sqrt{x^2 + 3} + c$ (c) $\frac{\sqrt{x^2 + 3}}{2} + c$

(d)
$$-\frac{1}{2}\sqrt{x^2+3}+c$$

$$89. \qquad \int \frac{\mathrm{dx}}{\mathrm{x}\sqrt{\mathrm{x}^2 - 1}} =$$

(a)
$$Sec^{-1}x + c \checkmark$$
 (b) $Tan^{-1}x + c$ (c) $Cot^{-1}x + c$

(b)
$$Tan^{-1}x + c$$

(c)
$$Cot^{-1}x + c$$

(d)
$$Sin^{-1}x + c$$

90.
$$\int \frac{dx}{x \ln x} =$$

(a)
$$\ln \ln x + c \checkmark$$
 (b) $x + c$

(b)
$$x + c$$

(c)
$$\ln f'(x) + c$$

(d)
$$f'(x)lnf(x)$$

91. In
$$\int (x^2 - a^2)^{\frac{1}{2}} dx$$
, the substitution is

(a)
$$x = atan\theta$$

tution is
(b)
$$x = asec\theta$$
 (c) $x = asin\theta$

(c)
$$x = a \sin \theta$$

(d)
$$x = 2a\sin\theta$$

The suitable substitution for $\int \sqrt{2ax - x^2} dx$ is: 92.

(a)
$$x - a = a\cos\theta$$

(b)
$$x = asec\theta$$
 (c) $x = asin\theta$ (d) $x = 2asin\theta$ or $\int \sqrt{2ax - x^2} dx$ is:
(b) $x = asin\theta$ (c) $x + a = acos\theta$ (d) $x + a = asin\theta$

(d)
$$x + a = a \sin \theta$$

$$93. \qquad \int \frac{x+2}{x+1} \, \mathrm{d}x =$$

(a)
$$ln(x + 1) + c$$

(a)
$$\ln(x+1) + c$$
 (b) $\ln(x+1) - x + c$ (c) $x + \ln(x+1) + c$ (d) None

(c)
$$x + \ln(x + 1) + \ln(x + 1)$$

The suitable substitution for $\int \sqrt{a^2 + x^2} dx$ is: 94.

(a)
$$x = atan\theta \checkmark$$
 (b) $x = asin\theta$

(b)
$$x = a \sin \theta$$

(c)
$$x = a\cos\theta$$
 (d) None of these

∫ udv equals: 95.

(a)
$$udu = \int vu$$

(b)
$$uv + \int vdu$$

(a)
$$udu - \int vu$$
 (b) $uv + \int vdu$ (c) $uv - \int vdu \checkmark$ (d) $udu + \int vdu$

(d)
$$udu \perp \int vdu$$

$\int x\cos x dx =$ 96.

(a)
$$\sin x + \cos x + c$$
 (b) $\cos x - \sin x + c$ (c) $x \sin x + \cos x + c$ (d) None

97.
$$\int \frac{e^{Tan^{-1}x}}{1+x^2} dx =$$

(a)
$$e^{Tanx} + c$$

(b)
$$\frac{1}{2} e^{\text{Tan}^{-1}x} + c$$
 (c) $x e^{\text{Tan}^{-1}x} + c$

(c)
$$x e^{Tan^{-1}x} + c$$

(d)
$$e^{\operatorname{Tan}^{-1}x} + c \checkmark$$

98.
$$\int e^{x} \left[\frac{1}{x} + \ln x \right] =$$

(a)
$$e^{x} \frac{1}{x} + c$$

(b)
$$-e^{x}\frac{1}{x} + e^{x}$$

(a)
$$e^{x} \frac{1}{x} + c$$
 (b) $-e^{x} \frac{1}{x} + c$ (c) $e^{x} \ln x + c$ (d) $-e^{x} \ln x + c$

$$(d) - e^{x} lnx + c$$

99.
$$\int e^{x} \left[\frac{1}{x} - \frac{1}{x^2} \right] =$$

(a)
$$e^{x} \frac{1}{x} + c \checkmark$$
 (b) $-e^{x} \frac{1}{x} + c$ (c) $e^{x} \ln x + c$

(b)
$$-e^{x}\frac{1}{x} + c$$

(c)
$$e^x \ln x + c$$

(d)
$$-e^{x} \frac{1}{x^{2}} + c$$

100.
$$\int \frac{2a}{x^2 - a^2} dx =$$

(a)
$$\frac{x-a}{x+a} + c$$

(b)
$$\ln \frac{x-a}{x+a} + c \checkmark$$
 (c) $\ln \frac{x+a}{x-a} + c$

(c)
$$\ln \frac{x+a}{x-a} +$$

(d)
$$\ln |x - a| + c$$

101.
$$\int_{\pi}^{-\pi} \sin x dx =$$

(b)
$$-2$$

$$(d) -1$$

102.
$$\int_{-1}^{2} |x| dx =$$

Mathematics Guess: Class 12th

(a)
$$\frac{1}{2}$$
 (b) $-\frac{1}{2}$

(c)
$$\frac{5}{2}$$

(d)
$$\frac{3}{2}$$

103. $\int_0^1 (4x + k) dx = 2$ then k =

(b) -4 (c) 0 √ (d) -2 **® pakcity.org**

104. $\int_0^3 \frac{dx}{x^2 + 9} =$

(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{12}$ (c) $\frac{\pi}{2}$

(d) None of these

105. $\int_0^{-\pi} \sin x dx$ equals to:

(a)
$$-2$$

(d) 1

(a) -2 $106. \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} costdt =$

(a)
$$\frac{\sqrt{3}}{2}$$
 -

(a)
$$\frac{\sqrt{3}}{2} - \frac{1}{2}$$
 (b) $\frac{\sqrt{3}}{2} + \frac{1}{2}$ (c) $\frac{1}{2} - \frac{\sqrt{3}}{2}$

(c)
$$\frac{1}{2} - \frac{\sqrt{3}}{2}$$

(d) None

 $107. \quad \int_a^a f(x) =$

(a) $0 \checkmark$ (b) $\int_{b}^{a} f(x) dx$ (c) $\int_{b}^{a} f(x) dx$ (d) $\int_{a}^{a} f(x) dx$

108. $\int_0^2 2x dx$ is equal to

(b) 7

(c) 4 ✓

(d) 0

To determine the area under the curve by the use of integration, the idea was given by

(a) Newton

(b) Archimedes ✓ (c) Leibnitz

(d) Taylor

The order of the differential equation : $x \frac{d^2y}{dx^2} + \frac{dy}{dx} - 2 = 0$

(a) 0

(b) 1

(c) 2 ✓

(d) more than 2

111. The equation $y = x^2 - 2x + c$ represents (c being a parameter)

(a) One parabola (b) family of parabolas \checkmark (c) family of line (d) two parabolas Solution of the differential equation: $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$ (a) $y = \sin^{-1} x + c \checkmark$ (b) $y = \cos^{-1} x + c \checkmark$ (c) $y = \tan^{-1} x + c$ (d) None

113. The general solution of differential equation $\frac{dy}{dx} = -\frac{y}{x}$ is

(a) $\frac{x}{y} = c$ (b) $\frac{y}{x} = c$ (c) xy = c(d) $x^2y^2 = c$ 114. Solution of differential equation $\frac{dv}{dt} = 2t - 7$ is:

(a) $v = t^2 - 7t^3 + c$ (b) $v = t^2 + 7t + c$ (c) $v = t - \frac{7t^2}{2} + c$ (d) $v = t^2 - 7t + c$

The solution of differential equation $\frac{dy}{dx} = \sec^2 x$ is 115. (a) y = cosx + c (b) y = tanx + c (c) y = sinx + c (d) y = cotx + c

(a) I

If x < 0, y < 0 then the point P(x, y) lies in the quadrant

(b) II (c) III ✓ (d) IV

The point P in the plane that corresponds to the ordered pair (x, y) is called: 117.

(a) graph of $(x, y) \checkmark$ (b) mid-point of x, y (c) abscissa of x, y (d) ordinate of x, y

The straight line which passes through one vertex and perpendicular to opposite side is called: 118.

(a) Median

(b) altitude ✓ (c) perpendicular bisector (d) normal

The point where the medians of a triangle intersect is called_____ of the triangle. 119.

(a) Centroid ✓

(b) centre (c) orthocenter (d) circumference

The point where the altitudes of a triangle intersect is called_____ of the triangle. 120.

(a) Centroid

(b) centre (c) orthocenter ✓ (d) circumference

The centroid of a triangle divides each median in the ration of 121.

(a) 2:1 ✓

(b) 1:2

(c) 1:1 (d) None of these

The point where the angle bisectors of a triangle intersect is called_____ of the triangle. 122.

(a) Centroid

(b) in centre ✓

(c) orthocenter (d) circumference

The two intercepts form of the equation of the straight line is 123.

(a) y = mx + c

(b) $y - y_1 = m(x - x_1)$ (c) $\frac{x}{a} + \frac{y}{b} = 1$ (d) $x\cos\alpha + y\cos\alpha = p$

Mathematics Guess: Class 12th

The Normal form of the equation of the straight line is

$$(a) y = mx + c$$

(b)
$$y - y_1 = m(x - x_1)$$

$$(c)^{\frac{x}{a}} + \frac{y}{b} = 1$$

(a)
$$y = mx + c$$
 (b) $y - y_1 = m(x - x_1)$ (c) $\frac{x}{a} + \frac{y}{b} = 1$ (d) $x\cos\alpha + y\cos\alpha = p$

In the normal form $x\cos\alpha + y\cos\alpha = p$ the value of p is 125.

- (a) Positive ✓
- (b) Negative (c) positive or negative
- (d) Zero

If α is the inclination of the line l then $\frac{x-x_1}{\cos\alpha} = \frac{y-y_1}{\sin\alpha} = r$ (say) 126.

- - (a) Point-slope form (b) normal form
 - (c) symmetric form ✓ (d) none of these

The slope of the line ax + by + c = 0 is 127.

(a)
$$\frac{a}{b}$$

(b)
$$-\frac{a}{b}\checkmark$$
 (c) $\frac{b}{a}$ (d) $-\frac{b}{a}$

(c)
$$\frac{b}{a}$$

(d)
$$-\frac{b}{a}$$

The slope of the line perpendicular to ax + by + c = 0128.

(a)
$$\frac{a}{b}$$

(a) 4

130.

135.

137.

138.

(b)
$$-\frac{a}{b}$$

(b)
$$-\frac{a}{b}$$
 (c) $\frac{b}{a} \checkmark$ (d) $-\frac{b}{a}$

$$(d) - \frac{b}{a}$$

The general equation of the straight line in two variables x and y is 129.

(a)
$$ax + by + c = 0$$
 (b) $ax^2 + by + c = 0$ (c) $ax + by^2 + c = 0$ (d) $ax^2 + by^2 + c = 0$

The
$$x$$
 – intercept $4x + 6y = 12$ is

The lines 2x + y + 2 = 0 and 6x + 3y - 8 = 0 are 131.

- (b) perpendicular (c) neither (d) non coplanar

If φ be an angle between two lines l_1 and l_2 when slopes m_1 and m_2 , then angle from l_1 to l_2 132.

(a)
$$tan \varphi = \frac{m_1 - m_2}{1 + m_1 m_2}$$

(a)
$$\tan \varphi = \frac{m_1 - m_2}{1 + m_1 m_2}$$
 (b) $\tan \varphi = \frac{m_2 - m_1}{1 + m_2 m_4} \checkmark$ (c) $\tan \varphi = \frac{m_1 + m_2}{1 + m_1 m_2}$ (d) $\tan \varphi = \frac{m_2 + m_1}{1 + m_1 m_2}$

(c)
$$tan \varphi = \frac{1}{1}$$

$$\frac{1}{1+m_1}$$
 (d) $tan \varphi = \frac{m_2+1}{1+m_1}$

If φ be an acute angle between two lines l_1 and l_2 when slopes m_1 and m_2 , then acute angle from l_1 to l_2

(a)
$$|\tan \varphi = \frac{m_1 - m_2}{1 + m_{1 m_2}}|$$
 (b) $|\tan \varphi = \frac{m_2 - m_1}{1 + m_{2 m_1}}|$ (c) $|\tan \varphi = \frac{m_1 + m_2}{1 + m_{1 m_2}}|$ (d) $|\tan \varphi = \frac{m_2 + m_1}{1 + m_{1 m_2}}|$ Two lines l_1 and l_2 with slopes m_1 and m_2 are parallel if

$$\frac{1}{1+m_{1}m_{2}}$$

(a)
$$\tan \varphi = \frac{1}{1 + m_{1} m_{2}}$$

(a) $m_1 - m_2 = 0$ (b) $m_1 + m_2 = 0$ (c) $m_1 m_2 \neq 0$

(a)
$$m_1 - m_2 = 0$$

(a) $m_1 - m_2 = 0$

(b)
$$m_1 + m_2 = 0$$
 (c) $m_1 m_2 = 0$

(d)
$$m_1 m_2 = -1 \checkmark$$

The lines represented by $ax^2 + 2hxy + by^2 = 0$ are orthogonal if 136.

(a)
$$a - b = 0$$
 (b) $a + b = 0$ (c) $a + b > 0$ (d) $a - b < 0$

(d) $m_1 m_2 = -1$

(a) Collinear (b) coplanar (c) non-collinear (d) non-coplanar

The lines lying in the same plane are called

The distance of the point (3,7) from the x – axis is

(a) 7 ✓

(b) -7

(c)3

(d) -3

Two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are parallel if 139.

(a)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \checkmark$$
 (b) $\frac{a_1}{b_1} = -\frac{a_2}{b_2}$ paker (c) $\frac{a_1}{c_1} = \frac{a_2}{c_2}$ (d) $\frac{b_1}{c_1} = \frac{b_2}{c_2}$

(b)
$$\frac{a_1}{b_1} = -\frac{a_2}{b_2}$$

(c)
$$\frac{1}{c_1} = \frac{2}{c_2}$$

(d)
$$\frac{b_1}{c_1} = \frac{b_2}{c_2}$$

The equation $y^2 - 16 = 0$ represents two lines. 140.

- (a) Parallel to $x axis \checkmark$ (b) Parallel y axis (c) not || to x axis (d) not || to y axis

The perpendicular distance of the line 3x + 4y + 10 = 0 from the origin is 141.

- (a) 0
- (b) 1
- (c) $2 \checkmark$ (d) 3

The lines represented by $ax^2 + 2hxy + by^2 = 0$ are orthogonal if 142.

- (a) a b = 0 (b) a + b = 0 (c) a + b > 0 (d) a b < 0

Every homogenous equation of second degree $ax^2 + bxy + by^2 = 0$ represents two straight lines 143.

(a) Through the origin ✓ (b) not through the origin (c) two || line (d) two ⊥ar lines The equation $10x^2 - 23xy - 5y^2 = 0$ is homogeneous of degree

(a) 1

144.

- (b) 2 ✓
- (c) 3
- (d) more than 2

The equation $y^2 - 16 = 0$ represents two lines. 145.

(a) Parallel to $x - axis \checkmark$ (b) Parallel y - axis (c) not || to x - axis (d) not || to y - axis

(0,0) is satisfied by

- (b) 2x + 5y > 10 (c) $x y \ge 13\checkmark$ (d) None

The point where two boundary lines of a shaded region intersect is called ____ point.

(a) Boundary

(a) x - y < 10

- (b) corner ✓
- (c) stationary
- (d) feasible

Mathematics Guess: Class 12th

- 173. Standard equation of Parabola is:

 - (a) $y^2 = 4a$ (b) $x^2 + y^2 = a^2$ (c) $y^2 = 4ax \checkmark$ (d) S = vt
- The focal chord is a chord which is passing through

- (a) Vertex ✓ (b) Focus (c) Origin (d) None of these
- The curve $y^2 = 4ax$ is symmetric about
- (a) $y axis \checkmark$ (b) x axis (c) Both (a) and (b) (d) None of these

- 176. Latusrectum of $x^2 = -4ay$ is
 - (a) x = a

- (b) x = -a (c) y = a (d) $y = -a \checkmark$
- 177. Eccentricity of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
- (a) $\frac{a}{c}$ (b) ac (c) $\frac{c}{a} \checkmark$
- (d) None of these

- 178. Focus of $y^2 = -4ax$ is

 - (a) (0,a) (b) (-a,0) (c) (a,0) (d) (0,-a)

- A type of the conic that has eccentricity greater than 1 is

 - (a) An ellipse (b) A parabola (c) A hyperbola ✓ (d) A circle
- 180. $x^2 + y^2 = -5$ represents the (a) Real circle (b) Imaginary circle ✓ (c) Point circle (d) None of these
 - Which one is related to circle

181.

185.

- (a) e = 1 (b) e > 1
- (c) e < 1 (d) $e = 0 \checkmark$

- Circle is the special case of: 182.

 - (a) Parabola (b) Hyperbola (c) Ellipse ✓ (d) None of these

- Equation of the directrix of $x^2 = -4ay$ is: 183.
 - (a) x + a = 0 (b) x a = 0 (c) y + a = 0 (d) y a = 0

- The midpoint of the foci of the ellipse is its (b) Centre ✓ (a) Vertex

 - Focus of the ellipse always lies on the
- (c) Directrix

(d) None of these

- (a) Minor axis (b) Major axis ✓ (c) Directrix (d) None of these 186. Length of the major axis of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b is
 - (a) 2a ✓
- (b) 2b
 - (c) $\frac{2b^2}{a}$
- (d) None of these

- In the cases of ellipse, it is always true that:
 - (a) $a^2 > b^2 \checkmark$ (b) $a^2 < b^2$
- (c) $a^2 = b^2$ (d) a < 0, b < 0
- Two conics always intersect each other in _____ points 188.
 - (a) No
- (b) one
- (c) two
- (d) four ✓
- 189. The eccentricity of ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is
 - (a) $\frac{\sqrt{7}}{4}$
- (b) $\frac{7}{4}$
- (c) 16
- (d) 9
- The foci of an ellipse are (4,1) and (0,1) then its centre is: 190.
 - (a)(4,2)
- (b) (2,1) ✓
- (c)(2,0)
- (d) (1,2)

- The foci of hyperbola always lie on: 191.
- (a) x axis (b) Transverse $axis \checkmark$ (c) y axis
- (d) Conjugate axis
- 192. Length of transverse axis of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is
 - (a) 2a ✓
- (b) 2b

- (c) a
- (d) b

- 193. $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1$ is symmetric about the:
- (a) y axis (b) x axis (c) Both (a) and (b) \checkmark (d) None of these
- Two vectors are said to be negative of each other if they have the same magnitude and _direction.
 - (a) Same
- (c) negative
- (d) parallel
- (b) opposite ✓ Parallelogram law of vector addition to describe the combined action of two forces, was used by
 - (a) Cauchy
- (b) Aristotle ✓
- (c) Alkhwarzmi
- (d) Leibnitz
- The vector whose initial point is at the origin and terminal point is P, is called 194.

www.pakcity.org Mathematics Guess: Class 12th (c) position vector ✓ (d) normal vector (b) unit vector (a) Null vector If R be the set of real numbers, then the Cartesian plane is defined as (a) $R^2 = \{(x^2, y^2): x, y \in R\}$ (b) $R^2 = \{(x, y): x, y \in R\}$ (c) $R^2 = \{(x, y): x, y \in R, x = -y\}$ (d) $R^2 = \{(x, y): x, y \in R, x = y\}$ Reparcity.org The element $(x, y) \in \mathbb{R}^2$ represents a 196. (b) point ✓ (c) vector (d) line (a) Space 197. If u = [x, y] in R^2 , then |u| = ?(a) $x^2 + y^2$ (b) $\sqrt{x^2 + y^2}$ (c) $\pm \sqrt{x^2 + y^2}$ (d) $x^2 - y^2$ 198. If $|\underline{\mathbf{u}}| = \sqrt{x^2 + y^2} = 0$, then it must be true that (a) $x \ge 0, y \ge 0$ (b) $x \le 0, y \le 0$ (c) $x \ge 0, y \le 0$ (d) x = 0, y = 0Each vector [x, y]in R² can be uniquely represented as 199. (a) $x\underline{i} - y\underline{j}$ (b) $x\underline{i} + y\underline{j} \checkmark$ (c) x + y (d) $\sqrt{x^2 + y^2}$ The lines joining the mid-points of any two sides of a triangle is always _____to the third side. (b) Parallel ✓ (c) perpendicular (d) base (a) Equal If $\underline{u} = 3\underline{i} - j + 2\underline{k}$ then [3,-1,2] are called _____ of \underline{u} . (a) Direction cosines (b) direction ratios ✓ (c) direction angles (d) elements Which of the following can be the direction angles of some vector 202. (b) 30°, 45°, 60° (c) 45°, 60°, 60° ✓ (d) obtuse (a) 45°, 45°, 60° Measure of angle θ between two vectors is always. 203. (a) $0 < \theta < \pi$ (b) $0 \le \theta \le \frac{\pi}{2}$ (c) $0 \le \theta \le \pi \checkmark$ (d) obtuse If the dot product of two vectors is zero, then the vectors must be (b) orthogonal ✓ (c) reciprocal (d) equal (a) Parallel If the cross product of two vectors is zero, then the vectors must be 205. (a) Parallel ✓ (b) orthogonal (c) reciprocal (d) Non coplanar If θ be the angle between two vectors \underline{a} and \underline{b} , then $\cos \theta =$ 206. (a) $\frac{\underline{a} \times \underline{b}}{|\underline{a}||\underline{b}|}$ (b) $\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$ (c) $\frac{\underline{a} \cdot \underline{b}}{|\underline{a}|}$ (d) $\frac{\underline{a} \cdot \underline{b}}{|\underline{b}|}$ If θ be the angle between two vectors \underline{a} and \underline{b} , then projection of \underline{b} along \underline{a} is (b) $\frac{\underline{a}.\underline{b}}{|\underline{a}|\underline{b}|}$ (c) $\frac{\underline{a}.\underline{b}}{|\underline{a}|}$ (a) $\frac{\underline{a} \times \underline{b}}{|a||b|}$ If θ be the angle between two vectors \underline{a} and \underline{b} , then projection of \underline{a} along \underline{b} is 208. (a) $\frac{\underline{a} \times \underline{b}}{|a||b|}$ (b) $\frac{\underline{a}.\underline{b}}{|a||b|}$ (c) $\frac{\underline{a}.\underline{b}}{|a|}$ Let $\underline{\mathbf{u}} = a\underline{\mathbf{i}} + b\underline{\mathbf{j}} + c\underline{\mathbf{k}}$ then projection of $\underline{\mathbf{u}}$ along $\underline{\mathbf{i}}$ is (a) a ✓ pakcity.org(c) c (b) b (d) u 210. In any $\triangle ABC$, the law of cosine is (a) $a^2 = b^2 + c^2 - 2bcCosA \checkmark$ (b) a = bCosC + cCosB (c) a.b = 0 (d) a - b = 0In any $\triangle ABC$, the law of projection is 211. (a) $a^2 = b^2 + c^2 - 2bcCosA$ (b) $a = bCosC + cCosB \checkmark$ (c) a.b = 0 (d) a - b = 0If \underline{u} is a vector such that $\underline{u} \cdot \underline{i} = 0$, $\underline{u} \cdot \underline{j} = 0$, $\underline{u} \cdot \underline{k} = 0$ then \underline{u} is called 212. (b) null vector \checkmark (c) $[\underline{i}, \underline{j}, \underline{k}]$ (d) none of these (a) Unit vector Cross product or vector product is defined 213. (b) in space only ✓ (c) everywhere (d) in vector field (a) In plane only If u and v are two vectors, then $u \times v$ is a vector (a) Parallel to <u>u</u> and <u>v</u> (b) parallel to <u>u</u> (c) perpendicular to <u>u</u> and <u>v</u> \checkmark (d) orthogonal to <u>u</u> If $\underline{\mathbf{u}}$ and $\underline{\mathbf{v}}$ be any two vectors, along the adjacent sides of ||gram then the area of ||gram is 215. (b) $|\underline{\mathbf{u}} \times \underline{\mathbf{v}}| \checkmark$ (c) $\frac{1}{2} (\underline{\mathbf{u}} \times \underline{\mathbf{v}})$ (d) $\frac{1}{2} |\underline{\mathbf{u}} \times \underline{\mathbf{v}}|$ (a) $u \times v$ If $\underline{\mathbf{u}}$ and $\underline{\mathbf{v}}$ be any two vectors, along the adjacent sides of triangle then the area of triangle is $(c) \frac{1}{2} (\underline{\mathbf{u}} \times \underline{\mathbf{v}}) \qquad (d) \frac{1}{2} |\underline{\mathbf{u}} \times \underline{\mathbf{v}}| \checkmark$ (b) $|\underline{\mathbf{u}} \times \underline{\mathbf{v}}|$ (a) $\underline{\mathbf{u}} \times \underline{\mathbf{v}}$ The scalar triple product of \underline{a} , \underline{b} and \underline{c} is denoted by Please visit for more data at: www.pakcity.org

(b) $a.b \times c \checkmark$ (c) $a \times b \times c$

(d) $(a+b) \times c$

Cross product or vector product is defined 218.

> In plane only (a)

(b) in space only ✓ (c) everywhere (d) in vector field

If \underline{u} and \underline{v} are two vectors, then $\underline{u} \times \underline{v}$ is a vector 219.

(a) Parallel to <u>u</u> and <u>v</u> (b) parallel to <u>u</u> (c) perpendicular to <u>u</u> and <u>v</u> \checkmark (d) orthogonal to <u>u</u>

If \underline{u} and \underline{v} be any two vectors, along the adjacent sides of ||gram then the area of ||gram is 220.

(a) $\underline{\mathbf{u}} \times \underline{\mathbf{v}}$

(b) $|\underline{\mathbf{u}} \times \underline{\mathbf{v}}| \checkmark$ (c) $\frac{1}{2} (\underline{\mathbf{u}} \times \underline{\mathbf{v}})$

(d) $\frac{1}{2} |\underline{\mathbf{u}} \times \underline{\mathbf{v}}|$

If $\underline{\mathbf{u}}$ and $\underline{\mathbf{v}}$ be any two vectors, along the adjacent sides of triangle then the area of triangle is

(a) $\underline{\mathbf{u}} \times \underline{\mathbf{v}}$

(b) $|\underline{\mathbf{u}} \times \underline{\mathbf{v}}|$ (c) $\frac{1}{2} (\underline{\mathbf{u}} \times \underline{\mathbf{v}})$ (d) $\frac{1}{2} |\underline{\mathbf{u}} \times \underline{\mathbf{v}}| \checkmark$

Two non-zero vectors are perpendicular iff

(a) u.v = 1

(b) $\underline{\mathbf{u}}.\underline{\mathbf{v}} \neq 1$ (c) $\underline{\mathbf{u}}.\underline{\mathbf{v}} \neq 0$ (d) $\underline{\mathbf{u}}.\underline{\mathbf{v}} = 0 \checkmark$

The scalar triple product of \underline{a} , \underline{b} and \underline{c} is denoted by 223.

(b) <u>a. b. c</u>

(b) $\underline{a}.\underline{b}\times\underline{c}\checkmark$ (c) $\underline{a}\times\underline{b}\times\underline{c}$ (d) $(\underline{a}+\underline{b})\times\underline{c}$

The vector triple product of \underline{a} , \underline{b} and \underline{c} is denoted by

(a) $\underline{a}.\underline{b}.\underline{c}$

(b) $\underline{a} \cdot \underline{b} \times \underline{c}$ (c) $\underline{a} \times \underline{b} \times \underline{c} \checkmark$ (d) $(\underline{a} + \underline{b}) \times \underline{c}$

Notation for scalar triple product of \underline{a} , \underline{b} and \underline{c} is

(b) $\underline{a} \times \underline{b} \cdot \underline{c}$ (c) $[\underline{a} \cdot \underline{b} \cdot \underline{c}]$ (d) all of these \checkmark

(a) $\underline{a}.\underline{b} \times \underline{c}$

If the scalar product of three vectors is zero, then vectors are

(a) Collinear

(b) coplanar ✓ (c) non coplanar (d) non-collinear

If any two vectors of scalar triple product are equal, then its value is equal to

(a) 1

4.

(b) 0 ✓ (c) -1

(d) 2

Moment of a force F about a point is given by:

(a) Dot product (b) cross product (c) both (a) and (b) (d) None of these

Question No.2: Short Questions

Repartity.org

 $x = at^2$, y = 2at represent the equation of parabola $y^2 = 4ax$

Express the perimeter P of square as a function of its area A.

sinh 2x = 2sinh xcosh x

Show that $x = a\cos\theta$ $y = b\sin\theta$ represent the equation of ellipse

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Express the volume V of a cube as a function of the area A of its base.

5. Find $\frac{f(a+h)-f(a)}{h}$ and simplify $f(x) = \cos x$

6. $f(x) = \frac{1}{\sqrt{x-1}}, x \neq 1$; $g(x) = (x^2 + 1)^2$ pakeity.org

(a) $f^{-1}(x)$ (b) $f^{-1}(-1)$ and verify $f(f^{-1}(x)) = f^{-1}f(x) = xf(x) = \frac{2x+1}{x-1}, x > 1$

Show that $\lim_{x\to 0} \frac{a^{x}-1}{x} = \log_e a$

 $\lim_{x\to 0} \frac{\sin 7x}{x}$ Evaluate

Show that:

 $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^{\frac{n}{2}}$ 10. Evaluate

11. $\lim_{h\to 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$

12. $\lim_{x\to 0} (1+2x^2)^{\frac{1}{x^2}}$

13. Evaluate

14. Evaluate

15. $\lim_{x\to 0} \frac{e^{1/x}-1}{e^{1/x}+1}, x>0$

16. (i)
$$\lim_{x\to 0} \frac{\sin x^0}{x}$$
 (ii) $\lim_{\theta\to 0} \frac{1-\cos \theta}{\sin \theta}$

(ii)
$$\lim_{\theta \to 0} \frac{1-\cos\theta}{\sin\theta}$$

(iii)
$$\lim_{x\to 0} \frac{\sin x}{\sin bx}$$

- 18. Discuss the continuity of f(x) at x = c: $f(x) = \begin{cases} 2x + 5 & \text{if } x \le 2 \\ 4x + 1 & \text{if } x > 2 \end{cases}$, c = 2
- 19. Discuss the continuity of f(x) at 3, when $f(x) = \begin{cases} x 1, & \text{if } x \leq 3 \\ 2x + 1 & \text{if } 3 \leq x \end{cases}$
- **20**. Find the derivative of the given function by definition $f(x) = x^2$
- 21. Find the derivative of the given function by definition $f(x) = \frac{1}{\sqrt{x}}$
- 22. Find the derivative of $y = (2\sqrt{x} + 2)(x \sqrt{x})$ w.r.t 'x'
- 23. Differentiate $\frac{2x^3-3x^2+5}{x^2+1}$ w.r.t 'x'
- **24.** If $x^4 + 2x^2 + 2$, Prove that $\frac{dy}{dx} = 4x\sqrt{y-1}$
- 25. Differentiate $\left(\sqrt{x} \frac{1}{\sqrt{x}}\right)^2$ w. r. t'x'.
- 26. Differentiate (x 5)(3 x)
- 27. Find $\frac{dy}{dx}$ if $x = \theta + \frac{1}{2}$, $y = \theta + 1$
- 28. Find $\frac{dy}{dx}$ by making some suitable substitution if $y = \sqrt{x + \sqrt{x}}$
- 29. Differentiate $x^2 + \frac{1}{x^2}$ w. r. t $x \frac{1}{x}$
- 30. Find $\frac{dy}{dx}$ if $y^2 xy x^2 + 4 = 0$
- 31. Find $\frac{dy}{dx}$ if $x^2 + y^2 = 4$
- 32. Find $\frac{dy}{dx}$ if $y = x^n$ where $n = \frac{p}{a}$, $q \neq 0$
- 33. If $y = (ax + b)^n$ where n is negative integer, find $\frac{dy}{dy}$ using quotient theorem.

- $\frac{dx}{dx} + y^2 = 2$ 35. Differentiate $(1 + x^2)$ w. r. tx^2 36. Find $\frac{dy}{dx}$ if $3x + 4y + 7 \neq 0$ 37. Find
 - 37. Find $\frac{dy}{dx}$ if $y = x \cos y$
 - 38. Differentiate sin²x w.r.t cos²x
 - 39. Find f'(x) if $f(x) = \ln(e^x + e^{-x})$
 - **40.** Find f'(x) if $f(x) = e^x (1 + \ln x)$
 - 41. Differentiate $(\ln x)^x$ w. r. t 'x'
 - 42. Find $\frac{dy}{dy}$ if $y = a^{\sqrt{x}}$
 - **43.** Find $\frac{dy}{dx}$ if $y = 5e^{3x-4}$
 - **44.** Find $\frac{dy}{dx}$ if $y = (x + 1)^x$
 - 45. Find $\frac{dy}{dy}$ if $y = xe^{\sin x}$
 - 46. Find $\frac{dy}{dy}$ if $y = (\ln \tanh x)$
 - 47. Find $\frac{dy}{dy}$ if $y = \sinh^{-1}(\frac{x}{2})$
 - 48. Find $\frac{dy}{dy}$ if $y = \tanh^{-1}(\sin x)$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$
 - 49. If $y = \sin^{-1} \frac{x}{a}$, then show that $y_2 = x(a^2 x^2)^{-\frac{3}{2}}$
 - **50.** Find y_2 if $y = x^2 \cdot e^{-x}$
 - **51.** Find y_2 if $x = a\cos\theta$, $y = \sin\theta$
 - 52. Find y_2 if $x^3 y^3 = a^3$

- 53. Find the first four derivatives of cos(ax + b)
- 54. Apply Maclaurin's Series expansion to prove that $e^{2x} = 1 + 2x + \frac{4x^2}{2!} + \frac{8x^3}{3!} + \cdots$
- 55. Apply Maclaurin's Series expansion to prove that $e^x = 1 + x + \frac{x^2}{2!} + \cdots$
- 56. State Taylor's series expansion.
- 57. Expand cosx by Maclaurin's series expansion.
- 58. Define Increasing and decreasing functions.
- 59. Determine the interval in which $f(x) = x^2 + 3x + 2$; $x \in [-4,1]$
- **60.** Determine the interval in which f(x) = Cosx; $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- **61**. Find the extreme values of the function $f(x) = 3x^2 4x + 5$
- **62.** Find the extreme values of the function $f(x) = 1 + x^3$
- 63. Find δy and dy if $y = x^2 + 2x$ when x changes from 2 to 1.8
- **64.** Use differentials find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ in the following equations.
- 65. xy + x = 4(b) xy - lnx = c
- 66. Find the approximate increase in the volume of a cube if the length of its each edge changes from 5 to 5.02
- 67. Find the approximate increase in the area of a circular disc if its diameter is increased form 44cm to 44.4cm.

Question No.3: Short Questions

pakcity.org

- Find dy in $y = x^2 + 2x$ when x changes from 2 to 1.8.
- Using differentials find $\frac{dx}{dy}$ $xy \ln x = c$.

 Use differential to approximate $\frac{dx}{dy}$ 2. If xy + x = 4, find $\frac{dx}{dy}$ by using differentials.

- Evaluate $tan^2 \int x dx$.
- Find $\int a^{x^2} x dx$
- 7. Evaluate ∫ cos 3xsin 2xdx
- 8. Evaluate $\int \frac{ax+b}{ax^2+2bx+c} dx$
- 9. Evaluate $\int \sqrt{1-\cos 2x} dx$, $(1-\cos 2x) > 0$.
- 10. Evaluate $\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$
- 11. Evaluate $\int \frac{e^{2x} + e^x}{e^x} dx$
- 12. Integrate by substitution $\int \frac{-2x}{\sqrt{4-x^2}} dx$.
- 13. Find the integral $\int \frac{\cos x}{\sin x \ln (\sin x)} dx$
- 14. Evaluate $\int \frac{1}{x \ln x} dx$.
- 15. Evaluate $\int \frac{2x}{1-\sin x} dx$
- 16. Evaluate $\int \frac{e^{x}(1+x)}{(2+x)^2} dx$
- **17**. Evaluate ∫ xln xdx
- 18. Evaluate $\int \frac{3-x}{1-x+6x^2} dx$
- 19. Evaluate $\int_{-1}^{3} (x^3 + 3x^2) dx$.
- 20. $\int_0^{\frac{\pi}{6}} x \cos x dx$
- 21. Solve the differential equations $\frac{dy}{dx} = \frac{y^2+1}{2^{-x}}$.

- 22. Write two properties of definite integral.
- 23. Find the area between the x-axis and curve $y = 4x x^2$ pakeity.org

- 24. Solve the differential equation $\frac{x^2+1}{y+1} = \frac{x}{y} \frac{dy}{dx}$
- 25. Evaluate $\int \frac{1}{\sqrt{x+1}-\sqrt{x}} dx$
- 26. Evaluate $\int \frac{dx}{x(\ln 2x)^3} x > 0$
- 27. Evaluate $\int x^5 \ln x dx$
- 28. Evaluate $\int \frac{2a}{a^2-x^2} dx$, x < a
- 29. Evaluate $\int_{-1}^{2} [x + |x|] dx$
- 30. Evaluate $\int_0^3 \frac{dx}{x^2+9}$
- 31. Evaluate $\int \tan^{-1} x dx$
- 32. Evaluate $\int_{2}^{\sqrt{5}} x \sqrt{x^2 1} dx$
- 33. Evaluate $\int \frac{e^{\tan^{-1} x}}{1+x^2} dx$
- **34.** Evaluate $\int x^2 \ln x dx$
- **35.** Evaluate integral $\int x \cdot \sin x dx$
- 36. Find indefinite integral $\int e^{ax} \left[asec^{-1} x + \frac{1}{x\sqrt{x^2-1}} \right] dx$
- 37. Evaluate $\int \frac{5x+8}{(x+3)(2x-1)} dx$ by using partial fraction
- 38. Solve $x^2(2y+1)\frac{dy}{dx} 1 = 0$.
- 39. Show that $y = \tan(e^x + c)$ is solution of $\frac{dy}{dv} = \frac{y^2 + 1}{c}$
- 40. Evaluate $\int_{\underline{\pi}}^{\frac{3}{3}} \cos t dt$.
- **41**. What is differential coefficient?
- 42. Define Definite integral.
- **43**. Define integral
- 44. Calculate the integral $\int_0^{\frac{\pi}{4}} \sec x(\sec x + \tan x) dx$.
- **45.** If $\int_{-2}^{1} f(x) dx = 5$, $\int_{-2}^{1} g(x) dx = 4$ then Evaluate $\int_{-2}^{1} [3f(x) 2g(x)] dx$
- **46**. Show that the points A(3,1), B(-2,-3) and C(2,2) are vertices of an isosceles triangle.
- 47. Find the mid-point of the line segment joining the vertices A(-8,3), B(2,-1).
- 48. Show that the vertices (-1,2), B(7,5), C(2,-6) are vertices of a right triangle.
- **49**. Find the points trisecting the join of A(-1, -4) and B(6,2).
- 50. Find h such that (-1, h), B(3,2), and C(7,3) are collinear.
- **51**. Describe the location in the plane of point P(x, y) for which x = y.
- 52. The point C(-5,3) is the centre of a circle and P(7,-2) lies on the circle. What is the radius of the circle?
- 53. Find the point three-fifth of the way along the line segment from A(-5,8) to B(5,3).
- **54**. The two points P and O' are given in xy —coordinate system. Find the XY-coordinates of P referred to the translated axes O'X and O'Y if P(-2,6) and O'(-3,2).
- 55. The xy-coordinate axes are translated through point O' whose coordinates are given in xy -coodinate system. The coordinates of P are given in the XY -coodinate system. Find the coordinates of P in xy-coordinate system if (-5, -3), 0'(-2, 3).
- 56. What are translated axes.
- 57. Show that the points A(-3,6), B(3,2) and C(6,0) are collinear.
- 58. Find an equation of the straight line if its slope is 2 and y axis is 5.

- 59. Find the slope and inclination of the line joining the points (-2,4); (5,11)
- 60. Find k so that the line joining A(7,3); B(k, -6) and the line joining C(-4,5); D(-6,4) are perpendicular.
- 61. Find an equation of the line bisecting the I and III quadrants.
- **62**. Find an equation of the line for x intercept: -3 and y intercept: 4
- **63**. Find the distance from the point P(6, -1) to the line 6x 4y + 9 = 0
- 64. Find whether the given point (5,8) lies above or below the line 2x 3y + 6 = 0
- 65. Check whether the lines are concurrent or not.

$$3x - 4y - 3 = 0$$
; $5x + 12y + 1 = 0$; $32x + 4y - 17 = 0$

- **66.** Transform the eqution 5x 12y + 39 = 0 to "Two-intercept form".
- 67. Find the point of intersection of the lines x 2y + 1 = 0 and 2x y + 2 = 0
- 68. Find an equation of the line through the point (2, -9) and the intersection of the lines 2x + 5y 8 = 0 and 3x 4y 6 = 0.
- 69. Determine the value of p such that the lines 2x 3y 1 = 0.3x y 5 = 0 and 3x + py + 8 = 0 meet at a point.
- 70. Find the angle measured from the line l_1 to the line l_2 where l_1 : Joining (2,7) and (7,10) l_2 : Joining (1,1) and (-5,5)
- 71. Express the given system of equations in matrix form 2x + 3y + 4 = 0; x 2y 3 = 0; 3x + y 8 = 0
- 72. Find the angle from the line with slope $-\frac{7}{3}$ to the line with slope $\frac{5}{2}$.
- 73. Find an equation of each of the lines represented by $20x^2 + 17xy 24y^2 = 0$
- 74. Define Homogenous equation.
- 75. Write down the joint equation.

Question No.4; Short Questions

- 1. Find a joint equation of the straight lines through the origin perpendicular to the lines represented by $x^2 + xy 6x^2 = 0$.
- 2. Find measure of angle between the lines represented by $x^2 xy 6y^2 = 0$.
- 3. Define "Corner Point" or "Vertex".
- 4. Graph the solution set of linear inequality $3x + 7y \ge 21$.
- 5. Indicate the solution set of $3x + 7y \ge 21$; $x y \le 2$
- 6. What is "Corresponding equation".
- 7. Graph the inequality x + 2y < 6.
- 8. Graph the feasible region of $x + y \le 5$; $-2x + y \le 0$ $x \ge 0$; $y \ge 0$
- 9. Graph the feasible region of $5x + 7y \le 35$; $x 2y \le 4$ $x \ge 0$; $y \ge 0$
- 10. Define "Feasible region".
- 11. Graph the feasible region of $2x 3y \le 6$; $2x + y \ge 2$ $x \ge 0$; $y \ge 0$
- 12. $\underline{\mathbf{a}} = 3\underline{\mathbf{i}} 2\mathbf{j} + \underline{\mathbf{k}}, \underline{\mathbf{b}} = \underline{\mathbf{i}} + \mathbf{j}$, find $\mathbf{b} \times \mathbf{a}$
- **13**. A force $\underline{F} = 7\underline{i} + 4\underline{j} 3\underline{k}$ is applied at P(1, -2,3). Find its moment about the point Q(2,1,1).
- 14. By means of slope, show the points lie on the same line A(-1, -3), B(1,5), C(2,9)
- 15. Calculate the projection of <u>a</u> along <u>b</u> when $\underline{a} = \underline{i} + \underline{k}$, $\underline{b} = \underline{j} + \underline{k}$
- 16. Check the position of the point (5,6) with respect to the circle $2x^2 + 2y^2 + 12x 8y + 1 = 0$.
- 17. Check whether (-2,4) lies above or below 4x + 5y 3 = 0
- 18. Check whether the point (-2,4) lies above or below the line 4x + 5y 3 = 0.
- 19. Check whether the point (-4,7) is above or below of the line 6x 7y + 70 = 0.
- **20**. Convert 2x 4y + 11 = 0 into slope intercept form.

- **21.** Convert the equation 4x + 7y 2 = 0 into two intercept form.
- 22. Convert the equation into two intercept form 4x + 7y 2 = 0. Repair part in the equation into two intercepts form 4x + 7y 2 = 0.
- 23. Define direction angles and direction cosines of a vector
- 24. Define focal chord of parabola.
- 25. Define parabola.
- 26. Define trapezium.
- 27. Define unit vector.
- 28. Find a scalar " α " so that the vectors $2\underline{i} + \alpha \underline{j} + 5\underline{k}$ and $3\underline{i} + \underline{j} + \alpha \underline{k}$ are perpendicular.
- 29. Find a vector of length 5, in the direction of opposite that of $\underline{\mathbf{v}} = \underline{\mathbf{i}} 2\mathbf{j} + 3\underline{\mathbf{k}}$.
- 30. Find a vector perpendicular to each of the vector $\underline{a} = 2\underline{i} \underline{j} \underline{k}$ and $\underline{b} = 4\underline{i} + 2\underline{j} \underline{k}$.
- 31. Find a vector perpendicular to each of the vectors = $2\hat{l} + \hat{j} + \hat{k}$ and = $4\hat{l} + 2\hat{j} \hat{k}$.
- 32. Find a vector whose magnitude is '4' and is parallel to 2i 3j + 6k.
- 33. Find an equation of a line bisecting 2nd and 4th quadrants.
- **34**. Find an equation of a line through the points (-2,1) and (6,-4).
- 35. Find an equation of a line with x-intercept: -9 and slope: -4.
- 36. Find an equation of hyperbola if its foci $(0, \pm 9)$ and directrices $y = \pm 4$.
- 37. Find an equation of the line through (-4, -6) and perpendicular to the line having slope $\frac{-3}{3}$
- 38. Find the angle from the line with slope $\frac{-7}{3}$ to the line with slope $\frac{5}{2}$
- 39. Find an equation of the line through (5, -8) and perpendicular to the join of A (-15, -8), B(10, -7)
- 40. Find an equation of the line with x-intercept: 3 and y-intercept: 4
- **41**. Find an equation of the perpendicular bisector of the segment joining the points A (3,5) and B(9,8).
- **42**. Find an equation of the vertical line through (-5,3).
- 43. Find an unit vector in the direction of the vector $v = \frac{1}{2} \frac{i}{2} + \frac{\sqrt{3}}{2} j$.
- **44.** Find centre and radius of circle $5x^2 + 5y^2 + 14x + 12y 10 = 0$.
- 45. Find centre and vertices of ellipse $\frac{(x-1)^2}{4} + \frac{(y-1)^2}{9} = 1$.
- 46. Find condition that the lines $y = m_1x + c_1$, $y = m_2x + c_2$, $y = m_3x + c_3$ are concurrent.
- **47**. Find direction cosine of $\underline{\mathbf{v}} = 3\underline{\mathbf{i}} \mathbf{j} + 2\underline{\mathbf{k}}$.
- 48. Find eccentricity of the ellipse $x^2 + 4y^2 = 16$.
- 49. Find equation of hyperbola with foci $(\pm 5,0)$ and vertex of (3,0).
- 50. Find equation of latus rectum of parabola $y^2 = -8(x 3)$
- **51**. Find focus and vertex of the parabola $y = 6x^2 1$
- 52. Find h such that A(-1, h), B(3,2) and C(7,3) are collinear.
- **53**. Find length of tangent segment from (-5,4) to $5x^2 + 5y^2 10x + 15y 131 = 0$
- 54. Find measure of the angle between the lines represented by $x^2 xy 6y^2 = 0$
- 55. Find point which divide A(-6,3) ad B[(5,-2) internally in 2: 3
- 56. Find position vector of a point which divide the join of E with position vector 5i and F with position vector 4i + j in ratio 2: 5.
- 57. Find slope and inclination of the line joining points (4,6), (4,8)
- 58. Find the angle between the vectors $\underline{\mathbf{u}} = 2\underline{\mathbf{i}} \underline{\mathbf{j}} + \underline{\mathbf{k}}$ and $\underline{\mathbf{v}} = -\underline{\mathbf{i}} + \underline{\mathbf{j}}$.
- 59. Find the area of the triangle with vertices A(1, -1, 1), B(2, 1, -1) and C(-1, 1, 2)
- 60. Find the centre and radius of the circle $x^2 + y^2 + 12x 10y = 0$

- **61**. Find the coordinate of the points of the points of intersection of the line x + 2y = 6 with the circle $x^2 + y^2 - 2x - 2y - 39 = 0$.
- 62. Find the coordinates of the points of intersection of the line 2x + y = 5 and $x^2 + y^2 + y^2$ 2x - 9 = 0.
- **63**. Find the direction cosines for \overrightarrow{PQ} , where P(2,1,5), Q(1,3,1).
- **64**. Find the direction cosines of the vector $6\underline{\mathbf{i}} 2\mathbf{j} + \underline{\mathbf{k}}$.
- 65. Find the distance from the point P(6, -1) tto the line 6x 4y + 9 = 0.16
- 66. Find the equation of ellipse when foci $(\pm 3,0)$ and minor axis of length 10
- 67. Find the equation of the line through A(-6,5) having slope 7.
- **68**. Find the focus and directrix of the parabola $y = 6x^2 1$.
- 69. Find the focus and vertex of parabola $(x 1)^2 = 8(y + 2)$.
- 70. Find the lines represented by $20x^2 + 17xy 24y^2 = 0$.
- 71. Find the lines represented by $x^2 xy 6y^2 = 0$, also find the angle between them.
- 72. Find the measure of angle between the lines represented by $x^2 xy 6y^2 = 0$.
- 73. Find the mid-point of the line joining the two points A(-8,3), B[2,1).
- 74. Find the point three-fifth of the way along line segment from A(-5,8) to B(5,3).
- 75. Find the projection of vector \underline{a} along vector \underline{b} and projection of vector \underline{b} along when \underline{a} = $\hat{i} - \hat{k}, \hat{b} = \hat{j} + \hat{k}$
- 76. Find the value of 3j. $k \times a$.
- 77. Find the value of $2\underline{i} \times 2\underline{j} \underline{k}$.
- 78. Find unit vector perpendicular to the plane of <u>a</u> and <u>b</u> if a = -i j k, b = 2i 3j + 4k.
- 79. Find vertices and equation of directrices of hyperbola $x^2 y^2 = 9.17$ Grp11,
- 80. Find α so that $\underline{\mathbf{u}} = \alpha \underline{\mathbf{i}} + 2a\mathbf{j} \underline{\mathbf{k}}$ and $\underline{\mathbf{v}} = \underline{\mathbf{i}} + \alpha \underline{\mathbf{j}} + 3\underline{\mathbf{k}}$ are perpendicular.
- 81. Find a, so that $|a\underline{i} + (a + 1)\underline{j} + 2\underline{k}| = 3$.

 82. Fine the value $3\underline{j} \cdot \underline{k} \times \underline{i}$.
- 83. If $\overrightarrow{AB} = \overrightarrow{CD}$, find coordinates of points A. If B, C, D are (1,2), (-2,5), (4,11)
- 84. If $\underline{a} = 2\underline{i} + \underline{j} \underline{k}$ and $\underline{b} = \underline{i} \underline{j} + \underline{k}$ find the cross product $\underline{a} \times \underline{b}$
- 85. If $\underline{\mathbf{u}} = 3\underline{\mathbf{i}} + \mathbf{j} \underline{\mathbf{k}}$ and $\underline{\mathbf{v}} = 2\underline{\mathbf{i}} \mathbf{j} + \underline{\mathbf{k}}$, find the cosines of the angle θ between $\underline{\mathbf{u}}$ and $\underline{\mathbf{v}}$
- 86. If O is the origin and $\overrightarrow{OP} = \overrightarrow{AB}$, find the point P when A and B are (-3,7) and (1,0)respectivel
- 87. Prove that if $\underline{a} + \underline{b} + \underline{c} = 0$ then $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$
- 88. Prove that $a \times (b + c) + b \times (c + a) + c \times (a + b) = 0$.
- 89. Prove that if the lines are perpendicular, then product of their slopes = -1
- 90. Show that the points A(3,1), B(-2,-3) and C(2,2) are vertices of an isosceles triangle.
- 91. Show that the points A(-1,2), B(7,5) and C(2,-6) are vertices of a right triangle.
- 92. Show that the triangle with vertices A(1,1), B(4,5) and C(12,-5) is right triangle.
- 93. Show that vectors $3\underline{i} 2\underline{j} + \underline{k}, \underline{i} 3\underline{j} + 5\underline{k}$ and $2\underline{i} + \underline{j} 4\underline{k}$ from a right triangle.
- 94. Transform 5x 12y + 39 = 0 into two intercept form. 15 Grp II,
- 95. Two lines l_1 and l_2 with respective slopes m_1 and m_2 are parallel if $m_1 = m_2$.
- 96. Write and equation of parabola with focus (-1,0), vertex (-1,2).
- **97**. Write direction cosine of \overrightarrow{PQ} , if P(2,1,5), Q(1,3,1).
- 98. Write down the equation of straight line with x-intercept (2,0) and y-intercept (0,-4)
- 99. Find the mid-point of line segment joining the points A $\left(-\sqrt{5}, -\frac{1}{2}\right)$ and $\left(-3\sqrt{5}, 5\right)$.
- Find the slope and inclination of the line joining the points (-2,4) and (5,11).
- 101. Find equation of tangent to the circle $x^2 + y^2 = 25$ at (4,3).

- **102.** Find the vertex and directrix of parabola $x^2 = 4(y 1)$.
- 103. Find the centre and vertices of the ellipse $9x^2 + y^3 = 18$.
- 104. Find the sum of vectors \overrightarrow{AB} and \overrightarrow{CD} , given the four points A(1, -1), B(2,0), C (-1,3) and D(-2,2).
- 105. Find a vector perpendicular to each of the vectors $\underline{a} = 2\underline{i} + \underline{j} + \underline{k}$ and $\underline{b} = 4\underline{i} + 2\underline{j} \underline{k}$.
- 106. Prove that the vectors $\underline{i} 2\underline{j} + 3\underline{k} 2\underline{i} + 3\underline{j} 4\underline{k}$ and $\underline{i} 3\underline{j} + 5\underline{k}$ are co-planar.
- **107**. Find equation of a line through (-4, 7) and parallel to the line 2x 7y + 4 = 0.
- Find equation of a line through (-6, 5) having slope = 7
- 109. Find distance from the point P (6, -1) to the line 6x 14y + 9 = 0
- Find area of triangular region whose vertices are A (5,3), B (-2,2), C (4,2).
- Find the equation of tangent to the circle $x^2 + y^3 = 25$ at (4, 3). 14 Grp I,
- Find the equation of parabola whose focus is (2, 5) and directrix is y = 1
- Find foci and eccentricity of ellipse
- **114.** Find vector from A to origin whose AB = 4i 2j and B (-2, 5).
- Find a vector whose magnitude is 2 and is parallel to i + j + k.
- **116.** Find α so that the vectors $2i + \alpha j + 5k$ and $3i + j + \alpha k$ are perpendicular.
- **117.** Find α so that $\alpha i + j$, i + j + 3k, 2i + j 2k are co-planar.

Long Questions

Chapter No.1: Functions and Limits & pakeity.org 🗞

2. Evaluate
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

1. Evaluate
$$\lim_{x\to 0} \frac{1-\cos x}{\sin^2 x}$$

2. Evaluate $\lim_{x\to 0} \frac{\sin x}{x} = 1$

3. Evaluate $\lim_{\theta\to 0} \left(\frac{1-\cos \theta}{1-\cos \theta}\right)$

4. Evaluate $\lim_{\theta\to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$

5. Find the values of m and n, so that given function f is

4. Evaluate
$$\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$$

5. Find the values of m and n, so that given function f is continuous at
$$x = 3$$
.

6. If
$$f(x) = \begin{cases} mx & \text{if } x < 3 \\ n & \text{if } x = 3 \\ -2x + 9 & \text{if } x > 3 \end{cases}$$

7. Discuss the continuity of
$$f(x)$$
 at $x = 2$ and $x = -2$.

8. If
$$f(x) = \begin{cases} 3x & \text{if } x \le -2 \\ x^2 & \text{if } -2 < x < 2 \\ 3 & \text{if } x \ge 2 \end{cases}$$

9. If
$$f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, & x \neq 2 \\ k, & x = 2 \end{cases}$$

- 10. Find the value of k so that f is continuous at x = 2.
- 11. Let $f(x) = \frac{2x+1}{x-1}$; $x \ne 1$, find $f^{-1}(x)$ and verify f(x) = x
- 12. Prove $\lim_{x\to\infty} \left(1+\frac{1}{n}\right)^n = e14$ Grp II, 10. Prove that $\lim_{x\to0} \left(\frac{a^{x}-1}{x}\right) = \log_e a$
- 13. Prove that $\lim_{x\to 0} \frac{\sin x}{x} = 1$

Chapter No.2: Differentiation

Differentiate $\frac{x^2+1}{x^2-1}$ w.r.t. $\frac{x-1}{x+1}$

- 2. Differentiate $x^2 + \frac{1}{x^2}$ w.r.t. $x \frac{1}{x}$
- 3. Differentiate cos \sqrt{x} from the first principle.
- 4. Differentiate $\sin \sqrt{\frac{1+2x}{1+x}}$ w.r.t x
- 5. Find $\frac{dy}{dx}$ if $x = a(\cos t + \sin t)$, $y = a(\sin t \cos t)$
- 6. Find two positive integers whose sum is 9 and the product of one with the square of the other will be maximum.
- 7. If $x = \sin \theta$, $y = \sin m\theta$, Show that $(1 x^2)y_2 xy_1 + m^2y = 0$
- 8. If $y = (\cos^{-1} x)^2$, prove that $(1 x^2)y_2 xy_1 2 = 0$
- 9. If $y = e^x \cdot \sin x$, then prove that $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0$
- 10. Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$.
- 11. Show that $\cos(x + h) = \cos x h\sin x \frac{h^2}{\underline{|2|}}\cos x + \frac{h^3}{\underline{|3|}}\sin x + \cdots$ And evaluate $\cos 61^\circ$
- 12. Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = Tan^{-1} \frac{y}{x}$
- 13. Show that $y = \frac{\ln x}{x}$ has maximum value at x = e.
- 14. Show that $y = x^x$ has a maximum value at $= \frac{1}{e}$

Chapter No.3: Integration

- 1. Evaluate $\int \left(\frac{1-\sin x}{1-\cos x}\right) e^x dx$
- 2. Evaluate $\int \left(\frac{1-\sin x}{1-\cos x}\right) e^x dx$
- 3. Evaluate $\int \frac{\sqrt{2}}{\sin x + \cos x} dx$
- 4. Evaluate $\int \frac{e^{x}(1+\sin x)}{(1+\cos x)} dx$
- 5. Evaluate $\int \frac{1}{x(x^3-1)} dx$
- 6. Evaluate $\int \cos^3 x \sqrt{\sin x} dx$, (sin x > 0)
- Evaluate ∫ cosec³ xdx
- 8. Evaluate $\int \frac{\cos x}{\sin x \ln \sin x} dx$
- 9. Evaluate $\int \frac{dx}{\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x}$
- 10. Evaluate $\int e^{2x} \cos 3x dx$
- 11. Evaluate $\int \tan^3 x \sec x dx$
- 12. Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x(2+\sin x)} dx$
- 13. Evaluate $\int_0^{\frac{\pi}{4}} \cos^4 t dt$
- 14. Evaluate $\int_{0}^{\frac{\pi}{6}} \cos^{3} \theta d\theta$
- 15. Evaluate $\int_0^{\pi/4} \frac{\sin x 1}{\cos^2 x} dx$
- 16. Evaluate $\int_0^{\pi/4} \frac{\sec \theta}{\sec \theta + \cos \theta} d\theta$
- 17. Evaluate $\int_{-1}^{2} (x + |x|) dx$
- 18. Evaluate $\int_{2}^{3} \frac{3x^2-2x+1}{(x-1)(x^2+1)} dx$
- **19.** 19. Evaluate $\int_{2}^{3} \left(x \frac{1}{x} \right)^{2} dx$
- 20. Evaluate the indefinite integral $\int \sqrt{a^2 x^2} dx$

- 21. Find the area between the x-axis and the curve $y = \sqrt{2ax x^2}$; a > 0
- **22**. Find the area bounded by the curve $y = x^3 4x$ and x-axis
- 23. Show that $\int \frac{dx}{\sqrt{x^2 a^2}} = \ln \left(x + \sqrt{x^2 a^2} \right) + c$
- 24. Solve the differential equation $(x^2 yx^2) \frac{dy}{dx} + y^2 + xy^2 = 0$
- 25. Solve the following differential equation $(x^2 yx^2) \frac{dy}{dx} + y^2 + xy^2 = 0$
- 26. Solve the following differential equation $1 + \cos x \tan y \frac{dy}{dx} = 0$
- 27. Solve the following differential equation xdy + y(x 1)dx
- 28. Use differentials to approximate the values of $(31)^{1/5}$
- 29. $y = \sqrt{2ax x^2}$ when a > 0.

Chapter No.4: Introduction to Analytic Geometry

- 1. Find a joint equation of the straight lines through the origin perpendicular to the lines represented by $x^2 + xy 6y^2 = 0$
- 2. Find an equation of the perpendicular bisector joining the points A(3,5) and B (9,8)
- 3. Find an equation of the perpendicular bisector of the segment joining the points A (3,5) and B (9,8)
- 4. Find equations of the sides, altitudes and medians of the triangle whose vertices are A (-3,2), B(5,4) and C (3,-8).
- 5. Find equations of two parallel lines perpendicular to 2x + 3 = 0 such that the product of the x-intercept and y-intercept of each is 3.
- 6. Find h such that the points A $(\sqrt{3}, -1)$, B(0,2), C(h, -2) are the vertices of a right triangle with right angle at the vertex A.
- 7. Find interior angles of a triangle whose vertices are A(6,1), B(2,7) and C(-6,7).
- 8. Find the condition that the line y = mx + c touches the circle $x^2 + y^2 = a^2$ at a single point.
- 9. Find the condition that the lines $y = m_1x + c_1$; $m_2x + c_2$; $y = m_3x + c_3$ are concurrent.
- 10. Find the distance between the given parallel lines. Also find equation of parallel lying midway between them. 3x 4y + 3 = 0 and 3x 4y + 7 = 0
- **11**. Find the equations of altitudes of \triangle ABC whose vertices are A(-3,2), B(5,4) and C (3, -8)
- 12. Find the interior angles of a triangle whose vertices are A(6,1), B(2,7), C(-6,-7).
- 13. Find the length of the chord cut off from the line 2x + 3y = 13 by the circle $x^2 + y^2 = 26$.
- 14. 14. Find the lines represented by each of the following and also find measure of the angle between them $x^2 + 2xysec \ \alpha + y^2 = 0$
- 15. Prove that the line segment joining the midpoints of two sides of a triangle is parallel to the third side and half as long.
- 16. Prove that the line segments joining the mid-points of sides of quadrilateral taken in order form a parallelogram.
- 17. Prove that the midpoint of the hypotenuse of a right triangle is the circumcenter of the triangle. 11 Grp II,
- 18. The points A(-1,2), B(6,3) and C(2, -4) are vertices of a triangle. Show the line joining the midpoint D of AB and the midpoing E of AC is parallel to BC and DE = $\frac{1}{2}$
- 19. The three points A(7, -1), B(-2,2) and C(1,4) are consecutive vertices of a parallelogram, find the fourth vertex.
- **20**. The vertices of a triangle are A(-2,3), B(-4,1) and C(3,5). Find the circumcircle of the triangle.

Chapter No.5: Linear Inequalities and Linear Programming

- 1. Graph the feasible region of system of linear inequalities and find the corner points.
- 2. $2x + 3y \le 18$, $x + 4y \le 12$, $3x + y \le 12$ $x \ge 0$, $y \ge 0$
- 3. Graph the feasible region of system of linear inequalities and find the corner points.
- 4. $3x + 7y \le 21$, $2x y \le -3$, $y \ge 0$
- 5. Shade the feasible region and also find the corner points of: $2x 3y \le 6$, $2x + 3y \le 12$, $x \ge 0, y \ge 0$
- 6. Minimize z = 2x + y subject to the constraints. $x + y \ge 3$; $7x + 5y \le 35$; $x \ge 0$; $y \ge 0$
- 7. Graph the feasible region of system of linear inequalities and find the corner points.
- 8. $x + y \le 5$; $-2x + y \le 2$; $y \ge 0$
- 9. Graph the feasible region of system of linear inequalities and find the corner points.
- 10. $2x 3y \le 6$; $2x + y \ge 2$; $y \ge 0, y \ge 0$
- 11. Minimize f(x, y) = x + 3y subject to constraint.
- 12. $2x + 5y \le 30$; $5x + 4y \le 20$; $x \ge 0, y \ge 0$
- 13. Minimize f(x, y) = 2x + 3y subject to constraint.
- **14**. $2x + y \le 8$; $x + 2y \le 14$; $x \ge 0, y \ge 0$
- 15. Find the minimum value of $\varphi(x,y)=4x+6y$ under the constrains: $2x-3y\leq 6$, $2x+y\geq 2$, $2x+3y\leq 12$ $x\geq 0$, $y\geq 0$
- **16.** Minimize the function z = 3x + y subject to the constrains: $3x + 5y \ge 6$, $x + 6y \ge 9$, $x \ge 0$, $y \ge 0$

Chapter No.6: Conic Sections & pakcity.org

- 1. Find an equation of parabola having its focus at the origin and directrix parallel to y-axis.
- 2. Find the centre, foci, eccentricity, vertices and equation of directives of $\frac{y^2}{4} x^2 = 1$.
- 3. Find x so that points A(1, -1,0). B(\rightarrow 2,2,1) and C(0,2,x) from triangle with right angle at C.
- 4. Find the coordinates of the points of intersection of the line 2x + y + 5 = 0 and the circle $x^2 + y^2 + 2x 9 = 0$. Also find the length of intercepted chord.
- 5. Find equation of parabola with elements directrix: x = -2, focus (2,2).
- 6. Find an equation of parabola whose focus is F(-3,4), directrix line is 3x 44y + 5 = 0.
- 7. Find the focus, vertex and the directrix of the parabola $x^2 4x 8y + 4 = 0$.
- 8. Write an equation of the parabola with axis y = 0 and passing through (2,1) and (11, -2).
- 9. Show that the line 3x 2y = 0 and 2x + 3y 13 = 0 are tangents to the circle $x^2 + y^2 + 6x 4y = 0.17$
- 10. Show that the equation $9x^2 18x + 4y^2 + 8y 23 = 0$ represent an ellipse. Find its elements (foci, vertices and directrices)
- 11. Show that the equation $x^2 + 16x + 4y^2 16y + 76 = 0$ represent an ellipse. Find its foci eccentricity, vertices and directrices.
- 12. Write equations of tangent lines to the circle $x^2 + y^2 + 4x + 2y = 0$ down from the point P(-1,2). Also find the tangential distance.
- 13. Prove that in any triangle ABC by vector method $a^2 = b^2 + c^2 2bc\cos A$
- 14. Find equation of ellipse having vertices $(0, \pm 5)$ and eccentricity $\frac{3}{5}$.
- 15. Find an equation of the circle passing through the point (-2, -5) and touching the line 3x + 4y 24 = 0 at the point (4,3)
- **16**. Find the foci, vertex and directrix of the parabola $y = 6x^2 1$.,
- 17. Find equations of the tangents to the circle $x^2 + y^2 = 2$
- 18. Find an equation of an ellipse with Foci $(-3\sqrt{3}, 0)$ and vertices $(\pm 6, 0)$

- 19. Find equation of the circle passing through A(a, 0), B(0, b) and C(0, 0)
- 20. Find an equation of the parabola with focus (1,2) and vertex (3,2),
- Write an equation of the circle that passes through the point A(a, 0), B(0, b), C(0,0),
- 22. Write an equation of the circle that passes through the points A(4,5), B(-4,-3), and C(8, -3).

Chapter No.7: Vectors

- Find the value of α , in the coplanar vectors $\alpha \underline{i} + j$, $\underline{i} + j + 3\underline{k}$, and $2\underline{i} + j 2\underline{k}$.
- 2. If $\underline{a} = 3\underline{i} j 4\underline{k}$; $\underline{b} = -2\underline{i} 4j 3\underline{k}$ and $\underline{c} = \underline{i} + 2\underline{j} \underline{k}$, then find a unit vector parallel to -3a - 2b + 4c, 16
- (Example) Find the volume of the tetrahedron whose vertices are A(2,1,8), B (3,2,9), C(2,1,4) and D(3,3,10).
- Prove that $\sin (\alpha \beta) = \sin a \cdot \cos \beta \cos \alpha \sin \beta$ by method of vectors.
- 5. Find the volume of the tetrahedron with the vertices of A(0,1,2), B(3,2,1), C(1,2,1) and D(5,5,6)
- Find the constant a such that the vectors are coplanar $\underline{i} j + \underline{k}$, $\underline{i} 2j 3\underline{k}$, and $3\underline{i} aj + 5\underline{k}$
- The position vectors of the points A, B, C and D are $2\underline{i} \underline{j} + \underline{k}$, $3\underline{i} + \underline{j}$, $2\underline{i} + 4\underline{j} 2\underline{k}$ and $-\underline{i} + \underline{k}$ 2j + k respectively. Show that AB is parallel to CD.
- A force of magnitude 6 units acting parallel to 2i 2j + k displaces the point of application from (1,2,3) to (5,3,7). Find the work done.
- Prove by using vectors that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and half as long.
- 10. If $\underline{a} + \underline{b} + \underline{c} = 0$ then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} \neq \underline{c} \times \underline{a}$
- 11. A force $\underline{F} = 4\underline{i} 3\underline{k}$ passes through the point A(2, -2, 5). Find the moment of the force about the point B(1, -3, 1)
- 12. Find a unit vector perpendicular to both vectors \underline{a} and \underline{b} where $\underline{a} = -\underline{i} \underline{j} \underline{k}$ and $\underline{b} = 2\underline{i} \underline{j}$ 3j + 4k.
- $-4\underline{j} 3\underline{k}$ and $\underline{c} = \underline{i} + 2\underline{j} \underline{k}$ find a unit vector parallel to $3\underline{a} \underline{k}$ 13. If $\underline{a} = 3\underline{i} - j - 4\underline{k}$, $\underline{b} = 2\underline{i}$ 2b + 4c.
- 14. Find equation of the circle of radius 2 and tangent to the line x y 4 = 0 at A (1, -3)