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13. lim e* =

119. lim

120. lim

It is Challenge that you can get 80+ Marks

Objective Section c@pakciworg%

. Iff(x) = x* —2x+ 1, then f(0) =
(a) -1 (b) O (c) 1v (d) 2
. When we say that f is function from set X to set Y, then X is called
(a) Domain of fv (b) Range of f (c) Codomain off (d) None of these

. The term “Function” was recognized by_____ to describe the dependence of one quantity to |-
another.
(a) Lebnitz v (b) Euler (c) Newton (d) Lagrange
. If f(x) = x* then the range of f is
(a) [0,0) vV (b) (-0, 0] (c) (0,) (d) None of these
. Cosh?x — Sinh*x =
(a) -1 (b) O (c) 1V (d) None of these
. cosechx is equal to
2 1 2 2
(a) eX4e™X (b) eX—e™X (C] ex=g~X% Y (d) e~ X4eX

. The domain and range of identity function, [: X = Xis

(a) XV (b) +iv real numbers (c) -ivreal numbers (d) integers
. The linear function f(x) = ax + b is constant function if

(a) a#0b=1 (b)a=1,b=0 (c) a= = (d)a=0vVv
C Iff(x) = 2x+ 3,g(x) =x* —1, then (gof)(x) =

B
£
(a) 2x*-1 (b) 4x* + 4xv @\ + 3 (d) x*—2x°
N

H10. Iff(x) = 2x + 3, g(x) = x* — 1, then (gog)(x) = XS

(a) 2x*-—-1 (b) 4x* + 4x %@ (c) 4x+ 3 (d) x*-—2x*v

11. The inverse of a function exists only if
I (a) aninto function (b) an ont&% nction (c) (1-1) and into function v* (d) None of these

2. 1ff(x) = 2 + vx = 1, then do

(a) 12,09 (c) [1,00] (d) [1,00]

)E;)oo 1 (b) oo (c) 0V (d) -1

sin(x—3)

114, lim =

x—0 X—3

sin3
(a) 1v (b) e €] == (d) =3

sin(x—a)

Xx—0 X—4a

15. lim =

(@) 1v (b) o () =2 (d) -3

d

Hl16. Iff(x) = x3 + xis:

(a) Even (b) Odd v (c) Neither even nor odd (d) None

17. If f: X - Y is a function, then elements of x are called

(a) Images (b) Pre-Images v’ (c) Constant (d) Ranges

ho. 1im () =

x—0 \1+X

(a) e (b) e™'v (c) e (d) Ve

a —1

is equal to
Xx-0 X

(a) logex (b) logax (c)a (d) logeav

" o
Sinx

x-0 X
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1|=||||t|1|t|=|t|1|:|1|:||||r|1|||:|=|1|:|1| ||||||||
180°
] @ —=v (b) = (c) 180 m (d) 1
H121. A function is said to be continuous at x = c if
: (a) limf(x) exists (b) f(c)is defined (c) lim f(x) = f(c) (d) All of these v
X-C X—C
I 5
22, The function f(x) = );_11 is discontinuous at 1 ’
123, LH.Lof f(x) = |x — 5| atx = 5 is
|1 @ 5 (b)O v (c) 2 (d) 4
124. The change in variable x is called increment of x.It is denoted by &x which is
i (a) +iv only (b) —iv only (c) +iv or -iv v/ (d) none of these
I dy  df
25. The notation 3 T is used by
: (a) Leibnitz v/ (b) Newton (c) Lagrange (d) Cauchy
26. The notation f(x) is used by
: (a) Leibnitz (b) Newton v/ (c) Lagrange (d) Cauchy
127. The notation f'(x) ory’ is used by
(a) Leibnitz (b) Newton (c) Lagrange v/ (d) Cauchy
1128. The notation Df(x) or Dy is used by
(a) Leibnitz (b) Newton (c) Lagrange (d) Cauchy v
o, 1im =@ —
a X—a X—d
| @ v (b) f'(a) (c) £(0) (d) f(x—a)
1130. % (x™) = nx™ 1 is called A
: (a) Power rule v (b) Product rule (¢) @\t}en’t rule  (d) Constant
I31. The derivative of a constant function is 0 \;\\x\@
i (a) one (b) zero v »gﬁ\tc){’undefined (d) None of these
1132. The process of finding derivatives is called &ﬁ
(a) leferentlatlon v (b) dlfferentlag\b (c) Increment (d) Integration
133, 1F£(x) = L, then " (a) = i,{\\&QO““
: 2 RN 1 2
| @ -& ) -5 © @ 3
134. (fog)'(x) =
: (a) f'g’ (b) f'g(x) (c) f'"(gx)g'(x)v"  (d) cannot be calculated
I d n
135. &(g(X)) =
(@) nlgx)]"™ (b) n[(e]"'gx) () n[E]"g'® ¥ (d) [G]"g )
| -
: 36. & (3X3) —
2 1 1 1
: (a) 4x3 (b) 4x3 v (c) 2x3 (d) 3x3
137, Ifx = at® and y = 2at then% =
| 2 y 2a 2
2 A B z
| @ = 0) % © = (@) 2
| —1 e e o
B8 — (tan™"x — cot™'x) =
2 B ¥ () 0 @) —
; (a) JiixZ ( 1% 1+x2
H139. If Sin v/x, then % is equal to
: cosvx cosvx COSX
v
| @ =3 (b) =2 (c) cosyx (d) ==
140. 4 sec1x =
i dx
— 1 -1 1 -1
i (2) x| VX2 (b) |xX|[VxZ—-1 (c) |x|V1+x2 (d) |x|V1+x2
—_—
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2.
l43.
244.
;45.
;46.
547.
L
52,
|
ks

1|54.

55,
I56.

Is7.

158.

T
, —Cosec” X =
dx
1 ~1 1 -1
v
(a) |x|Vx2—-1 (b) |x|Vx2—1 (c) |x|V1+x2 (d) |x|V1+x2
Differentiating sin®x w.r.t cos®x is
(a) —%sinx v (b) %sinx (c) % COSX (d) —%cosx
IfY = Tan~1 2 then ¥ =
X y dx
X _X o _Y

@ (b) -2 @ 2 (@) -2
If tany(1 + tanx) = 1 — tanx, show that% =
(@) O (b) 1 (J-1+ (d) 2
[ T
" (SIn~'x) = — is valid for
(a) 0<x<1 (b)—1<x<0 (c)-1<x<1Vv (d) None of these

— wein—1 (X 2 _ 2 o
[fy = XSIn (a) + Va2 — x2 then e
(a) cOs-1§ (b) Sec-lg () Sin™? § v (d) Tan-1§
Ify = e™%, then y% —
(a) _ae—ZaX/ (b) _aZeaX (C) aZe—Zax (d) a2 —2ax
% (105inx) -
(a] 10Qc°°s® (b) 105™X, cosx.In10 v (c) 105'™%,1n10 (d) 10¢°5%,1n10
Ify = e®* then % = ,\)
() = (b) ae™ v © oY (d) -e™

e \O d

B op
dx (a ) a
(a) a* (b) e*lna Qﬁk\/ [c) a*.lna v’ (d) x%.Ina

The functionf(x) =a*,a>0,as 0, andgg/@ény real number is called
(a) Exponential function v* (b) lo \pﬂshlmc function (c) algebraic function (d) composite function

[fa>0,a#1, and x=2a" the@\&ﬁé function defined by y = loga* (x > 0) is called a logarithmic
function with base \‘\3

@ 10 (b) e () av (d) x
log,a =
(a) 1v (b) e ()l af (d) not defined
d
< 108ax =
1 1 Inx In
(a) ~loga b)) —V [} — (d) ﬁ
d
&ln[f(x)] —
I/ ! f’ !
@ & (b) Inf’(x) @ T (d) f(x). £ (%)
If y=log 10@*+bx+0) then & — =
1 2ax+b 22 +bx+ 2ax+b
(a) (ax2+bx+c)In 10 ¥ (b) (ax2+bx+c) 5] 1% st (d) (ax?+bx+c)lna
Ina® =
1 1
(a) Ina (b) —v (@ — (d) Ine®
Ifv = e theny, =
(@) 1662V (b) 8e2* () 4e> (d) 2e%*
Iff(x) = &** then (X)) =
(a) 6e2 (b) %eZX (©) 8eX*v (d) %eZX
CIff(x) =x3 + 2x+ 9 thenf”(x) =
(a) 3x%+2 (b) 3x2 (c) 6xV (d) 2x
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O e e e e e e (@)
60. Ify = x” + x°% + x° then D8(y) =
: (a) 7! (b) 7'x (c) 7!+ 6! (d) 0V
6L 1—%+% —%" £ " & = +(—1)n N 4 ... is the expansion of
I 1 1 1
— — Vv
(a) 1-x ( ) 1+x (C) Vi1i—x (d) V1+x
62.  f(x) = f(0) + xf'(x) + %f”(x) + ;f”’(x) + e +Xn—lllfn(x) ... is called series.
i (a) Machlaurin’s v (b) Taylor’s (c) Convergent (d) Divergent
l63. 1—x+ 2—2' = Z—T Uk };—T ;I is an expression of
: (a) e (b) Sinx (c) Cosx v (d) eX
l64.  ap +aix +ayx® + - +apx" + s
I (a) Maclaurin’s series (b) Taylor Series  (c) Power Series v/ (d) Bionomial Serie
165. A function f(x) is such that, at a pointx = ¢, f’(x) > 0 atx = ¢, then fis said to be
I (a) Increasing v (b) decreasing (c) constant (d) 1-1 function
166. A function f(x) is such that, at a pointx = ¢, f'(x) < 0 atx = c, then fis said to be
- (a) Increasing (b) decreasing v/ (c) constant (d) 1-1 function
167. A function f(x) is such that, at a pointx = ¢, f'(x) = 0 atx = c, then fis said to be
: (a) Increasing (b) decreasing (c) constant v’ (d) 1-1 function
l68. A stationary point is called if it is either a maximum point or a minimum point
(a) Stationary point (b) turning point v/ (c) critical point (d) point of inflexion
1169.  Iff'(c) does not change before and after x = c, then this point is called
(a) Stationary point (b) turning point (c) critical point (d) point of inflexion v/ :
170.  Let f be a differentiable function such that f’ (c) = 0 then 1ff (x) changes sign from -ivto  +iv
l.e., before and after x = c, then it occurs relative a%y
i (a) Maximum (b) minimum v~ (c) point U exion (d) none
171. Let f be a differentiable function such that fé@% then if f'(x) does not change sign i.e,
i before and after x = ¢, then it occurs a&@%
] (a) Maximum (b) minimum /%5 (c) point of inflexion v/ (d) none :
|72.  Let f be differentiable function in neigh Orhood of c and f'(c) = 0 then f(x) has relative maxima |-
i atcif O\“’
_ (a) f’(c)>0 (b) £ 9\)\ 204 (©) £ (c) = 0 (d) £ (c) # 0
173.  If [ f(x)dx = @(x) + ¢ thwhf\f(x) is called
I (a) Integral (b) differential (c) derivative (d) integrand v
174. Inverse of [ ....dx s:
- d dy d dx
— gy B =
: (@) — (b) 3 ©) & (d) 3
1175. Differentials are used to find:
I (a) Approximate value v (b) exact value (c) Both (a) and (b) (d) None of these
176. xdy + ydx =
(a) d(x+y) (b) d(%)¥ (©) d(x ~y) (d) dGxy)
77.  If dy = cosxdx then j—; =
: (a) sinx (b) cosx (c) cscx (d) secx v
78.  If [ f(x)dx = @(x) + ¢ then f(x) is called
I (a) Integral (b) differential (c) derivative (d) integrand v/ I
1179. Ify = f(x), then differential of y is I
I 4 _ o F
(a) dy = f'(x) (b) dy=f'(x)dxv (c)dy = f(x)dx (d) d—z a@pakcity.org%a ;
1180.  The inverse process of derivative is called: ' ‘
(a) Anti-derivative (b) Integration v* (c) Both (a) and (b) (d) None of these
I81.  Ifn =+ 1,then [(ax + b)"dx =
I n(ax+b)n—1 n(ax+b)+1 (ax+b)—1 (ax+b)n+1 i
| I | | v |
i () a ¢ (b) n Glc) n+1 o a(n+1) ¢ i
(Ij.-. lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll .:6
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1|=||||:|1|1|:|s|1|:|1|:||||:|1|||1|:|1|:|1| ||||||||
T2, [ sin(ax + b) dx=
: (a) ?cos(ax +b)+cv (b) icos(ax +b)+c (c)Jacos(ax+b)+c (d)—acos(ax+b)+c
583. [eMdx =
i —AX
: (a) Ae™ 4 (b) -Ae™ 4 ¢ (d) —+cv
E 84. faxxdx —
I a?LX alx 7 AX
: (a) ~ (b) E (c) o (d) a™*A.lna
185. [[fx)]*f'(x)dx =
I £ 1:1’1+1

(a) (X) i (b) f(x) + ¢ (c) n_f) +cv (d) nf™*1(x) + ¢
) ' ()
lee. | o 9X =
i (a) f(x)+c (b) f'(x) + c (c) In|x|+cv (d) In|f'(x)| + ¢
I dx :
1187. f Teraids S be evaluated if
i (a) x>0a>0v (b)x<0,a>0 (c)Jx<0,a<0 (d)x>0,a<0
| X
88. [-==dx=

(@A) Vx2+3+cV (b) —VxZ +3+c (c) == (d)—gx/xz+3+c
[so.
| i
: (a) Sec™x+cVv (b) Tan™*x + c (c) Cot™'x+ ¢ (d) Sin~'x + ¢
oo [ dx _ e
i xInx f\(:r.;)

(a) Inlnx+cv (b)x+c (c) ln@% +C (d) ' (x)Inf(x)
o1. In [(x? - 2)2 dx, the substitution is /\3\;\\0
: (a) x = atanB (b} ®= asecB @x J(c] X = asin® (d) x = 2asinB
92.  The suitable substitution for J V2ax —ﬁx}(ﬁb{/ls

(a) x—a = acosB (b) x 4@ = asinB v' (c) x + a = acos0 (d) x + a = asinB
I X+2 P NBO 2
l93.  [—dx = RO
I X+1 \\
: (a) In(x+ 1) +c \/\\\ M) In(x+1) —x+c (c) x+In(x+1)+cv (d)None
]o4.  The suitable substitution for [ va? + x2dx is:
: (a) x=atanf v (b) x = asin®b (c) x = acosH (d)None of these
195. [ udv equals:
; (@) udu-— [vu (b) uv + [ vdu (c) uv—[vduv (d) udu + [ vdu
lo6. [ xcosxdx =
i (a) sinx+ cosx+c (b)cosx —sinx + ¢ (¢) xsinx+ cosx+c¢ v (d) None
E eTan"lx _
197. [J—=dx=

(a) e 4 (b) % eTan ™% L ¢ (c)xeT@ X4 ¢ (d) e x4cv
log.  [eX E+ lnx] =

(a) exi +c (b) - exi +c (c) e*lnx+cv (d) -e*Inx + c
oo feXE—Xiz]z

(a) e*-+cv (b) -e*~ +c (c) e¥Inx + ¢ (d)-€e* S+
00, [Z5dx =
| X—a X—a X+a
(a) —tc (b) 1n;+cx/ (c) ln—+c (d) In|lx—al+c
f101. [ " sinxdx =
: (@) 2v (b) =2 (c) O (d) -1
l102. f_zllxldx =
S e ===
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1 1 3
= = = =
(@) - (b) —- (c) (@) >
103. [, (4x+k)dx = 2 thenk = 1 J
(a) 8 (b) -4 (c) 0V (d) -2 a@ pakcity.org%c
3 dx ' )
104. [ o =
TU T Tt
= — L
(a) 3 (b) T (c) 5 (d) None of these
105. fo_“ sinxdx equals to:
(a) —2 (b) O (c) 2V (d)1
106. [ costdt =
6
VR V3 1 1 43
A b Lo o
(a) - (b) x + » (c) > (d) None
d
107. fa f(x) =
d
(a) 0V (b) [ f(x)dx (o) [, f)dx  (d) [ f(x)dx
108. foz 2xdx is equal to
(a) 9 (b) 7 (c) 4¥ (d) 0
109. To determine the area under the curve by the use of integration, the idea was given by
(a) Newton (b) Archimedes v (c) Leibnitz (d) Taylor
2
110. The order of the differential equation : X sz ZX 2=0
(a) O (b) 1 (c) 2V (d) more than 2
111. The equation y = x* — 2x + c represents ( ¢ being a param@:ﬁ-
(a) Oneparabola (b) family of parabolas v \)ffamlly ofline  (d) two parabolas
</
112. Solution of the differential equatlon Ng\\
(a) y=sin"'*x+cv (b)y=cos 1 5\) (c)y=tan"*x+ ¢ (d) None
113. The general solution of differential e ’@I{aﬁ/n e i is
O\
(@) ;= (b) L FE 77 @ xw=c¢v (@) x¥y?=
N
114. Solution of differential e\g@tlon — =2t — 7 is:
@Qv=t?—7t3+c (b)) v=t*+T7t+c (c) V_t—E-l-C (d) v=t*—7t+cVv
115. The solution of differential equation % = sec®x is
(a) y=cosx+c (b) y=tanx+c v (c) y=sinx+c (d) y=cotx+c
116. Ifx < 0,y < 0 then the point P(x,y) lies in the quadrant
(a) I (b) II [C)==Hl= (d) IV
117. The point P in the plane that corresponds to the ordered pair (x,y) is called:
(a) graphof (x,y) v (b) mid-point of X,y (c) abscissa of X,y (d) ordinate of x,y
118. The straight line which passes through one vertex and perpendicular to opposite side is called:
(a) Median (b) altitude v (c) perpendicular bisector (d) normal
119. The point where the medians of a triangle intersect is called of the triangle.
(a) Centroid v (b) centre (c) orthocenter (d) circumference
120. The point where the altitudes of a triangle intersect is called of the triangle.
(a) Centroid (b) centre (c) orthocenter v* (d) circumference
121. The centroid of a triangle divides each median in the ration of
(a) Z2i1l+ (b) 1:2 (c) 1:1 (d) None of these
122. The point where the angle bisectors of a triangle intersect is called of the triangle.
(a) Centroid (b) in centre v (c) orthocenter (d) circumference
123. The two intercepts form of the equation of the straight line is
(a)y =mx+c (b)y—y,=mx—%;) (¢ §+%=1 v (d) xcosa + ycosa = p
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T 24. The Normal form of the equation of the straight line is
(a)y = mx + ¢ (b)y—y, = m(x —x,) (c)§+%=1 (d) xcosa + ycosa =p v
125. Inthe normal form xcosa + ycosa = p the value of p is
(a) Positive v’ (b) Negative (c) positive or negative (d) Zero
126. If ais the inclination of the line | then— = = = (say)
COoS sina
(a) Point-slope form (b) normal form (c) symmetric form v" (d) none of these
127. The slope of the line ax + by + ¢ = 0 is
(a) (b) -2v (© - (d) -
128. The slope of the line perpendiculartoax + by +c =10
(a) = (b) -2 (© =v (d) -
129. The general equation of the straight line in two variables x and y is
(aJ)ax+by+c=0v (b)ax*+by+c=0 (c)ax+by*+c=0 (d) ax* + by +c =10
130. The x — intercept 4x + 6y = 12 is
(a) 4 (b) 6 (c) 3V (d) 2
131. Thelines2x+y+2 =0and 6x+ 3y — 8 = 0 are
(a) Parallel v (b) perpendicular (c) neither (d) non coplanar
132. If ¢ be an angle between two lines |; and 1, when slopes m; and m,, then angle from 1, to |,
(a) tang = 112:1?2 (b) tang = 1?;;11 v" (c) tang = Ez:; (d) tang = ;:l_iln::z
133. If ¢ be an acute angle between two lines 1; and 1, when slopes m; and m,, then acute angle from
l, tol,
(@) ltang = 72| (b) [ tang = T () Itang@j e (@l tang = T2
134. Two lines l; and |, with slopes m; and m, are paralle\l@/f@
() my—m,=0v (b)m; +m, =0 ( ) r@%‘mz\* 0 (d) mym, = -1
135. Two lines l; and |, with slopes m,; and m rpendlcular if
(@) m;—m; =0 (b) m, (c) mym; =0 (d) mm,=-1Vv
136. The lines represented by ax* + 2hg{\3(}{-/$y = 0 are orthogonal if
(a) a—b=0 (b) a® D= 0v () a+b>0 (d) a—b<0
137. The lines lying in the san&e\\ a’ne are called
(a) Collinear (b coplanar v’ (c) non-collinear (d) non-coplanar
138. The distance of the point (3,7) from the x — axis is
(@) 7V (b) -7 (c) 3 (d) -3
139. Twolinesa;x+ b;y+ c¢; = 0and a,x + b,y + ¢, = 0 are parallel if
(@) 2=2v b) 2=~ @ 2=%2 (@ 2=2
140. The equation y* — 16 = 0 represents two lines.
(a) Paralleltox —axisv"  (b) Parallel y — axis (c) not || to x — axis (d) not || to y — axis
141. The perpendicular distance of the line 3x + 4y + 10 = 0 from the origin is
(a) O (b) 1 (c) 2V d) 3
142. The lines represented by ax* + 2hxy + by* = 0 are orthogonal if
() a—b=0 (b) a+b=0v (cJa+b>0 d)a—b<0
143. Every homogenous equation of second degree ax* + bxy + by?* = 0 represents two straight lines
(a) Through the originv"  (b) not through the origin (c) two || line (d) two Lar lines
144. The equation 10x* — 23xy — 5y* = 0 is homogeneous of degree
(a) 1 (b) 2V (c) 3 (d) more than 2
145. The equation y* — 16 = 0 represents two lines.
(a) Parallel to x — axis v (b) Parallel y — axis (c) not || to x — axis (d) not || to y — axis
146. (0,0) is satisfied by
(A)x—y <10 (b) 2x + 5y > 10 (c) x—y=>13v  (d) None
147. The point where two boundary lines of a shaded region intersect is called ____ point.
_ (a) Boundary (b) corner v (c) stationary (d) feasible
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fl48. Ifx > b then
(a) -x>—-b (b)-x<b (c)x<b (d)-x<-=bVv
149. The symbols used for inequality are , )
(a) 1 (b) 2 (c) 3 (d) 4v a@ pakcity.orggn
150. Aninequality with one or two variables has solutions. , ‘
(a) One (b) two (c) three (d) infinitely many v/
151. ax + by < cisnota linear inequality if
(a) a=0b=0v (b)Ja#0,b#0 (cJa=0b=+#0 (d)a#0,b=0,c=0
152. The graph of corresponding linear equation of the linear inequality is a line called
(a) Boundary line v (b) horizontal line (c) vertical line (d) inclined line
153. The graph of a linear equation of the form ax + by = c is a line which divides the whole plane
into____ disjoints parts.
(a) Two v (b) four (c) more than four (d) infinitely many
154. The graph of the inequality x < b is
(a) Upper half plane (b) lower half plane (c) left half plane v* (d) right half plane
155. The graph of the inequality y < b is
(b) Upper half plane (b) lower half plane v*  (c) left half plane (d) right half plane
156. The feasible solution which maximizes or minimizes the objective function is called
(a) Exact solution (b) optimal solution v*  (c) final solution  (d) objective function
157. Solution space consisting of all feasible solutions of system of linear in inequalities is called
(a) Feasible solution (b) Optimal solution (c) Feasible region v/ (d) General solution
158. Corner point is also called
(a) Origin (b) Focus (c) Vertex v/ g,..\ (d) Test point
159. For feasible region:
(a) x=0,y=>0Vv (b) x=0,y<0 (c)x<0)§§u(3 (d)x<0,y<0
160. x = 0isin the solution of the inequality
(a) x<0 (b) x+4<0 <\£Q)\/2X+3>0‘/ (d) 2x+3<0
161. Linear inequality 2x — 7y > 3 is satlsflafdb/by\)he point
(a) (5.1) (b) (-5- 11\ 9 (c) (0,0) (d) (1.-1) v
162. The non-negative constraints aﬁmso called
(a) Decision variable v/ bi)“é&nvex variable (c) Decision constraints (d) concave variable
163. If the line segment obta&ned by joining any two points of a region lies entirely within the region,
then the region is called
(a) Feasible region (b) Convex region v/ (c) Solution region (d) Concave region
164. A function which is to be maximized or minimized is called:
(a) Linear function (b) Objective function v* (c) Feasible function (d) None of these
165. For optimal solution we evaluate the objective function at
(a) Origen (b) Vertex (c) Corner Points v (d) Convex points
166. We find corner points at
(a) Origen (b) Vertex (c) Feasibleregionv"  (d) Convex region
167. The set of points which are equal distance from a fixed point is called:
(a) Circle v (b) Parabola (c) Ellipse (d) Hyperbola
168. The circle whose radius is zero is called:
(a) Unit circle (b) point circle v (c) circumcircle (d) in-circle
169. The circle whose radius is 1 is called:
(a) Unitcircle v (b) point circle (c) circumcircle (d) in-circle
170. The equation x* + y* + 2gx + 2fy + ¢ = 0 represents the circle with centre
(a) (g9 (b) (=g -0~ (c) (=1, —g) (d) (g—1)
171. The equation x* + y* + 2gx + 2fy + ¢ = 0 represents the circle with centre
(@) yg2+fi—cv (b) Jg2+f2+c (c)yg2+c2—f (d)Jg+f—c
172. The ratio of the distance of a point from the focus to distance from the directrix is denoted by
(@) rv (b) R (c) E (d) e
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T 73. Standard equation of Parabola is:

(a) y? =4a b)x?+ y>=a%? (c) y*=4axvy (d)S=vt
174. The focal chord is a chord which is passing through

(a) Vertex v (b) Focus (c) Origin (d) None of these
175. The curve y* = 4ax is symmetric about

(a) y— axis v’ (b) x — axis (c) Both (a) and (b) (d) None of these
176. Latusrectum of x* = —4ay is

(a) x=a (b) x = —a (c)y=a (d) y=-av
177. Eccentricity of the ellipse :—z 3 13;_2 = 1lis

(a) % (b) ac (c) § v (d) None of these
178. Focus of y* = —4ax is

(a) (0,a) (b) (=a,0) ¥ (c) (a,0) (d) (0, —a)
179. A type of the conic that has eccentricity greater than 1 is

(a) An ellipse (b) A parabola (c) A hyperbola v (d) A circle
180. x* 4+ y* = —5 represents the

(a) Real circle (b) Imaginary circle vv  (c) Pointcircle (d) None of these
181. Which one is related to circle

(a) e=1 (bye > 1 (cJe<1 (d) e=0V
182. Circle is the special case of:

(a) Parabola (b) Hyperbola (c) Ellipse v (d) None of these
183. Equation of the directrix of x* = —4ay is:

(a) x+a=0 (b) x—a=0 (c) y+a=0 (d) y—a=0Vv
184. The midpoint of the foci of the ellipse is its eb}

(a) Vertex (b) Centre v (cj\\?ge%trlx (d) None of these
185. Focus of the ellipse always lies on the ? \ 2

(a) Minor axis (b) Major axis v’ %gj (c) Directrix (d) None of these
186. Length of the major axis of = = y X é% b is

(a) 2av (b) ZbQ'B\/QO (c) E (d) None of these
187. Inthe cases of ellipse, it s\é\V\)\ys true that:

(a)a* > b*v (mjj < by [ic) . a* Al (d) a<0,b<0
188. Two conics always intersect each otherin___ points

(a) No (b) one (c) two (d) four v
189. The eccentricity of ellipse )1{2 + };2 = 1lis

(@)% v () () 16 (@9
190. The foci of an ellipse are (4,1) and (0,1) then its centre is:

(a) (4,2) (b) (2,1) v (c) (2,0) (d) (1,2
191. The foci of hyperbola always lie on:

(a) x — axis (b) Transverse axis v"  (c) y — axis (d) Conjugate axis
192. Length of transverse axis of the hyperbola:—z — 13;_2 = 1is

(a) 2av (b) 2b (c) a (d) b
193. Zj — :)i = 1 is symmetric about the:

(a) y— axis (b) x — axis (c) Both (a) and (b) v (d) None of these
192. Two vectors are said to be negative of each other if they have the same magnitude and

direction.

(a) Same (b) opposite v (c) negative (d) parallel
193. Parallelogram law of vector addition to describe the combined action of two forces, was used by

(a) Cauchy (b) Aristotle v/ (c) Alkhwarzmi  (d) Leibnitz
194. The vector whose initial point is at the origin and terminal pointis P, is called
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(a) Null vector (b) unit vector (c) position vector v (d) normal vector
195. If R be the set of real numbers, then the Cartesian plane is defined as
() R*={(x%y*):xy€ER] (b) R*={(xy):xy€R}Y
(© R*={®y:xy€eRx=-y} (d) R ={(xyixyeRx=y} -pakciorgFe
196. The element (x,y) € R? represents a
(a) Space (b) point Vv (c) vector (d) line
197. Ifu = [x,y] in R?, then |u| =7
(a) x*+y? (b) Vx*+y? ¥ () £yx*+y? (d) x*-y?
198. If ‘g‘ = ,/x? + y? = 0, then it must be true that
(a) x=0,y=0 (b) x<0,y<0 (c) x=20,y<0 (d) x=0,y=0Vv
199. Each vector [x,y]in R* can be uniquely represented as
(a) xi-—yj (b) xi+yjv (0 x+y (d) Vx2+y?
200. The lines joining the mid-points of any two sides of a triangle is always ____to the third side.
(a) Equal (b) Parallel v/ (c) perpendicular (d) base
201. Ifu= 3i—j+ 2kthen [3,-1,2] are called of u.
(a) Direction cosines (b) direction ratios v (c) direction angles (d) elements
202. Which of the following can be the direction angles of some vector
(a) 45°45° 60° (b) 30°45°60° (c) 45°60°60°v (d) obtuse
203. Measure of angle 8 between two vectors is always.
(a) 0<O<m (b) 0<6<- (c) 0<e<mv (d) obtuse
204. If the dot product of two vectors is zero, then the vectors must be
(a) Parallel (b) orthogonal v' (c) rec1p@;c\al (d) equal
205. If the cross product of two vectors is zero, then the vectg rh’ust be
(a) Parallel v (b) orthogonal " p({:ji\@aprocal (d) Non coplanar
206. If O be the angle between two vectors a and/b ‘11 cosO =
axb a.b
@) falio ®) G @@& Tal @
207. If 0 be the angle between two Vicfgr@a and b, hben projection of b alor;g ais
axb a.b a. a.
@) el R b ) Tl Dy
208. If 6 be the angle betweentwo vectors a and b, then projection of a along b is
axb a.b a.b
@ Talp ®) G ) @y
209. Letu = ai + bj + ck then projection of u along i is
(a) av (b) b (c) c (d) u
210. Inany AABC, the law of cosine is
(a)a* = b%* + ¢* — 2bcCosAv" (b)a=DbCosC+cCosB (c)ab=0(d)a—b=0
211. Inany AABC, the law of projection is
(a) a®? =b? + c? —2bcCosA (b) a = bCosC+ cCosBY (c)a.b=0 (dJa—b=0
212. Ifuisavector such thatu.i = 0,u.j = 0,u.k = 0 then u is called
(a) Unit vector (b) null vector v’ (c) [i) K] (d) none of these
213. Cross product or vector product is defined
(a) In plane only (b) in space only v (c) everywhere (d) in vector field
214. Ifuandvare two vectors, then u X v is a vector
(a) Parallel to uand v (b) paralleltou  (c) perpendicularto uandv v (d) orthogonal to u
215. Ifuand v be any two vectors, along the adjacent sides of ||gram then the area of ||gram is
(@) uxy (b) [uxy|v (@ s@xy)  (d) sluxy]
216. Ifuand v be any two vectors, along the adjacent sides of triangle then the area of triangle is
() uxy (b) |u x vi ()5 (u X v) (d) Sluxy|v
217. The scalar triple product of a ,b and c is denoted by
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220.

Zal,

222,

223,

224,

225.

226.

227,

228.

(a) ab.c (b) abxcv (Jaxbxc (d) (@+b)xc

Cross product or vector product is defined
(a) Inplane only (b) in space only v (c) everywhere (d) in vector field

[f u and v are two vectors, then u X v is a vector
(a) Parallel touand v (b) paralleltou (c) perpendicularto uandv v" (d) orthogonal to u

If u and v be any two vectors, along the adjacent sides of ||gram then the area of ||gram is
() uxy (b) luxvl v () z(uxXV) (d) S luxv]

If u and v be any two vectors, along the adjacent sides of triangle then the area of triangle is
() uxy (b) |u x v} () >(uxy) (d) sluxy| v
Two non-zero vectors are perpendicular iff

() uv=1 ) uv#1l  (¢) wy=#0 (d) uy=0v

The scalar triple product of a ,b and c is denoted by
(b) ab.c (b) abxcv (cJaxbxc (d) (a+b) xc¢

The vector triple product of a ,b and c is denoted by
(a) ab.c (b) a.bx¢ (c) axbxcv (d)(@a+b)xc

Notation for scalar triple product of a ,b and c is

(a) abXxc (b) aXb.c (c) [a.b.c] (d) all of these v/

If the scalar product of three vectors is zero, then vectors are

(a) Collinear (b) coplanar v (c) non coplanar (d) non-collinear

[f any two vectors of scalar triple product are equal, then its value is equal to

(d) 1 (b) 0V (c) -1 (d) 2

Moment of a force F about a point is given by: ﬁ@@

(a) Dot product (b) cross product v (%‘/ﬁéﬁ\:})\@l) and (b)  (d) None of these

Show that x = acos

4. Show that: sinh 2x = 2sinh xcosh x
Express the volume V of a cube as a function of the area A of its base.
& Fipg f@t=f@

and simplify f(x) = cosx

6. f(x)= \%,x #1; g(x) = (x% + 1)?

7. (a)f71(x) (b)f~1(—1) and verify f(f 1 (x)) = fH(x)) = xf(x) =

8. Showthat lim®—

x—0 X

2xX+1

x—1 !

x>1

= log. a

Sin7x

9. Evaluate lim
Xx—=0 X

10. Evaluate lim (1 +—)2

n—+oo

e
h

1
12. Limy_,q (1 + 2x%)x2

11. Limh_,o

1—cosHO

13. Evaluate lim
6-0 0

x—gh

14. Evaluate lim
xX—0 xM_gm

15. Limy_,,
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18.

1.9,

20.
21

2

Z3.

24.

2.

26.
27,

28.

29,

30.

2l

32.

5

34.
35.
36.

37.

38.
29,
40.
41.

42.

43.

44,

45.

46.

47.

48.

. If y = Sin

. Findy, ifx®> —y? =

sin x° S 1—cos 0 T sinax
(iii) lex—>0

(1) Limx—>0

X sin 6 sin bx

Discuss the continuity of the functionatx =3 g(x) =

Discuss the continuity of f(x) atx = c¢: f(x) = {izi i hf_,i i %, €= 2
x—1, ifx<3
2x+1if3 <x

Find the derivative of the given function by definition f(x) = x*

Discuss the continuity of f(x) at 3, when f(x) = {

Find the derivative of the given function by definition f(x) =

al-

Find the derivative of y = (2\/_ + 2)(x — VX)) w.r.t'x

2x3 —3%%+5

Differentiate —; w.r.t'x’
X“+1

dy _
If x* + 2x* + 2, Prove that — = 4x\/y — 1

2
Differentiate (\/§ — —) w.r.t'x.
Differentiate (x — 5)(3 — X)
Flnd—IfX— 0 +- T Y= 0+1

Find ﬂ by making some suitable substitution if y = \/ X + VX

i |

Differentiate x? + — =~ W.I.tXx — =
X X

Fll’ld lfy —xy—x*+4=0
Fmd 1f X4 +y* =4
Find == ify = x" wheren = 2 ,q =0 /\,\.\.\ OH
s & .{’ >\,q\ \|
/\\\J., )
Ify = (ax + b)™ where n is negative IQ\t“-’lg\f’ fmd . usmg quotient theorem.

F1nd — 1f Xy + y* = 2 m‘\lx-;f

O\

leferentlate (1+x%) w.r. t\xz\\

N
F1nd—1f3x+4y-|— 7 ﬁ
N

Find < if y = XCOSY

dx

Differentiate sin’x w.r.t cos?x
Find f'(x) if f(x) = In(e* + ™)
Find f'(x) if f(x) = e* (1 + Inx)

Differentiate (Inx)* w.r.t'x’

Fmd 1f y = aVx

Flnd 1f y = 5e3*7*

Fmd 1fy = (x+ 1)*

Flnd 1f y = xeSinx

Fmd 1f y = (In tanhx)

Find S — Lify = Sinh"l(z)

Find % if y = tanh™* (sinx) ,—g A s g

3
-1 E, then show thaty, = x(a* — x%) ™2

—X

Find y, ify = x*. e

. Find y, if x = acos0,y = sin0

a3
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25.

56.
57.
58.
59.

60.

61.
62.
63.

64.

65.
66.

67.

. Find the first four derivatives of cos(ax + b)

Apply Maclaurin’s Series expansion to prove that e** = 1 + 2x + e o
2!

2

Apply Maclaurin’s Series expansion to prove thate* =1 + x + % + s

State Taylor’s series expansion.

Expand cosx by Maclaurin’s series expansion.

Define Increasing and decreasing functions.

Determine the interval in which f(x) = x* + 3x + 2;x € [—4,1]

Determine the interval in which f(x) = Cosx ; x € (—;—t g)

Find the extreme values of the function f(x) = 3x? —4x + 5

Find the extreme values of the function f(x) = 1 + x°

Find 8y and dy if y = x? + 2x when x changes from 2 to 1.8

Use differentials find g and g—; in the following equations.

Xy +x =4 (b) xy—Inx=c

Find the approximate increase in the volume of a cube if the length of its each edge
changes from 5 to 5.02

Find the approximate increase in the area of a circular disc if its diameter is increased

form 44cm to 44.4cm.

@ P P g

10.

11

12,

13

14.

15.

1.

17.
18.

19.

20.

21

Question No.3: Short Questions

Find dy in y = x* + 2x when x changes from 2 to 1. 8 e@
[fxy +x =4, flnd by using differentials.
Using differentials find < xy In x = c

- @\\

Use differential to approximate theaf/ of cos 29°

Evaluate tan? | xdx. K <><;
,,_& N
Find [ a* xdx RN
N
Evaluate | cos 3xsin{2xdx.
ax+b
EHaLE f ax“+2bx+c

Evaluate | V1 — cos 2xdx, (1 — cos 2x) > 0.
dx

sec? x
vtan x

e?X4eX

Evaluate [

dx

Evaluate [

eX

Integrate by substitution [ \/% dx.

COS X

Find the integral [ dx

sin xln (sin x)

Evaluate [ dx.

xln x
2X

Evaluate [ dx

1—sin x
eX(1+x)
(2+x)?

Evaluate |

Evaluate [ xIn xdx
3—X

1—x+6x2

dx

Evaluate [

Evaluate [ _31 (x3 + 3x?)dx.

TC

J £ xcos xdx

Solve the differential equations 3— =
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23.

26.
.
28.
24,
30.
31.

32.

33.

34.
35.

36.

X7.

38.

39.

40.

41.
42.
43.

44,

45.

46.
47.
48.
49,
50.
o1,
DL,

D3
54.

S

56.

B7.
58.

. Write two properties of definite integral.
. Find the area between the x-axis and curve y = 4x — x* a@pakcnw org %‘7

x“+1 _ xdy

Solve the differential equation =
y+1 y dx

Evaluate [ \/Fi— = dx

dx

Evaluate [ e x>0

Evaluate [ x°In xdx

dx,x < a

Evaluate [ —

aZ_XZ

Evaluate [ _21 [x + |x]]dx

3 dx
0 x2+9
-1

Evaluate [

Evaluate [ tan™! xdx

\/gxx/xz — 1dx

Evaluate [ 5

=1

etan X

Evaluate [ dx

1+x2

Evaluate [ x?In xdx

Evaluate integral [ x - sin xdx

ey o s - _1 1
Find indefinite integral [ e [asec X+ - m‘ dx

5x+8
(x+3)(2x—1)

Evaluate [ dx by using partial fraction

\.

AN
ey \

AL D
AD)

yz 1KC)/{
Show thaty = tan (e* + c) is solution of — 7—-\,>—§x—<

T[ ,___< \ \_/‘. \J S

Evaluate | 33 cos tdt. N

Solve x?(2y + 1) — 1 = 0.

What is differential coeff1c1er1t7 f‘i et

\\:..:; '\
Define Definite integral. iy
Define integral »\\}‘\
QM

Calculate the integral fo“' sec x(sec X + tan x)dx.

If [© f(x)dx =5, g(x)dx = 4 then Evaluate [ [3f(x) — 2g(x)]dx

Show that the points A(3,1), B(—2, —3) and C(2,2) are vertices of an isosceles triangle.
Find the mid-point of the line segment joining the vertices A(—8,3), B(2, —1).

Show that the vertices (—1,2), B(7,5), C(2, —6) are vertices of a right triangle.

Find the points trisecting the join of A(—1, —4) and B(6,2).

Find h such that (—1,h), B(3,2),and C(7,3) are collinear.

Describe the location in the plane of point P(x,y) for whcih x = y.

The point C(—5,3) is the centre of a circle and P(7,—2) lies on the circle. What is the
radius of the circle?

Find the point three-fifth of the way along the line segment from A(—5,8) to B(5,3).

The two points P and O’ are given in Xy —coordinate system. Find the XY-coordinates of P
referred to the translated axes O'X and O'Y if P(—2,6) and 0’ (—3,2).

The xy-coordinate axes are translated through point O’ whose coordinates are given in
Xy —coodinate system. The coordinates of P are given in the XY —coodinate system. Find
the coordinates of P in xy-coordiante system if (—5,—3), 0'(—2,3).

What are translated axes.
Show that the points A(—3,6),B(3,2) and C(6,0) are collinear.

Find an equation of the straight line if its slope is 2 and y — axis is 5.
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61.
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63.
64.
65.
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Find the slope and inclination of the line joining the points (—2,4); (5,11)

. Find k so that the line joining A(7,3); B(k, —6) and the line joining C(—4,5); D(—6,4) are

perpendicular.

Find an equation of the line bisecting the I and III quadrants.

Find an equation of the line for x — intercept: —3 and y — intercept: 4

Find the distance from the point P(6,—1) to theline 6x — 4y + 9 = 0

Find whether the given point (5,8) lies above or below the line 2x —3y+ 6 =0

Check whether the lines are concurrent or not.
3Xx—4y—3=0;5x+12y+1=0;32x+4y—-17 =0

Transform the eqution 5x — 12y + 39 = 0 to “Two-intercept form”.

Find the point of intersection of the linesx —2y+1 =0and2x—y+2 =0

Find an equation of the line through the point (2, —9) and the intersection of the lines

2Xx+5y—8=0and 3x—4y — 6 = 0.

Determine the value of p such that the lines 2x — 3y —1 =0,3x—y—5=0and 3x + py +

8 = 0 meet at a point.

Find the angle measured from the line 1; to the line I, where 1;:]Joining (2,7) and (7,10)

l,: Joining (1,1) and (—=5,5)

Express the given system of equations in matrix form 2Xx+3y+4=0;x—2y—3 =

0;3x+y—8=0

Find the angle from the line with slope —g to the line with slope g

Find an equation of each of the lines represented by 20x* + 17xy — 24y* = 0
Define Homogenous equation. | Q@
Write down the joint equation. ﬁQ
A\ O
Question No.4: Short Questions

S
Find a joint equation of the st\r\;\aié@(ﬁ%es through the origin perpendicular to the lines
represented by x* + xy —\@@/ 0.

Find measure of angle between the lines represented by X% —xy — 6y* = 0.

Define “Corner Poin%}\*’or “Vertex”.

Graph the solution set of linear inequality 3x + 7y = 21.

Indicate the solutionsetof 3x + 7y =2 21;x —y < 2

What is “Corresponding equation”.

Graph the inequality x + 2y < 6.

Graph the feasible regionof x+y<5; -2x4+y<0 x=0y=0

Graph the feasible region of 5x+ 7y < 35;x — 2y < 4 x>0y =0

Define “Feasible region”.

. Graph the feasible region of 2x—3y <6;2x+y =2 x=>0y=0
.,a=3i—-2j+kb=i+j,findbXa

. Aforce F = 7i+ 4j — 3kis applied at P(1, —2,3). Find its moment about the point Q(2,1,1).

By means of slope, show the points lie on the same line A(—1, —3), B(1,5), C(2,9)

. Calculate the projection of aalongb whena=i+kb=j+Kk

Check the position of the point (5,6) with respect to the circle 2x* + 2y* + 12x — 8y +
= 0.

Check whether (—2,4) lies above or below 4x + 5y —3 =0

Check whether the point (—2,4) lies above or below the line 4x + 5y — 3 = 0.

Check whether the point (—4,7) is above or below of the line 6x — 7y + 70 = 0.

Convert 2x — 4y + 11 = 0 into slope intercept form.
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38.
309.

40.
41.

42.

43,
A4,

45.

46.
47.

48.
49.
50.
als
D2,
23.
54.
25.
56.

57,
58.

99.
60.

. Convert the equation 4x + 7y — 2 = 0 into two intercept form.
. Convert the equation into two intercept form 4x + 7y — 2 = 0. % pakcity.org%c

. Define direction angles and direction cosines of a vector

Define focal chord of parabola.

. Define parabola.

Define trapezium.
Define unit vector.

Find a scalar " a " so that the vectors 2i + aj + 5k and 3i + j + ak are perpendicular.
Find a vector of length 5, in the direction of opposite that of v =1 — 2j + 3k.

Find a vector perpendicular to each of the vectora = 2i—j—kand b = 4i + 2j — k.

. Find a vector perpendicular to each of the vectors = 21 4+ j + kand = 41 + 2] — k.

. Find a vector whose magnitude is ' 4 ' and is parallel to 2i — 3j + 6k.

. Find an equation of a line bisecting 2" and 4" quadrants.

Find an equation of a line through the points (—2,1) and (6, —4).

. Find an equation of a line with x-intercept: -9 and slope: -4 .

Find an equation of hyperbola if its foci (0, £9) and directrices y = +4.

. Find an equation of the line through (—4, —6) and perpendicular to the line having slope
-3

2

Find the angle from the line with slope _—7 to the line with slope 2

Find an equation of the line through (5, —8) and per%ndlcular to the join of A
(—15,-8),B(10,—7) (O™

e

Find an equation of the line with x- 1nterce9]:\’%3§a\l‘nd y-intercept: 4

Find an equation of the perpendlculag bLSéCrtOr of the segment joining the points A (3,5)
and B(9,8). 7N N

Find an equation of the vertlcal léné through (=53

Find an unit vector in the\ dH‘E’Cthl’l of the vector v = %l + E]

Find centre and radeS\of c1rcle 5x% 4+ 5y“ + 14x + 12y — 10 = 0.

=t ¢ G=Ft 1

9

Find centre and vertices of ellipse +

Find condition that the linesy = m;x + ¢;,y = m,x + ¢,,y = m3X + Cc3 are concurrent.
Find direction cosine of v = 3i — j + 2Kk.

Find eccentricity of the ellipse x* + 4y* = 16.

Find equation of hyperbola with foci (£5,0) and vertex of (3,0).

Find equation of latus rectum of parabola y* = —8(x — 3)

Find focus and vertex of the parabolay = 6x* — 1

Find h such that A(—1, h), B(3,2) and C(7,3) are collinear.

Find length of tangent segment from (—5,4) to 5x* + 5y* — 10x + 15y — 131 =0
Find measure of the angle between the lines represented by x* — xy — 6y* = 0

Find point which divide A(—6,3) ad B[(5, —2) internally in 2: 3

Find position vector of a point which divide the join of E with position vector 5i and F
with position vector 4i + j in ratio 2: 5.

Find slope and inclination of the line joining points (4,6), (4,8)

Find the angle between the vectorsu = 2i —j+ kand v = —i +j.

Find the area of the triangle with vertices A(1,—-1,1),B(2,1,—1) and C (—1,1,2)
Find the centre and radius of the circle x* + y* + 12x — 10y = 0
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63.
64.

65.
66.
67.
68.
69.
70.
7L
12
73
74.
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76.
77.
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80.

81.
82.

83.
84.

85.

86.

87.
88.
89.
90.
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92
93.

94.
95.
96.

97.
98.

99.

. Find the coordinate of the points of the points of intersection of the line x + 2y = 6 with

the circle x* + y* — 2x — 2y — 39 = 0.

. Find the coordinates of the points of intersection of the line 2x + y = 5 and x* + y* +

2Xx—9 = 0.
Find the direction cosines for ﬁj where P(2,1,5),Q(1,3,1).

Find the direction cosines of the vector 6i — 2j + k.

Find the distance from the point P(6, —1) tto the line 6x — 4y + 9 = 0.16

Find the equation of ellipse when foci (+3,0) and minor axis of length 10

Find the equation of the line through A(—6,5) having slope 7.

Find the focus and directrix of the parabolay = 6x* — 1.

Find the focus and vertex of parabola (x — 1)? = 8(y + 2).

Find the lines represented by 20x* + 17xy — 24y* = 0.

Find the lines represented by x* — xy — 6y“ = 0, also find the angle between them.
Find the measure of angle between the lines represented by x* — xy — 6y* =

Find the mid-point of the line joining the two points A(—8,3), B[2,1).

Find the point three-fifth of the way along line segment from A(—-5,8) to B (5,3) -

Find the projection of vector a along vector b and projection of vector b along when a =
i—-kb=7+k

Find the value of 3j.k X a.

Find the value of 2i X 2] = k.

Find unit vector perpendicular to the plane of a and b, (l,f(a, = i—j—Kkb=2i-3j+4k

Find vertices and equation of directrices of hype{‘b&la x4 —y% =9.,17Grp11,

/\fx

Find a so thatu = ai + 2aj — kandv =i +<‘6q\+“3k are perpendicular.
(/ )\d
Find a, so that |ai + (a + 1) + 2k| = 3. QL,‘:J
P /Zgi:;;;»\’/
Fine the value 3j - k X i. | \:"‘Q

N\ OV
If AB = CD, find coordlnat\e‘sb\f points A. If B, C, D are (1,2), (—2,5), (4,11)
[fa=2i+]— kandg ﬁ\l — j + k find the cross producta x b

Ifu=3i+j—kandyv = 2i —j +k find the cosines of the angle 6 between uand y

If O is the origin and OP = AB, find the point P when A and B are (—3,7) and (1,0)
respectivel

Prove thatifa+b+c=0thenaXb=bXc=cXa
Provethatax (b+c)+bX(c+a)+cXx (a+b)=0.

Prove that if the lines are perpendicular, then product of their slopes = —1

Show that the points A(3,1), B(—2, —3) and C(2,2) are vertices of an isosceles triangle.
Show that the points A(—1,2), B(7,5) and C(2, —6) are vertices of a right triangle.
Show that the triangle with vertices A(1,1),B(4,5) and C(12, —5) is right triangle.
Show that vectors 3i — 2j + k,i — 3j + Skand 2i + j — 4k from a right triangle.

Transform 5x — 12y + 39 = 0 into two intercept form. 15 Grp II,
Two lines 1; and |, with respective slopes m; and m, are parallel if m; = m.,.

Write and equation of parabola with focus (—1,0), vertex (—1,2).
Write direction cosine of ﬁi if P(2,1,5),Q(1,3,1).
Write down the equation of straight line with x-intercept (2,0) and y-intercept (0, —4)

Find the mid-point of line segment joining the points A (_\/E, = %) and (=35, 5).

100. Find the slope and inclination of the line joining the points (—2,4) and (5,11).
101. Find equation of tangent to the circle x* + y% = 25 at (4,3).
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102. Find the vertex and directrix of parabola x* = 4(y — 1).

103. Find the centre and vertices of the ellipse 9x* + y* = 18.

104. Find the sum of vectors AB and CD, given the four points A(1,—-1),B(2,0),C (—=1,3) and
D(—2,2).

105. Find a vector perpendicular to each of the vectors a = 2i +j+kandb = 4i + 2j — k.

106. Prove that the vectorsi — 2j + 3k — 2i + 3j — 4k and i — 3j + S5k are co-planar.
107. Find equation of a line through (-4, 7) and parallel to the line 2x -7y + 4 = 0.
108. Find equation of a line through (-6, 5) having slope = 7

109. Find distance from the point P (6, —-1) to the line 6x - 14y +9 =0

110. Find area of triangular region whose verticesare A (5, 3),B (-2, 2),C (4, 2).
111. Find the equation of tangent to the circle x2 + y3 =25 at (4, 3). 14 Grp |,
112. Find the equation of parabola whose focus is (2, 5) and directrixis y =1
113. Find foci and eccentricity of ellipse

114. Find vector from A to origin whose AB =4i-2jand B (-2, 5).

115. Find a vector whose magnitude is 2 and is parallel to i + j + k.

116. Find «a so that the vectors 2i + aj + 5k and 3i + j + ak are perpendicular.

117. Find asothatai+j,i+j+ 3k, 2i+ j— 2k are co-planar.

Long Questions

Chapter No.1: Functions and Limits

2(8Y”

1-cos x

1. Evaluate lim,_,, ooy {©
2. Evaluate lim,_,, Siz = =1 @
<>@

: 1—cos pe)
3. Evaluate limg_,, (1_COS s
4 tan 0—sif

Evaluate limg_,, O

5. Find the values of m and n, so that given function f is continuous at x = 3.

mx ifx <3
6. Iff(x)={ n ifg =3
—2%+9 ifx >3

7. Discuss the continuity of f(x) atx = 2 and x = —2.

(3x ifx< -2

8. Iff(x) =49x* if—-2<x<?2
L 3 ifx > 2
(V2X+5—=Vx+7

9. Iff(x)={ xz * X7 2
\ k X= 2

10. Find the value of k so that fis continuous at x = 2.

11. Let f(x) = 2=2=;x # 1, find f~1(x) and verify fof " (x) = x

x—1 "’

n
12. Prove lim,_, (1 + %) = el4 Grp II, 10. Prove that lim,_,, (

sin x

aX-—-1

X

) = log,. a

13. Prove that lim,_,, — = 1

Chapter No.2: Differentiation

X“+1

1. Differentiate

x2—1 " x+1

=)
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10.

11,

14,

13,

14.

10.
11.

1.2

13.

14.

15,

16.

L% 4

18.

Differentiate x* + Xiz W.I.t. X — i

Differentiate cos v/x from the first principle.

. . ; 1+2x
Differentiate sin / — W.I.t X

., dy. . :
Find d—i ifx = a(cos t+sin t),y = a(sin t — tcos t)

Find two positive integers whose sum is 9 and the product of one with the square of the
other will be maximum.

If x = sin 0,y = sin m0, Show that (1 — x?)y, —xy; + m?y =0

Ify = (cos™! x)?%, prove that (1 —x%)y, —xy; —2 =10
— % L _
[fy = e* - sin x, then prove that 5 2 ot 2y =0
dy _ map.  1=E2 2t
Prove that ytx= 0ifx = —Y = o
h2 h3

Show that cos (x + h) = cos x — hsin x — 15 COS X + I—Bsin X + -+ And evaluate cos 61°

d . _
Show that = = Zif = Tan! 2
dx X X X

1 :
Show thaty = % has maximum value at x = e.

. 1
Show that y = x* has a maximum value at = -

Chapter No.3: Integration
Evaluate [ (1_Sin X) e*dx /e@b

1—CoS X e
1-sin x A @\/
) e*dx |

1—cos x

v 5\
Evaluate | s ——— o %5@
e*(1+sin x) st @

(1+cos x)

Evaluate [ (

Evaluate [

Evaluate J cos® xv/sin\)

Evaluate | cosec® xdx

, COS X
Evaluate [ — —dx
sin xln sin x

d
Evaluate | ———

=sin x+—3cos X
2 2

Evaluate | e**cos 3xdx

Evaluate [ tan3 xsec xdx

TT
Evaluate [# ————dx

Z sin x(2+sin x)

TC
Evaluate [ *cos* tdt

Evaluate | 6cos® 6d6

m/4 sin x—1

Evaluate [ 0 ooy IX
/4  sec 6
Evaluate | ———de

Evaluate [ _21 (x + |x])dx

3 3x2-2x+1

Evaluate |, e

19. Evaluate | ¥ (x - 3)2 dx

2 X

Evaluate the indefinite integral | Va2 — x2dx
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21. Find the area between the x-axis and the curve y = v2ax — x%;a > 0

22. Find the area bounded by the curve y = x* — 4x and x-axis

2 _ nd i '
m = In (x +Vx%2 —a ) + C v@ipakcﬂy.org%o
24. Solve the differential equation (x* — yx*) % +y%2+xy? =0

23. Show that |

25. Solve the following differential equation (x* — yx?*) % +y2 +xy* =0

26. Solve the following differential equation 1 + cos xtan y% =0

27. Solve the following differential equation xdy + y(x — 1)dx

28. Use differentials to approximate the values of (31)/°

29. v =+/2ax — x2 whena > 0.
y

Chapter No.4: Introduction to Analytic Geometry

1. Find a joint equation of the straight lines through the origin perpendicular to the lines
represented by x* + xy — 6y* = 0

2. Find an equation of the perpendicular bisector joining the points A(3,5) and B (9,8)

3. Find an equation of the perpendicular bisector of the segment joining the points A (3,5)
and B (9,8)

4. Find equations of the sides, altitudes and medians of the triangle whose vertices are A
(—3,2),B(5,4) and C (3, —8).

5. Find equations of two parallel lines perpendicular to 2 \=-\ M + 3 = 0 such that the product
of the x-intercept and y-intercept of each is 3. Q\‘ ~

6. Find h such that the points A (+/3, —1), B(0, %@}A 2) are the vertices of a right triangle
with right angle at the vertex A.

7. Find interior angles of a triangle Whjgv% tices are A(6,1),B(2,7) and C (—6,7).

8. Find the condition that the line X + ¢ touches the circle x* + y* = a“* at a single point.

x\ O\/
9. Find the condition that thel y = myX + C;; m,X + C; ¥ = M3X + C3 are concurrent.

10. Find the distance betw&fé\nyhe given parallel lines. Also find equation of parallel lying
midway between them. 3x —4y+3 =0and3x—4y+7 =0

11. Find the equations of altitudes of A ABC whose vertices are A(—3,2),B(5,4) and C (3, —8)
12. Find the interior angles of a triangle whose vertices are A(6,1),B(2,7),C (—6,—=7).
13. Find the length of the chord cut off from the line 2x + 3y = 13 by the circle x* + y* = 26.

14. 14. Find the lines represented by each of the following and also find measure of the angle
between them x* + 2xysec a+y? = 0

15. Prove that the line segment joining the midpoints of two sides of a triangle is parallel to
the third side and half as long.

16. Prove that the line segments joining the mid-points of sides of quadrilateral taken in order
form a parallelogram.

17. Prove that the midpoint of the hypotenuse of a right triangle is the circumcenter of the
triangle. 11 Grp I],

18. The points A(—1,2),B(6,3) and C(2, —4) are vertices of a triangle. Show the line joining the
midpoint D of AB and the midpoing E of AC is parallel to BC and DE = é

19. The three points A(7, —1),B(—2,2) and C(1,4) are consecutive vertices of a parallelogram,
find the fourth vertex.

20. The vertices of a triangle are A(—2,3), B(—4,1) and C(3,5). Find the circumcircle of the
triangle.
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18.

Chapter No.5: Linear Inequalities and Linear Programming

Graph the feasible region of system of linear inequalities and find the corner points.
2x+3y<18,x+4y<12,3x+y<12x=20,y=0

Graph the feasible region of system of linear inequalities and find the corner points.
3x+7y<21,2x—y<-3,y=0

Shade the feasible region and also find the corner points of: 2x — 3y < 6, 2x + 3y <
12,x=20,y=0

Minimize z = 2x + y subject to the constraints.x+y > 3; 7x+5y<35;x=>0; y=>0
Graph the feasible region of system of linear inequalities and find the corner points.
X+y<5; —2x+y<2;y=0

Graph the feasible region of system of linear inequalities and find the corner points.
2x—3y<6;2x+y=>2;,y=0,y=0

. Minimize f(x,y) = x + 3y subject to constraint.

2x+5y<30; 5x+4y<20;x=>20,y=0
Minimize f(x,y) = 2x + 3y subject to constraint.
2x+y<8;x+2y<14;x=20,y=0

Find the minimum value of ¢(X,y) = 4x + 6y under the constrains: 2x —3y < 6, 2x+y =
2,2x+3y<12x=>20,y=0

Minimize the function z = 3x + y subject to the constrains: 3x+ 5y > 6, x4+ 6y =9, x >

0,y=0 J
)
Chapter No.6: Conic Sections

at the origin and directrix parallel to y-axis.

Find an equation of parabola having its foc

2
Find the centre, foci, eccentricity, vertices and equation of directives of y: - x? =1.

Find x so that points A(1, —1,
Find the coordinates of th
X“+y‘+2x—9=

Find equation of parabola with elements directrix: x = —2, focus (2,2).

2,2,1) and C(0,2, x) from triangle with right angle at C.

oints of intersection of the line 2x + y + 5 = 0 and the circle

.Also find the length of intercepted chord.

Find an equation of parabola whose focus is F(—3,4), directrix line is 3x — 44y + 5 = 0.
Find the focus, vertex and the directrix of the parabola x? — 4x — 8y + 4 = 0.

Write an equation of the parabola with axis y = 0 and passing through (2,1) and (11, —2).
Show that the line 3x — 2y = 0 and 2x + 3y — 13 = 0 are tangents to the circle x* + y* +
6x — 4y = 0.17

Show that the equation 9x* — 18x + 4y* + 8y — 23 = 0 represent an ellipse. Find its
elements (foci, vertices and directrices)

Show that the equation x* + 16x + 4y% — 16y + 76 = 0 represent an ellipse. Find its foci
eccentricity, vertices and directrices.

Write equations of tangent lines to the circle x* + y* + 4x + 2y = 0 down from the point
P(—1,2). Also find the tangential distance.

Prove that in any triangle ABC by vector method a® = b% + ¢ — 2bccos A
Find equation of ellipse having vertices (0, £5) and eccentricity %

Find an equation of the circle passing through the point (—2, —5) and touching the line
3x + 4y — 24 = 0 at the point (4,3)
Find the foci, vertex and directrix of the parabola y = 6x* — 1.,

Find equations of the tangents to the circle x? + y% = 2

Find an equation of an ellipse with Foci (—3+v/3, 0) and vertices (+6,0)
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. Find equation of the circle passing through A(a, 0), B(0,b) and C(0,0)

. Find an equation of the parabola with focus (1,2) and vertex (3,2),

. Write an equation of the circle that passes through the point A(a,0), B(0,b), C (0,0),
. Write an equation of the circle that passes through the points A(4,5), B(—4, —3), and

C(8, —3).

10.
1l

12.

15

14.

Chapter No.7: Vectors

Find the value of @, in the coplanar vectors ai +j,1 + j + 3k, and 2i +j — 2k.
Ifa=3i—j—4kb = —2i—4j—3kand ¢ =i+ 2j — Kk, then find a unit vector parallel to
—3a— 2b + 4¢, 16

(Example) Find the volume of the tetrahedron whose vertices are A(2,1,8), B
(3,2,9),C(2,1,4) and D (3,3,10).

Prove that sin (a — [3) = sin a - cos 3 — cos asin 3 by method of vectors.

Find the volume of the tetrahedron with the vertices of A(0,1,2),B(3,2,1),C (1,2,1) and D
(5,5,6)

Find the constant a such that the vectors are coplanari —j + k,i — 2j — 3k, and 31 — aj + 5k
The position vectors of the points A,B,Cand D are 2i —j + k, 3i +j, 2i + 4) — 2k and —i +
2] + Kk respecetively. Show that AB is parallel to CD.

A force of magnitude 6 units acting parallel to 21 — 2j + k displaces the point of application

from (1,2,3) to (5,3,7). Find the work done.

Prove by using vectors that the line segment joining th@d-points of two sides of a
‘ . . . | e ,,f‘,z)
triangle is parallel to the third side and half as long©\/ =

[fa+ b+ c=0thenprovethata Xxb =b X “‘%\Qg
A force F = 4i — 3k passes through the p@%(Z\:’—Z, 5). Find the moment of the force
about the point B(1,—3,1) /%

0
’é@oth vectors aand b wherea = —i—j—kandb = 2i —
OV - z - 3 - -

Find a unit vector perpendicula
3j + 4k. AR

~

<\
I[fa=31—j—4kDb =\§=-§ i=4j—3kandc =i+ 2j— Kkfind a unit vector parallel to 3a —
2b + 4c.
Find equation of the circle of radius 2 and tangent to thelinex—y—4 =0atA (1,—3)
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