* Mathematics

HSSC (12th)1stAnnual 2024

Roll No_

(To be filled by the candidate

Paper: II

Objective (i)

Paper Code

8

Marks: 20

Time: 30 Minutes

Note:- You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that

NU	question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark. SECTION—A								
Q.1	Questions	Α	В	С	D				
1.	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = $ pakcity.org	f'(x)	f'(0)	f'(x-a)	• f'(a)				
	The range of $f(x) = 2 + \sqrt{x+1}$ is:	[-1,∞[[0,∞[[2,∞[●	[-2,∞[
3.	If $f(x) = \tan x$ then $f'\left(\frac{\pi}{3}\right) =$	4 •	2	1	0				
4.	If $f(x) = x^3 + 2x + 9$ then $f'''(0)$ is:	0	2	3	6 •				
5.	Maclaurin series for $\frac{1}{1+x}$ is:	$1-x+x^2-x^3+$	$1-x-x^2-x^3-x^4$	$1+x+x^2+x^3+$	$-1-x-x^2-x^3-$				
6.	A function $f(x)$ is increasing in the interval (a,b) if $f(x_2) > f(x_1)$ whenever:	$x_2 > x_1$	$x_2 < x_1$	$x_2 = x_1$	$x_1 = 0, x_2 =$				
7.	$\int \frac{\sin 2x}{\sin x} dx =$	$\sin 2x + c$	$2\sin 2x + c$	$\frac{1}{2}\sin x + c$					
8.	Solution of differential equation $\frac{dy}{dx} = -y$ is:	$y=c e^{-x}$	$y = ce^x$	$y = e^{cx}$	$y = x e^{-x}$				
9.	$\int \frac{e^x}{e^x - 2} dx =$	$ln(e^x+2)+c$	$ln(e^x+3)+c$	$ln(e^x-2)+c$	$ln(e^x-3)+$				
10.	If $\int f(x) dx = \frac{1}{a} \sec^{-1} \frac{x}{a} + c$ then $f(x) =$	$\frac{1}{\sqrt{x^2-a^2}}$	$\sqrt{\frac{1}{x\sqrt{x^2-a^2}}}$	$\frac{1}{x\sqrt{x^2+a^2}}$	$\frac{1}{x\sqrt{a^2-x^2}}$				
			F						
	Questions	Go) SA	В	С	D				
11.	Equation of a line passing through $(-2,5)$ having slope 0 is:	y = -5	<i>y</i> = 5	x = -2	x=2				
12.	If the distance of the point $(5,x)$ from x is x is x then x =	R FDUCA	TION5	3 •	-5				
13.	The slope of the line with inclination 60° is:	O mouts many and a second	$\frac{1}{\sqrt{3}}$	1	√3				
14.	(3,2) is not in the solution of inequality:	x+y>2	x-y>1	3x + 5y > 7	3x - 7y < 3				
15.	The vertex of the parabola $(x-1)^2 = 8(y+2)$ is:	(1,-2)	(0,1)	(2,0)	(0,0)				
16.	The end points of the major axis of the ellipse are called its:	Foci	Vertices •	Covertices	Directrix				
17.	Directrix of parabola $x^2 = 16y$ is:	x + 4 = 0	x-4=0	y - 4 = 0	y+4=0				
18.	For any two vectors \underline{a} and \underline{b} projection of \underline{a} on \underline{b} is:	<u>a.b</u> <u>a </u>	$\frac{\underline{a}.\underline{b}}{ \underline{b} }$	$\frac{\underline{a}.\underline{b}}{ \underline{a} \underline{b} }$	<u>a.b</u>				
19.	The unit vector of $2\underline{i} + \underline{j}$ is:	2 <u>i</u> – <u>j</u>	$\frac{2\underline{i}+\underline{j}}{5}$	$\frac{2\underline{i}+\underline{j}}{3}$	$\frac{2\underline{i}+\underline{j}}{\sqrt{5}}$				
	IIV 1								

90°

300°

30°

60°

 $=\frac{1}{2}$, then the angle between \underline{U} and \underline{V} is:

Paper: II

Subjective

Roll No Marks: 80 Time: 2:30 Hours

SECTION - B

Note: - Section B is compulsory.

Sahiwal Board-2024

ii. Prove the identity $\sec h^2 x = 1 - \tan h^2 x$.

 $(8 \times 2 = 16)$

Write short answers to any EIGHT parts. 2.

- Express the volume $\,V\,$ of a cube as a function of area $\,A\,$ of its base.
- iii. Determine whether $f(x) = x^{3} + 6$ is even or odd.
- v. Differentiate $\frac{2x-1}{\sqrt{x^2+1}}$ w.r.t' x'.
- Find $\frac{dy}{dx}$ by making suitable substitution if $y = (3x^2 2x + 7)^6$.
- Find $\frac{dy}{dx}$ if $y = ln(x + \sqrt{x^2 + 1})$.
- Find the extreme value of $f(x) = x^2 x 2$.

- iv. Evaluate $\lim_{x\to 0} \frac{\sin x^0}{x}$. Spakcity.org
- **vi.** Find $\frac{dy}{dx}$ if $y^2 + x^2 4x = 5$.
- viii. Differentiate $\sin x$ w.r.t $\cot x$.
 - **x.** Find y_2 if $y = \sqrt{x} + \frac{1}{\sqrt{x}}$.
- Divide 20 into two parts so that the sum of their squares will be minimum. xii.

 $(8 \times 2 = 16)$

 $(9 \times 2 = 18)$

- Write short answers to any EIGHT parts. 3.
 - i. Using differential find $\frac{dx}{dy}$ if xy lnx = c.
- iii. Evaluate $\int \frac{e^x}{e^x + 3} dx$.
- Evaluate $\int_{0}^{\sqrt{5}} x \sqrt{x^2 1} dx$.

- ii. Evaluate $\int (2x-3)^{\frac{1}{2}} dx$
- iv. Find $\int x \cos x dx$.
- vi. Find the area between the x axis and the curve $y = x^2 + 1$ from x = 1 to x = 2.
- Solve the differential equation ydx + xdy = 0. vii.
- Find the distance between the points A(-8,3); B(2,-1). Find the mid-point of the line-segment joining the given points also. viii.
 - Find the point three-fifth of the way along the line-segment from A(-5,8) to B(5,3) .
- Find the slope and inclination of the line joining the points (-2,4); (5,11).
- Determine the value of p such that the lines 2x-3y-1=0, 3x-y-5=0 and 3x+py+8=0 meet at a point.
- Find an equation of each of the lines represented by $20x^2 + 17xy 24y^2 = 0$. xii.

4. Write short answers to any NINE parts.

- Graph the solution set of inequality $5x-4y \le 20$.
- Show that the equation $2x^2 xy + 5x 2y + 2 = 0$ represents a pair of lines.
- If centre is (0,0), focus is (6,0) and vertex is (4,0), find the equation of hyperbola.
- Find the length of latus rectum of the ellipse $9x^2 + y^2 = 18$. Find the focus and vertex of parabola $y^2 = 8x$.
- Find the equation of tangent to the circle $y^2 + y^2 = 25$ at the point (4,3).
- Find the centre and radius of the circle $x^2 + y^2 + 12x 10y = 0$.
- If $\vec{u} = 2i 7j$, $\vec{v} = i 6j$ and $\vec{w} = -i + j$, find $2\vec{u} 3\vec{v} + 4\vec{w}$.
- Find a vector of length 5 in the direction opposite to $\vec{v} = \hat{i} 2\hat{j} + 3\hat{k}$.
- Find the projection of \vec{a} along \vec{b} and \vec{b} along \vec{a} when $\vec{a} = 3i + j k$ and $\vec{b} = -2i j + k$.
- Prove that $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = \vec{0}$. Dake it where
- xiii. A force $\vec{F} = 4\hat{i} 3\hat{k}$ passes through the point A(2, -2, 5). Find the moment of \vec{F} about the point B(1, -3, 1).

Note: Attempt any THREE questions. Each question carries (5+5=10) marks.

5. (a) Prove that $\lim_{x\to 0} \frac{a^x - 1}{x} = \log_e^a$.

- (b) Differentiate with respect to 'x' $\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}$
- **6. (a)** If $y = (\cos^{-1} x)^2$, prove that $(1-x^2)y_2 xy_1 2 = 0$.
- (b) Evaluate the indefinite integral $\int \sqrt{a^2 + x^2} dx$.
- 7. (a) Solve the differential equation $\left(y x \frac{dy}{dx}\right) = 2\left(y^2 + \frac{dy}{dx}\right)$.
 - (b) Maximize f(x,y) = 2x + 5y subject to the constraints $2y x \le 8$, $x y \le 4$, $x \ge 0$, $y \ge 0$.
- 8. (a) Find the equation of the tangent to the circle $x^2 + y^2 = 2$ parallel to the line x 2y + 1 = 0.
 - (b) Show that mid-point of hypotenuse a right triangle is equidistant from its vertices (use vectors).
- 9. (a) Prove that the latus rectum of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$.
 - (b) The points (4,-2),(-2,4) and (5,5) are vertices of a triangle. Find in-centre of the triangle.

Roll No.

(To be filled in by the candidate)

Mathematics

H.S.S.C (12th)1st Annual 2023

Time : 30 Minutes

Paper: II

Objective - (ii)

Sahiwal Board-2023

Paper Code 8 Marks : 20

Note: -You have four choices for each objective type question as A, B, C and D. The choice which you think it correct; fill that circle in front of that question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or mark circles will result no mark.

SE	CT	ON	I-A
U L	•		

Q.1	Questions	A	В	С	D
1.	Focus of parabola x ² =4ay is	(a,0)	(0,a)	(-b,0)	(0,-a)
2.	Two lines l_1 and l_2 with slope m_1 and m_2 are perpendicular if:	m ₁₌ m ₂	m ₁ m ₂ =1	m ₁ m ₂ +1=0	$m_1 = \frac{2}{m_2}$
3.	The lines represented by $ax^2+2hxy+by^2=0$ are parallel if:	$h^2 - ab = 0$	$h^2-ab>0$	$h^2-ab<0$	$h^2 = a + b$
4.	A solution of $x + 2y < 6$ is:	(8,0)	(0,8)	(5,1)	(1,2)
5.	The line $y = mx + c$ intersect the circle x^2+y^2 = a^2 at most point/s	One	Two	three	Infinite
6.	Equation of point circle is:	$x^2+y^2=1$	$x^2+y^2 = -1$	$x^2 + y^2 = 0$	$x^2 - y^2 = 0$
7.	Equation of horizontal line through (a,b) is	y = a		x = b	y=b
8.	For hyperbola value of eccentricity is:	e=0	e<1	e=1	e >1
9.	If $f(x) = e^{\sqrt{x}-1}$, then $f'(x) =$	2 Vx = 1	$e^{\sqrt{x}-1}$	$\frac{1}{2x}$	$\frac{e^{\sqrt{x}-1}}{\sqrt{x}}$
10.	$\int \frac{x+2}{x+2} dx = \dots$ $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = \dots$	1+c	x+c	-x+c	2 <i>x</i>
11.	$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = \dots$	EDUCA	TION	-1	∞
12.	$\lim_{n\to\infty} (1-\frac{1}{n})^n = \dots$	e ⁻¹ Personal designation of the second sec	Bustons e	e^2	$\frac{1}{e^2}$
13.	If $x = at^2$, $y = 2at$, then $\frac{dy}{dx} = \dots$	2 yakci	y.oroy	2ay	2 <i>a</i>
14.	$\underline{i} \cdot (\underline{i} \times \underline{k}) = \dots$	<u>i</u>	- <u>j</u>	0	1
15.	If $f(x) = \cos x$, then $f'(\sin^{-1} x) =$	-sin x	-x	1	$\frac{1}{\sqrt{1-x^2}}$
16.	If $y = e^{2x}$, then $y_4 =$	16e ^{2x}	8e ^{2x}	4e ^{2x}	$-16e^{2x}$
17.	The projection of $\vec{a} = \underline{i} - \underline{j}$ along $\underline{b} = \underline{j} + \underline{k}$ is:	$\frac{1}{\sqrt{2}}$	$\frac{-1}{\sqrt{2}}$	1	-2
18.	The order of differential equation $y\left(\frac{dy}{dx}\right)^2 + 2x = 0 \text{ is:}$	1	-1	2	-2
19.	$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos\theta d\theta = \dots $ pakcity.org	$ \frac{\sqrt{3}-1}{2}$	$\frac{\sqrt{3}}{2}$	$1+\frac{1}{\sqrt{3}}$	$\frac{2}{\sqrt{3}}$ -1
20.	$\int ln \ x \ dx = \dots$	$(\ln x)^2 + c$	$x \ln x + c$	$x \ln x - x + c$	$-x \ln x + c$
				315-423-1A-	-14000 **

Roll No.

(To be filled in by the candidate)

H.S.S.C (12th)1st Annual 2023

Time

: 2:30 Hours

Paper: II

Mathematics

Subjective

Marks: 80

Note: - Section B is compulsory. Attempt any three questions from section C.

SECTION - B

2. Write short answers to any Eight parts.

i. Express the volume V of a cube as a function of the area of its base

ii. For any real valued function,
$$g(x) = \frac{1}{\sqrt{x^2}}$$
; $x \neq 0$, find $g \circ g(x)$

iii. Evaluate
$$\lim_{x\to 0} \frac{1-\cos x}{\sin^2 x}$$

iv. Differentiate
$$\frac{2x-3}{2x+1}$$
 w.r.t. x

v. Find
$$\frac{dy}{dx}$$
 if $x^2 - 4xy - 5y = 0$

vi. Differentiate
$$(\sin 2\theta - \cos 3\theta)^2$$
 w.r.t. θ

vii. Find
$$f'(x)$$
 if $f(x) = \ln(e^x + e^{-x})$

viii. Find
$$y_2$$
 if $y = x^2 e^{-x}$

ix. Apply Maclaurin series expansion to prove that,
$$\sqrt{1+x}$$
 $\sqrt{2}$ $\sqrt{2}$ $\sqrt{8}$ $+\frac{x^3}{16}$ $+\dots$

x. Find the extreme values for the function,
$$f(x) = x^{2} + x^{2} + 2$$

xii. Graph the solution set of the inequality,
$$3x-2y \ge 6$$

3. Write short answers to any Eight parts.
$$63x+2$$

$$(8 \times 2 = 16)$$

i. Evaluate
$$\int \frac{3x+2}{\sqrt{x}} dx$$
, ii. Evaluate $\int \frac{e^{2x}+e^x}{e^x} dx$

iv. Evaluate
$$\int \frac{x}{\sqrt{4+x^2}} dx$$

v. Evaluate
$$\int a^{x^2} x \, dx$$
 $(a > 0, a \ne 1)$

vi. Evaluate
$$\int \frac{x+b}{(x^2+2bx+c)^{\frac{1}{2}}} dx$$

vii. Evaluate definite integral
$$\int_{1}^{2} (x^2 + 1) dx$$

viii. Find the volume of the parallelepiped determined by,
$$\underline{u} = \underline{i} + 2\underline{j} - \underline{k}$$
, $\underline{v} = \underline{i} - 2\underline{j} + 3\underline{k}$, $\underline{w} = \underline{i} - 7\underline{j} - 4\underline{k}$

ix. Find the value of
$$\begin{bmatrix} \underline{i} & \underline{i} & \underline{k} \end{bmatrix}$$

x. Find the constant
$$\alpha$$
 such that the given vectors are coplanar. $\underline{i} - \underline{j} + \underline{k}$, $\underline{i} - 2\underline{j} - 3\underline{k}$ and $3\underline{i} - \alpha \underline{j} + 5\underline{k}$

4. Write short answers to any Nine parts.

- i. Find distance between A and B, midpoint of AB, where A(3,1), B(-2,-4) pakcity.or
- ii. Find slope and inclination of line joining A(3,-2) and B(2,7)
- iii. By means of slope, show that (-1,-3), (1,5) and (2,9) are collinear.
- iv. Find equation of line through A(-6,5) having slope 7
- v. Find point of intersection of x-2y+1=0 and 2x-y+2=0
- vi. Find the lines represented by $2x^2 + 3xy 5y^2 = 0$
- vii. Find the distance from P(6,-1) to the line 6x-4y+9=0
- viii. Find the equation of circle with centre (5,-2) and radius 4
- ix. Write down equation of tangent and normal to $x^2 + y^2 = 25$ at (4,3)
- x. Write equation of parabola with Focus (1,2); vertex (3,2)
- xi. Find foci and eccentricity of the ellipse $x^2 + 4y^2 = 16$
- xii. Find equation of hyperbola with centre (0,0) Focus (6,0) and vertex (4,0)
- xiii. Find centre and radius of circle $4x^2 + 4y^2 8x + 12y 25 = 0$

SECTION - C

Note: Attempt any Three questions. Each question carries 10 marks

5. (a) Evaluate the following limit

$$\lim_{\theta \to 0} \frac{1 - \cos p\theta}{1 - \cos q\theta}$$

5

(b) Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = \tan^{-1} \frac{x}{y}$

5

5

- 6. (a) Evaluate $\int \frac{e^x(1+\sin x)}{1+\cos x} dx$
 - (b) Find an equation of the perpendicular bisector of the segment joining the points A(5,3) and B(9,8) 5
- 7. (a) Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{1}{1 + \sin x} dx$

- 5

(b) Minimize z = 2x + y, subject to the constraints $x + y \ge 3$; $7x + 5y \le 35$; $x \ge 0$; $y \ge 0$

5

5

(b) Find equations of the tangents to the circle $x^2 + y^2 = 2$ parallel to the x - 2y + 1 = 0

8. (a) Divide 20 into two parts so that the sum of their squares will be minimum.

- 5
- 9. (a) Find the centre, foci, eccentricity, vertices and directrices of ellipse $x^2 + 16x + 4y^2 16y + 76 = 0$
- 5

(b) Prove that by vector method $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

5

315-423-1A-14000

Roll No.

(To be filled in by the candidate)

Mathematics

H.S.S.C (12th)-A-2022

Time : 30 Minutes

Paper: II

Objective – (iv)

Marks : 20

Paper Code 8 1 9 7

Note: ~You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

SECTION-A

Q.1	Questions	A	В	C	D
1.	∫2 ^x dx= pakcity.org	$2^x + c$	$2^x.ln2+c$	$\frac{ln2}{2^x} + c$	$\frac{1}{\ln 2} \cdot 2^x + c$
2.	$\int\limits_0^3 \frac{1}{9+x^2} dx =$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi}{12}$	$\frac{\pi}{8}$
3.	Slope of vertical line is:	0	8	1	-1
· 4.	Two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, are perpendicular if:	$a_1 a_2 + b_1 b_2 = 0$	$a_1 a_2 - b_1 b_2 = 0$	$a_1 b_2 + a_2 b_1 = 0$	$a_1b_2-a_2b_1=0$
5.	The distance of the line $4x-3y-25=0$ from the origin is:	1	5	25	2
6.	Normal form of the equation of straight line is:	y = mx + c	$y - y_1 = m(x - x_1)$	$\frac{x}{a} + \frac{y}{b} = 1$	$x\cos\alpha + y\sin\alpha = p$
7.	2x + y < 6 is satisfied by which point?	(3,1)	(1,3)	(0,7)	(4,0)
8.	Equation of the tangent to the circle $x^2 + y^2 = 4$ at (1,3) is:	x+3y≠14€	x-3y=4	3x + y = 4	3x - y = 4
9.	$Sin h^{-1}x =$	€ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\frac{e^{x}-e^{-x}}{2}$	$\frac{e^x - e^{-x}}{e^x + e^{-x}}$	$\frac{e^x + e^{-x}}{e^x - e^{-x}}$
10.	If $g(x) = \frac{1}{x^2}$, $x \neq 0$, then $gog(x) = \frac{1}{x^2}$		$\bigcup GA^{\frac{1}{x^2}}ON$	x ⁴	$\frac{e^x + e^{-x}}{e^x - e^{-x}}$ $\frac{1}{x^4}$
11.	Derivative of $(x^3+1)^9$ w.r.t. x^3 equals:	$9(x^3+1)^8$	$27x^2(x^3+1)^8$	$3x(x^3+1)^8$	$27(x^3+1)^8$
12.	If $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ exists, then it is equal to:	f'(x)	f'(a)	zero	8
13.	Length of latus-rectum of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, is:$	$\frac{2a^2}{b}$	$\frac{2b^2}{a}$	$\frac{b^2}{2a}$	$\frac{b}{2a^2}$
	Centre of the Hyperbola $\frac{(x+1)^2}{9} - \frac{(y-2)^2}{4} = 1$, is:	(1,2)	(2,1)	(-1,2)	(1,-2)
15.	Unit vector perpendicular to \underline{a} and \underline{b} is:	<u>a×b</u> <u>a b </u>	<u>a.b</u> <u>a b </u>	$\frac{\underline{a}.\underline{b}}{\underline{a}\times\underline{b}}$ $\frac{1}{2}$	$\frac{\underline{a} \times \underline{b}}{ \underline{a} \times \underline{b} }$
	$2\underline{i} \cdot \underline{j} \times \underline{k} =$	2	Zero	$\frac{1}{2}$	80
17.	$\int e^{\tan^{-1}x} \cdot \frac{1}{1+x^2} dx =$	$e^{\tan^{-1}x}+c$	$\frac{1}{1+x^2}+c$	$e^{\cos^{-1}x}+c$	$e^{\sec^2 x} + c$
18.	$\int e^x (1+x) dx =$	$e^x + c$	$xe^x + c$	x^2+c	$\frac{1}{2}x^2e^x+c$
	If $y = ln(x^2)$, then $\frac{dy}{dx} =$	$\frac{1}{x^2}$	$\frac{1}{2x^2}$	$\frac{2}{x}$	$\frac{2}{x^2}$
20.	$\frac{d}{dx}(\cos x^2) =$	$-\sin x^2$	$-2x\sin x^2$	$2x \sin x^2$	$-x \sin x^2$

Roll No.

Mathematics

H.S.S.C (12th)-A-2022

(To be filled in by the candidate)

: 80

Paper: II

Subjective

Time Marks : 2:30 Hours

Note: - Section B is compulsory. Attempt any three questions from section C.

SECTION - B

2. Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

- Determine whether the function $f(x) = \sin x + \cos x$ is even or odd.
- Find the composition function $f \circ f(x)$ if $f(x) = \frac{1}{\sqrt{x-1}}$ pakeity.org
- Express $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^{2n}$ in term of "e".
- What is the implicit function?
- Evaluate $\lim_{x\to 0} \frac{\sin x}{x}$
- Differentiate $\frac{2x-3}{2x+1}$ w.r.t. x
- Find $\frac{dy}{dx}$ if $y^2 xy x^2 + 4 = 0$
- Find derivative of $(\sin 2\theta \cos 3\theta)^2$ w.r.t θ
- ix. If $y = x^2 ln\left(\frac{1}{x}\right)$, find $\frac{dy}{dx}$
- Find y_2 if $y = x^2 e^{-x}$
- If $y = x^2 \ln\left(\frac{1}{x}\right)$, find $\frac{dy}{dx}$ Find y_2 if $y = x^2 e^{-x}$ Find the intervals in which $f(x) = 4 x^2$; $x \in (-2, 2)$ is increasing or decreasing.
- Differentiate $\log_{10}(ax^2 + bx + c)$ w.r.t.

Write short answers to any Eight parts. 3.

 $(8 \times 2 = 16)$

- Using differentials find $\frac{dy}{dx}$ in the equation xy + x = 4
- Evaluate $\int \sin^2 x dx$
- iii. Evaluate $\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$
- iv. Evaluate $\int \tan^{-1} x \, dx$
- v. Evaluate $\int e^{-x} (\cos x \sin x) dx$
- vi. Evaluate $\int \frac{3x+1}{x^2-x+6} dx$
- vii. Evaluate $\int lnx dx$
- Find the area between the x axis and the curve $y = 4x x^2$. viii.
- Show that the points A(0,2), $B(\sqrt{3},-1)$ and C(0,-2) are vertices of a right triangle.
- Find an equation of line passing through A(-5,-3) and B(9,-1).
- Find an equation of the line through (-4,7) and parallel to the line 2x-7y+4=0
- Find lines represented by $3x^2 + 7xy + 2y^2 = 0$

4. Write short answers to any Nine parts.

 $(9 \times 2 = 18)$

i. How would you obtain the optimal solution from feasible region?

- ii. Indicate the solution region of $3x-2y \ge 6$
- iii. Find an equation of the circle passing through A(1,4), B(-1,8) and tangent to the line x+3y-3=0
- iv. Write down the equation of normal to circle $3x^2 + 3y^2 + 5x 13y + 2 = 0$ at $\left(1, \frac{10}{3}\right)$.
- v. Investigate vertex and directrix of $x+8-y^2+2y=0$
- vi. Form the equation of ellipse from that data, foci (±3,0) and minor axis of length 10.
- vii. Find foci and eccentricity of $\frac{y^2}{16} \frac{x^2}{9} = 1$
- viii. Use vectors, to prove that the diagonals of a parallelogram bisect each other.
- ix. For what values of a and b from the given parallel vectors $3\underline{i} \underline{j} + 4\underline{k}$ and $a\underline{i} + b\underline{j} 2\underline{k}$
- x. Prove that in any triangle ABC: $a = b \cos C + c \cos B$
- xi. Find area of parallelogram, where vertices are A(-1,1,1), B(-1,2,2), C(-3,4,-5) and D(-3,5,-4).
- xii. Find α from the given coplanar vectors $\underline{i} 2 \alpha \underline{j} \underline{k}$, $\underline{i} \underline{j} + 2\underline{k}$ and $\alpha \underline{i} \underline{j} + \underline{k}$
- xiii. A force $\underline{F} = 3\underline{i} + 2\underline{j} 4\underline{k}$ is applied at the point (1,-1,2). Find the moment of the force about the point (2,-1,3)

SECTION - C

(Each question carries 10 marks)

5. (a) If
$$f(x) = \begin{cases} 3x & \text{if } x \le -2 \\ x^2 - 1 & \text{if } x \ge 2 \end{cases}$$

5

Discuss the continuity at x = 2 and x = -2

(b) Differentiate $\frac{x^2+1}{x^2-1}$ w.r.t $\frac{x-1}{x+1}$

5

6. (a) Evaluate $\int \frac{dx}{\sqrt{7-6x-x^2}}$

5

(b) Find h such that the points A(h,1), B(2,7) and C(-6,-7) are vertices of a right triangle.

7. (a) Find area between the x-axis and the curve $y = \sqrt{2ax-x^2}$ when a > 0

5

(b) Graph the feasible region of the following system of linear inequality and find corner points $2x+3y \le 18$, $2x+y \le 10$, $x+4y \le 12$, $x \ge 0$, $y \ge 0$

5

8. (a) Find a joint equation of the straight lines through the origin and perpendicular to the lines represented by $x^2 + xy - 6y^2 = 0$

5

(b) Find an equation of the parabola whose focus is F(-3,4) and directrix is 3x-4y+5=0

5

9. (a) Find centre, foci, eccentricity and vertices of hyperbola $4x^2 - 8x - y^2 - 2y - 1 = 0$

5

(b) Prove that $\sin(\alpha - \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

Paper: II

Objective - (III)

Paper Code

Marks : 20 Sahiwal Board-2021

Note: -You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

Q.1	Questions	A	В	С	D
1.	The conic is called circle if:	e=1	e < 1	e = 0	e > 1
2.	The direction cosines of $Z-axis$ are:	(1,0,0)	(0,1,0)	(0,0,1)	(0,0,0)
3.	Angle between nonzero vectors \underline{a} and $\underline{a} \times \underline{b}$ is:	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
4.	Distance between (-1,2) and (7,5) is:	±7	√73	73	₹√73
5.	Opening of parabola $x^2 = -16y$ is:	downward	upward	left	right
6.	If \underline{u} and \underline{v} are parallel vectors having same direction then $\underline{u} \cdot \underline{v}$ is equal to:	-uv	uv	uv sinθ	$uv \tan \theta$
7.	If $f(x) = \sqrt{x+4}$ then $f(x-1)$ is equal to:	$\sqrt{x+4}$	$\sqrt{x+3}$	$\sqrt{x+2}$	$\sqrt{x+1}$
8.	The distance of point $(1,-2)$ from $Y-axis$ is:	2		4	1
9.	Vertices of $\frac{y^2}{16} - \frac{x^2}{49} = 1$ are:	(±4.0) (0,±4)		(0,±7)	(±7,0)
10.	Inclination of line perpendicular to $Y - axis$ is:	$\frac{\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{2}$	zero
11.	$\frac{d}{dx}\left(Sin^2x + Cos^2x\right) \text{ is equal to:}$	zero	ATION	2	3
12.	$\int e^x (x+1) dx \text{ is equal to:}$	$e^x + c$	$xe^x + c$	$x^2 e^x + c$	$\frac{xe^x}{2}+c$
13.	$\int_{0}^{\pi} Cos x dx $ is equal to:	² pakci	ty.org ^l	zero	2
14.	If $V = x^3$ then differential of V is:	$3x^2$	$3x^2 dv$	$x^3 dv$	$3x^2 dx$
15.	If $f'(c) = 0$, then f has relative minima at C if $f''(c)$ is:	negative	zero	any value	positive
16.	$\frac{d}{dx}(Sin^{-1}x)$ is equal to:	$\frac{-1}{\sqrt{1-x^2}}$	$\frac{1}{\sqrt{x^2-1}}$	$\frac{1}{\sqrt{1-x^2}}$	$\frac{-1}{\sqrt{x^2-1}}$
17.	The general solution of $\frac{1}{x} \frac{dy}{dx} - 2y = 0$ is:	$y = c e^x$	c e ^x	c e ^{-x}	c e 1/2
18.	$\frac{d}{dx} \left[\sin \left(\frac{1}{x} \right) \right]$ is equal to:	$x \cos \frac{1}{x}$	$\frac{-1}{x^2} \cos \frac{1}{x}$	$\frac{1}{x^2} \cos \frac{1}{x}$	$\frac{-1}{x} \cos \frac{1}{x}$
19.	$\lim_{n\to\infty} \left(1 + \frac{1}{3n}\right)^n \text{ is equal to:}$	e ^½	е	e^2	e^3
20.	x = 0 is solution of inequality:	2x-1<0	2x+1<0	x < 0	x < -1

: 2:30 Hours Time

Sahiwal Board-2021 Subjective Marks : 80

Note: - Section I is compulsory. Attempt any three questions from section II.

Section - I

Write short answers to any Eight parts. 2.

 $(8 \times 2 = 16)$

Given $f(x) = x^3 - ax^2 + bx + 1$. if f(2) = -3 and f(-1) = 0. Find the value of a and b.

Find $f^{-1}(x)$ if $f(x) = (-x+9)^3$

a pakcity.org

Express the $\lim_{n\to+\infty} \left(1+\frac{3}{n}\right)^{2n}$ in terms of "e".

iv. Evaluate $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$

v. Differentiate $\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$ w.r.t "x"

vi. Find $\frac{dy}{dx}$ if $x = at^2$ and y = 2at

vii. Prove that $\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$

viii. Find $\frac{dy}{dx}$ if $y = x \cos y$

ix. Find $\frac{dy}{dx}$ if $y = e^{-x} (x^3 + 2x^2 + 1)$

x. Find $\frac{dy}{dx}$ if $y = e^{-2x}$. Sin 2x

xi. Find y_2 if $y = 2x^5 - 3x^4 + 4x^3 + x - 2$

Delke Hith off Apply the Maclaurin series expansion to prove that $e^x = 1 + x + \frac{x^2}{12} + \frac{x^3}{12} + \frac{x^4}{14} + \dots$

Write short answers to any Eight parts. 3.

 $(8 \times 2 = 16)$

Find dy if $y = x^2 - 1$, when x changes from 3 to 3.02

ii. Evaluate $\int \frac{3x+2}{\sqrt{x}} dx$ (x > 0)

iii. Evaluate $\int \frac{1-x^2}{1+x^2} dx$

iv. Evaluate $\int \frac{1}{x \ln x} dx$

v. Evaluate $\int x^4 \ln x \ dx$

vi. Evaluate $\int (x^{1/3} + 1) dx$

Find the area above the x-axis and under the curve $y=5-x^2$ from x=-1 to x=2

Solve the differential equation $\frac{dy}{dr} = \frac{y}{y^2}$

Find an equation of line through A(-6,5) having slope 7.

Find the lines represented by $x^2 - 2xy \sec \alpha + y^2 = 0$

The points A(-5,-2) and B(5,-4) are ends of diameter of a circle. Find the centre of that circle. xi.

Check whether the point (-7,6) lies above or below the line 4x+3y-9=0Please visit for more data at: www.pakcity.org

4. Write short answers to any Nine parts.

 $(9 \times 2 = 18)$

- i. Graph the solution set of the linear inequality in xy – plane given by $2x + y \le 6$.
- Find the equation of the circle with ends of a diameter at (-3,2) and (5,-6). pakcity.org ii.

5

5

5

- Show that the circles $x^2 + y^2 + 2x 2y 7 = 0$ and $x^2 + y^2 6x + 4y + 9 = 0$ touch externally. iii.
- Find the length of the chord cut off from the line 2x+3y=13 by the circle $x^2+y^2=26$. iv.
- Write the equation of a parabola with focus (-3,1) and directrix x = 3v.
- Find the centre and foci of $\frac{x^2}{4} \frac{y^2}{9} = 1$ vi.
- vii. Find a unit vector in the direction of the vector $\underline{v} = [-2, 4]$
- Find equation of normal to the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $(a\cos\theta, b\sin\theta)$. viii.
- ix. Find α so that $\left| \alpha \underline{i} + (\alpha + 1)j + 2\underline{k} \right| = 3$.
- Find the cosine of the angle between $\underline{u} = [2, -3, 1]$ and $\underline{v} = [2, 4, 1]$ x.
- Compute the product $\underline{a} \times \underline{b}$, $\underline{a} = -4\underline{i} + \underline{j} 2\underline{k}$ and $\underline{b} = 2\underline{i} + \underline{j} + \underline{k}$. xi.
- Find α so that the vectors $\alpha \underline{i} + \underline{j}$, $\underline{i} + \underline{j} + 3\underline{k}$ and $2\underline{i} + \underline{j} 2\underline{k}$ are coplaner. xii.
- Find equation of tangent to $x^2 2y^2 = 2$ through (1, -2). xiii.

- 5. (a) Evaluate $\lim_{\theta \to 0} \frac{\tan \theta \sin \theta}{\sin^3 \theta}$
- **(b)** If $x = a \cos^3 \theta$, $y = b \sin^3 \theta$, show that $a \frac{dy}{dx} + b \tan \theta = 0$
- 6. (a) Evaluate $\int \frac{\sqrt{2}}{\sin x + \cos x} dx$ 5
 - (b) Find an equation of the line through the intersection of the lines x+2y+3=0, 3x+4y+7=0 and making equal intercepts on the axes.
- 7. (a) Solve the differential equation $\sec x + \tan y \frac{dy}{dx} = 0$
 - (b) Minimize z = 3x + y; subject to the constraints: 5 $x+6y\geq 9$ $3x + 5y \ge 15$; $x \ge 0$;
- 8. (a) Write equation of circle that passes through the points A(5,6), B(-3,2) and C(3,-4). 5
 - **(b)** Prove that: $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$ 5
- **9. (a)** If $y = e^x \sin x$, then show that $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0$ 5
 - **(b)** Find centre, foci, eccentricity and vertices of $\frac{y^2}{16} \frac{x^2}{9} = 1$ 5

							Roll No	Annual 2019		
Mathematics Paper : II						(INTER PART II CLASS 12 th) - (I) <u>OBJECTIVE</u>			Time: 30 Minutes Marks: 20	
I	you	think i	is corr	ect, fill thore circles	at circle	ach objective	it question nu	n as A, B, C an mber with mar stion.	ker or per	choice which n. Cutting or
		(A)		1	(B)		(C)	80	(D)	$\frac{0}{0}$
	2.	Paran	netric	equations	x = at	, → =2 a	t represent			
		(A)	$\frac{x^2}{a^2}$ +	$\frac{v^2}{b^2} = 1$	(B)	$\frac{x^2}{a^2} - \frac{b^2}{b^2} = 1$	(C)	$y^2 = 4ax$	(D)	$x^2 + y^2 = a^2$
	3.	lf y	= x² t	hen dy is				170		
		(A)		2x	(B)	2xdx	(C)		(D)	$2x^2$
	4.	If f'	(c) = 0), then $f($	(x) is mi	nimum at x	=c if	3		
			CO/		(D)	("(-) - 0	1 ((10)	$f^{*}(c)=0$	(D)	f''(c) < -1
	5.	$\frac{d}{dx}$ (Cosx ²)=	() (e) < 0.	3	330		
		(A)		$\sin x^2$	JB)	$-\sin x^2$	(C)	$2x\sin x^2$	(D)	$-2x\sin x^2$
	6.	$\frac{d}{dx}$	$\left(\frac{a}{x}\right) =$	A			EBUG	Nontrial Law Medical Confession of the Confessio		
		(A)		а	(B)	$\frac{1}{x}$	(c)	ity.org	(D)	$-\frac{a}{x^2}$
	7.	The	order	of differe	ential equ	uation $x \frac{d^2y}{dx^2}$				
		(A)		1	(B)	2	(C)	3	(D)) 4
	8.	∫In	xdx =							
		(A)	xl	n x – x	(B)	<i>xl</i> n <i>x</i> +	x (C)	x - xl n x	(D)	-xl n $x-x$
	9.	lf	$\int_{-1}^{3} f(x)$	x)dx = 5,	then	$\int_{3}^{1} f(x)dx =$				
		(A)		1 5	(B)	$-\frac{1}{5}$	(C)	-5	(D) 5
										(Turn Over)

10.	$\int 3 \sin 3x dx =$	_
	15 SIII 5xax :	-

$$a \sin 3x$$

(A)
$$y - y_1 = m(x - x_1)$$
 (B)

$$\frac{x}{a} + \frac{y}{b} = 1$$

$$y = mx + c$$

$$y = mx + c$$
 (D) $xCos\alpha + ySin\alpha = p$

$$\sqrt{2}$$

$$(A) y = c$$

$$y = -c$$

$$x = c$$

(D)
$$y = x$$

$$(A) x+y<1$$

$$2x-y<1$$

(D)
$$x-y < 1$$

16. Radius of circle
$$x^2 + y^2 + 2gx + 2\sqrt{g}x = 0$$
 is

(A)
$$\sqrt{g^2 + f^2 - c}$$

$$\sqrt{g^2+f^2-c}$$
 (B) \sqrt{g}

(A)
$$\sqrt{g^2 + f^2} - c$$
 (B)
17. Axis of parabola $y^2 = 4ax$ is

$$(A) y = 0$$

$$x = 0$$

$$y = a$$

(D)
$$x = a$$

19. Two vectors
$$\underline{u}$$
 and \underline{v} are perpendicular if

$$\underline{u} \cdot \underline{v} = 0$$

$$u \times v = 0$$

$$\underline{u} = t\underline{v}$$

(D)
$$\underline{u} + \underline{v} = 0$$

20.
$$2\hat{i} \times 2\hat{i} =$$

Roll No. Annual 2019

Mathematics

(INTER PART II CLASS 12th)

Time : 2 : 30 Hours

Paper: II

SUBJECTIVE

Marks: 80 Note :-Section I is compulsory. Attempt any three Questions from section II.

Section = I

2. Write short answers to any Eight parts.

pakcity.org §

(8x 2 = 16)

- Express the perimeter p of a square as a function of its area A.
- ii. For the function f(x) = -2x + 8, find $f^{-1}(x)$.
- Evaluate $\lim_{x \to 3} \frac{x-3}{\sqrt{x-3}}$.
- Differentiate $\frac{2x-3}{2x+1}$ w.r.t x.
- Differentiate $Sin^2 x$ w.r.t $Cos^4 x$.
- Differentiate $(\ln x)^x$ w.r.t x vi.
- Find f'(x) if $f(x) = \frac{e^x}{e^{-\frac{x}{2}}+1}$.
- viii. Find $\frac{dy}{dx}$ if $y = x^2 l \ln \sqrt{x}$
- ix. Find y_2 if $y = l \ln \left(\frac{2x+3}{3x+2} \right)$
- xi. Find $\frac{dy}{dx}$ if $y = l \ln \sqrt{\frac{x^2 1}{x^2 + 1}}$ xii. Find $\frac{dy}{dx}$ if $y = Cosh^{-1}(Secx)$ $0 \le x = \pi/2$ iii. Find f'(x) if $f(x) = \sqrt{\ln(e^{2x} + 2e^{-2x})}$. 3. Write short are

- $(8 \times 2 = 16)$

- Evaluate $\int \frac{e^x}{e^x + 3} dx$
- Evaluate $\int x \ln x dx$
- Evaluate | cost di
- Give the definition of differential equation and write an example.
- Evaluate $\int (a-2x)^{\frac{2}{3}} dx$
- Evaluate $\int e^x (\frac{1}{x} + l \, n \, x) dx$
- Find area bounded by $y = x^2 + 1$ and x axis, from x = 1 to x = 2
- Write any two properties of definite integrals.
- X. Solve the differential equation $\frac{dy}{dx} = -y$
- Define objective function. xi.
- xii. Show that the ordered pair (1, 1) is a solution of the inequality x + 2y < 6.

4. Write short answers to any Nine parts.

 $(9 \times 2 = 18)$

- i. The points A (-5, -2) and B (5, -4) are ends of a diameter of a circle. Find the centre and radius of the circle.
- ii. Define latus rectum of parabola.
- iii. Find point of intersection of lines 3x + y + 12 = 0 and x + 2y 1 = 0.
- iv. Find whether the given point lies above or below the line (5, 8); 2x 3y + 6 = 0.
- Find the centre and radius of circle $5x^2 + 5y^2 + 14x + 12y 10 = 0$
- Find length of tangent drawn from the point (-5, 4) to circle $5x^2 + 5y^2 10x + 15y 131 = 0$ vi.
- Find focus and vertex of parabola $x^2 = 5y$ vii.
- Find an equation of ellipse with foci (0,-1) and (0,-5) and major axis of length 6. viii.
- Compute the cross product $\underline{a} \times \underline{b}$ where $\underline{a} = 3\underline{i} 2\underline{j} + \underline{k}$, $\underline{b} = \underline{i} + \underline{j}$
- Define cross product of two vectors.
- xi. Prove that $\underline{u}.(\underline{v}\times\underline{w})+\underline{v}.(\underline{w}\times\underline{u})+w.(\underline{u}\times\underline{v})=3\underline{u}.(\underline{v}\times\underline{w})$.
- Find direction cosines of vector \overline{PQ} where P(2,1,5) and Q(3,1) xii.
- Find volume of parallelepiped for which given vectors are three edges.

$$\underline{u} = \underline{i} - 2\underline{j} + 3\underline{k}, \underline{v} = 2\underline{i} - \underline{j} - \underline{k}, \underline{w} = \underline{j} + \underline{k}$$

Note: Attempt any three questions

 $(10 \times 3 = 30)$

- 5. If θ is measured in radian, then prove $\lim_{n \to \infty} \frac{Sin\theta}{n}$
 - Show that y = x' has minimum value at $x = \frac{1}{x'}$
- (a) Evaluate $\int \sqrt{1+Sin x} dx$, $\left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$
 - 2x + 4y = 1 also find equation of parallel (b) Find distance between parallel lines x+2y-5=0, line which is lying mid way between them.
- 7. Find the area between the x-axis and the curve $y=\sqrt{2ax-x^2}$; when a>0.
 - (b) Minimize f(x, y) = 2x + y; subject to the constraints $x + y \ge 3$; $7x + 5y \le 35$; $x \ge 0$; $y \ge 0$
- (a) Find a joint equation of the straight lines through the origin perpendicular to the lines represented 8. by $x^2 + xy - 6y^2 = 0$
 - (b) Show that the circles $x^2 + y^2 + 2x 8 = 0$ and $x^2 + y^2 6x + 6y 46 = 0$ touch internally.
- 9. (a) Find the centre, foci, eccentricity vertices and directrices of the ellipse whose equation is given $25x^2 + 9y^2 = 225$
 - (b) The position vectors of the points A, B, C and D are $2\underline{i} \underline{j} + \underline{k}$, $3\underline{i} + \underline{j}$, $2\underline{i} + 4\underline{j} 2k$ and $-\underline{i}-2\underline{j}+\underline{k}$ respectively. Show that \overline{AB} is parallel to \overline{CD}

309 - 419 - 14500

Sahiwal Board-2018 Roll No Annual 2018									
Mathen Paper :		(INTER PART II CLASS 12th) - (III) Time :30 Minutes OBJECTIVE Marks : 20							
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number with marker or pen. Cutting or filling two or more circles will result in zero mark in that question.									
1 i	If $\int_{2}^{x} 2$	2x.dx = 12 then	<i>K</i> =						
	(A)	2,-2	(B)	2,6	(C)	4,-4	(D)	4,2	
ii.	Distanc	ce of the point	P(x,y) from	om y-axis is					
	(Λ)	x	(B)	y	(C)	x	(D)	y	
iii.	Y - co	o-ordinate of ce	ntroid of	the triangle with	vertices A(-2	,3) B(-4,	1) C (3	, 5) is	
	(A)	9	(B)	3	(C)	9/2	(D)	3/2	
iv.	The lin	ne ax + by + c =	= 0 is para	illel to $x-axis$ i	if				
	(A)	a = 0	(B)	b = 0	(C)	€ = 0	(D)	b = c	
٧.	Equati	on of a line pas	sing throu	gh (5, - 7) havi	ng slope und	fined is			
	(A)	y = -7		x=5	(3)(5)	x = -5	(D)	y = 7	
vi.	Length	of the diamete	r of the ci	rcle $(x+5)^2$	$-8)^2 = 12$ is				
	(A)	4√3	(B)	1 2 13	(C)	12	(D)	24	
vii.) is not in the so	Z VI N	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ICATIO				
	(A)	x+y>2	(B)	x-y>1	(C)	3x + 5y > 7	(D)	3x - 7y < 3	
viii.	The le	ngth of latus re	ctum of th	ne ellipse $\frac{x^2}{36} + \frac{y}{2}$	-				
	(A)	25	(B)	$\frac{25}{3}$ pa	kcity.org (C)	$\frac{25}{36}$	(D)	$\frac{3}{25}$	
2		6	70 CE	3		36	23 57	25	
ix.	Length	of the major a	nd minor	axes of the ellips	$e x^2 + 16y^2$	=16 is			
	(A)	4,1	(B)	10,5	(C)	8,2	(D)	16,2	
x.	Projec	tion of a vector	<u>v</u> along	vector <u>u</u> is					
	(A)	$\frac{\underline{u} \times \underline{v}}{ \underline{v} }$	(B)	$\frac{\underline{u}.\underline{v}}{ \underline{u} }$	(C)	$\frac{\underline{u}.\underline{v}}{\hat{u}}$	(D)	$\frac{\underline{u}.\underline{v}}{ \underline{v} }$	
xi.	$[\hat{i}\hat{i}\hat{k}]$	=							
	(A)	1	(B)	2	(C)	0	(D)	-1	
xii.	$\int \frac{Sec}{\sqrt{Tc}}$	$\frac{dx^2x}{dx}.dx =$							

(C) $2\sqrt[3]{Tan x} + c$

(D)

 $2\sqrt{Sec x} + c$

 $l \log_e \sqrt{Tan x} + c$

(B)

(A)

 $l \circ g_c Tan x + c$

xiii.

If
$$\int f(x).dx = \frac{1}{a} Sec^{-1} \frac{x}{a} + c$$
 then $f(x) =$ pakcity.org

(A)
$$\frac{1}{\sqrt{x^2 - a^2}}$$
 (B) $\frac{1}{x\sqrt{x^2 - a^2}}$ (C) $\frac{1}{x\sqrt{x^2 + a^2}}$ (D) $\frac{1}{x\sqrt{a^2 - x^2}}$

$$\frac{1}{x\sqrt{x^2-a^2}}$$

$$\frac{1}{x\sqrt{x^2+a^2}}$$

$$(D) \quad \frac{1}{x\sqrt{a^2-x^2}}$$

xiv.
$$\frac{d}{dx} \left(\frac{1}{g(x)} \right) =$$

$$(\Lambda) \quad (g(x))^{-2} \cdot g'(x)$$

(B)
$$-1(g'(x))^{-2}.g(x)$$

(C)
$$(-1(g'(x))^{-2}$$

(A)
$$(g(x))^{-2} \cdot g'(x)$$
 (B) $-1(g'(x))^{-2} \cdot g(x)$ (C) $(-1(g'(x))^{-2} \cdot g'(x))$ (D) $(-1)(g(x))^{-2} \cdot g'(x)$

XV. If
$$f'(a-\varepsilon) < 0$$
 and $f'(a+\varepsilon) > 0$ then at $x=a$ there is

- (A) relative maxima (B) relative minima
- (C) point of inflection (D) critical point

xvii.
$$l n(\frac{1}{x} + \frac{\sqrt{1+x^2}}{|x|}) = ; x \neq 0$$

(B)
$$Tanh^{-1}x$$

xviii. The range of
$$f(x) = 2 + \sqrt{x-1}$$
 is

(D)
$$(-2,\infty)$$

xix. If
$$\frac{1}{\sqrt{x^2-1}} = f'(x)$$
 then $f(x) = \frac{1}{\sqrt{x^2-1}} = f'(x)$

(A)
$$Cos^{-1}x$$
 (B)

$$Sinh^{-1}x$$
 (C)

$$Cosh^{-1}x$$

$$\int Cot^{-1} \sqrt{\frac{1 + \cos x}{1 - \cos x}} . dx$$

$$\frac{x^2}{2} + c$$

$$\frac{x^2}{4} + c$$

$$\frac{x^4}{2} + c$$

(A)
$$\frac{x^2}{2} + c$$
 (B) $\frac{x^2}{4} + c$ (C) $\frac{x^4}{2} + c$ (D) $\frac{x}{4} + c$

Annual 2018 Roll No.

Mathematics

(INTER PART II CLASS 12th)

Time: 2:30 Hours

Paper: II

SUBJECTIVE

Marks: 80

Section I is compulsory. Attempt any three Questions from section II. Note :-

Section = I

Write short answers to any Eight parts. 2.

(8x 2 = 16)

i. $f(x) = \frac{x}{x^2 - 4}$, find the domain and range of f(x). Pakeity.org

11. Prove the identities $Cosh^2x - Sinh^2x = 1$

iii. Find
$$f \circ g(x)$$
 if $f(x) = \frac{1}{\sqrt{x-1}}$, $g(x) = \frac{1}{x^2}$, $x \neq 1$

Define derivative of a function. iv.

v. If
$$y = \sqrt{x+2}$$
 find dy/dx from first principle.

vi. Differentiate
$$\frac{x^2+1}{x^2-3}$$
 w.r to "x".

vii. Differentiate w. r. to "x"
$$(x-5)(3-x)$$

viii. Find
$$dy/dx$$
 if $x = at^2$ and $y = 2at$.

ix. Find
$$dy/dx$$
 if $3x+4y+7=0$

iii. Find
$$dy/dx$$
 if $x = at^2$ and $y = 2at$.
ix. Find dy/dx if $3x + 4y + 7 = 0$
X. Prove that $\frac{d}{dx}(Sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$.
xi. Differentiate Sin^3x w.r.to Cos^2x
xii. Find $f'(x)$ if $f(x) = e^{\sqrt{x}-1}$

xi. Differentiate Sin³x w.r.to Cos²x

Xii. Find
$$f'(x)$$
 if $f(x) = e^{\sqrt{x}-1}$

3. Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

i. Find
$$\delta y$$
 and dy if $y = x^2 + 2x$ when x changes from 2 to 1.8.

ii. Evaluate
$$\int \left(\sqrt{x}\right)^{x} dx$$
, $x>0$

iii. Evaluate
$$\int \frac{ax+b}{ax^2+2bx+c} dx$$
.

iv. Evaluate
$$\int \frac{x^2}{4+x^2} dx$$

v. Evaluate
$$\int \frac{1}{(1+x^2) T \operatorname{an}^{-1} x} dx$$

vi. Evaluate
$$\int x \ln x \, dx$$

vii. Evaluate
$$\int \frac{xe^x}{(1+x)^2} dx$$

viii. Evaluate
$$\int_{0}^{\pi/4} Secx(Secx + \tan x) dx$$

ix. Find the area bounded by the curve
$$y = x^3 + 2x^2$$
 and $x - axis$.

x. Solve
$$ydx + xdy = 0$$

xii. Graph the inequality
$$x + 2y < 6$$
.

(Turn Over)

(2)

4. Write short answers to any Nine parts.

 $(9 \times 2 = 18)$

- i. Find h such that the points A (h, 1), B (2, 7) and C (-6, -7) are vertices of a right triangle with right angle at vertex A.
- ii. Find the point three-fifth of the way along the line segment from A (-5, 8) to B (5, 3).
- Find the equation of the line through (-4, -6) and perpendicular to a line having slope $\frac{-3}{2}$.
- iv. Find the area of the region bounded by the triangle with vertices (a, b+c), (a, b-c) and (-a, c).
- Show that lines 4x-3y-8=0, 3x-4y-6=0 and x-y-2=0: are concurrent.
- Find the direction cosines of vector $\underline{v} = 4\underline{i} 5\underline{j}$
- Calculate the projection of the vector $\underline{a} = \underline{i} \underline{k}$ along vector $\underline{b} = \underline{j} + \underline{k}$. vii.
- Find area of parallelogram whose vertices are P(0,0,0), Q(-1,2,4), R(2,-1,4), S(1,1,8).
- Find value of " α " so that $\alpha \underline{i} + \underline{j}$, $\underline{i} + \underline{j} + 3\underline{k}$ and $2\underline{i} + \underline{j} 2\underline{k}$ are coplaner.
- Find vertex and directrix of the parabola, $x^2 = 4(y-1)$.
- Find equation of the parabola with focus (2,2) and directrix x
- Find equation of ellipse with foci (± 3, 0) and minor axis of length 10.
- Find the foci and vertices of the ellipse $25x^2 + 9y^2 = 225$.

 Section = II xiii.

Note: Attempt any three questions

 $(10 \times 3 = 30)$

Find m and n so that the given function f" is continuous at x = 35. (a)

- (a) Find in and it so that the given function 1 is contained at x = 3 $f(x) = \begin{cases} mx & \text{if } x < 3 \\ n & \text{if } x = 3 \\ -2x + 9 & \text{if } x > 3 \end{cases}$ (b) If $y = (Cos^{-1}x)^2$, prove that $(1-x^2)$ $y_2 xy_1 2 = 0$ (a) Evaluate the indefinite integral using partial fraction $\int \frac{2x^3 3x^2 x 7}{2x^2 3x 2} dx$ 6.
 - (b) Find a joint equation of the lines through the origin and perpendicular to the lines represented by $x^2 - 2xv \tan \alpha - v^2 = 0$
- Find the area between the x-axis and the curve $y = \sqrt{2ax-x^2}$ when a > 0. 7.
 - (b) Minimize z = 3x + y; subject to the constraints $3x + 5y \ge 15$; $x + 6y \ge 9$, $x \ge 0$, $y \ge 0$.
- (a) Write an equation of the circle that passes through the given points A(-7,7), B(5,-1), C(10,0)8.
 - (b) Prove that in any triangle $\triangle ABC$, $C = a \cos B + b \cos A$. \bigcirc pakcity.org

- 9. Find the centre, foci, eccentricity vertices and equations of directrices of $\frac{y^2}{16} - \frac{x^2}{9} = 1$ (a)
 - Find a unit vector perpendicular to the plane containing \underline{a} and \underline{b} . Also find the "sine" of the angle between them.