Exercise 14.1

- Q.1 $\frac{\ln \Delta ABC}{DE \parallel BC}$
- (i) If $\overline{AD}=1.5 \text{cm}$ $\overline{BD}=3 \text{cm}$ $\overline{AE}=1.3 \text{cm}, \text{ then find } \overline{CE}$ $\overline{\overline{AD}} = \overline{\overline{AE}}$ $\overline{\overline{BD}} = \overline{\overline{EC}}$

By substituting the values of \overline{AD} , \overline{BD} and \overline{AE}

So

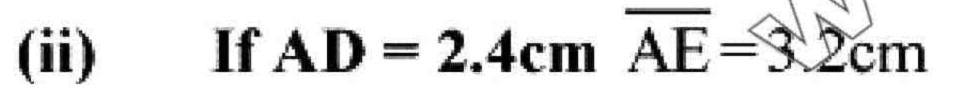
$$\frac{1.5}{3} = \frac{1.3}{EC}$$

$$\overline{EC}(1.5) = 1.3 \times 3$$

$$\overline{EC} = \frac{1.3 \times 3}{1.5}$$

$$\overline{EC} = \frac{3.9}{1.5}$$

$$\overline{EC} = 2.6 \text{ cm}$$



$$\overline{EC} = 4.8$$
cm find AB

$$\frac{AD}{AB} = \frac{AE}{AC}$$

$$\overline{AC} = AE + EC$$

$$\overline{AC} = 3.2 + 4.8$$

$$\overline{AC} = 8cm$$

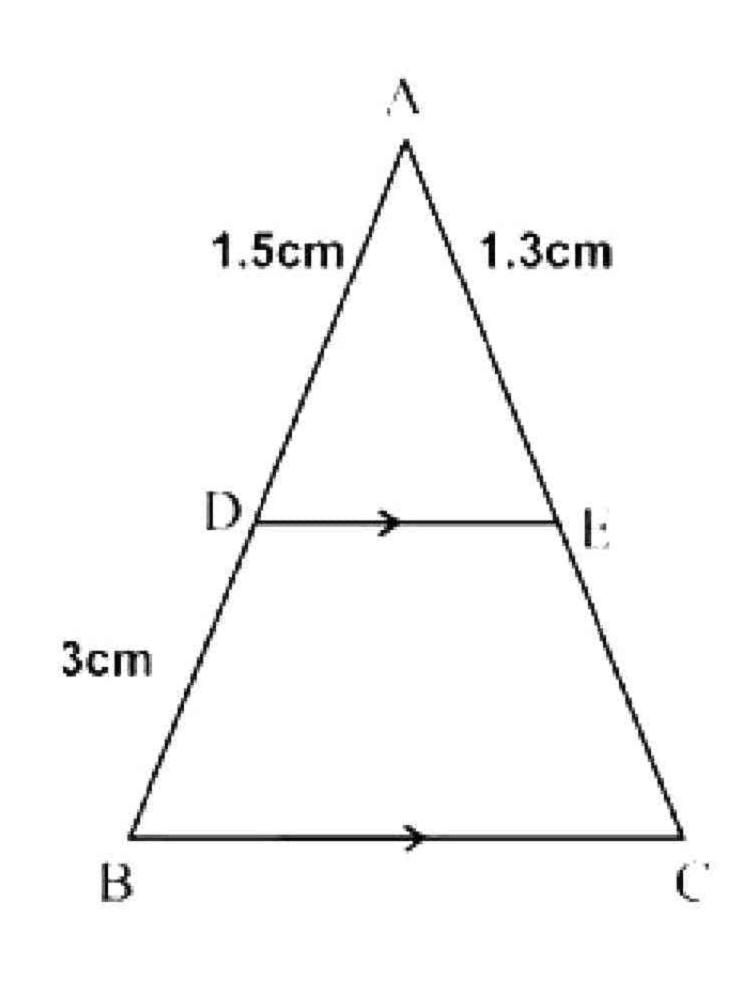
$$\therefore \frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}}$$

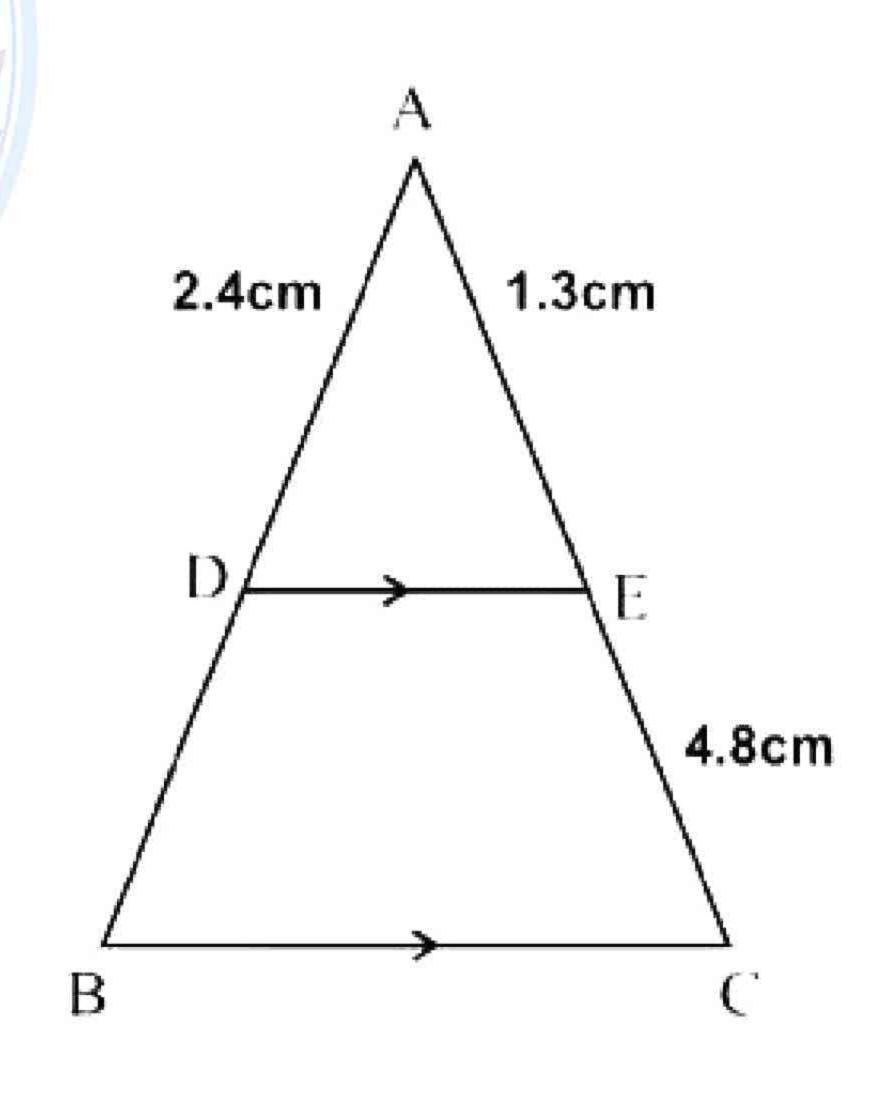
$$\frac{2.4}{AB} = \frac{3.2}{8}$$

$$2.4 \times 8 = (3.2)\overline{AB}$$

$$\frac{19.2}{3.2} = \overline{AB}$$

$$\overline{AB} = 6cm$$





(iii) If
$$\frac{\overline{AD}}{\overline{BD}} = \frac{3}{5} \overline{AC} = 4.8cm$$
 find \overline{AE}

$$\overline{AC} = \overline{AE} + \overline{EC}$$

$$\overline{AC} = \overline{EC} + \overline{AE}$$

$$\overline{AE} = 4.8 - \overline{EC}$$

$$\overline{AD} - \overline{AE}$$

$$\overline{\overline{BD}} - \overline{\overline{EC}}$$

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AC - EC}}{\overline{EC}}$$

$$\frac{3}{4.8 - EC}$$

$$3(EC) = 5(4.8 - EC)$$

$$3(\overline{EC}) = 24 - 5(\overline{EC})$$

$$3(\overline{EC}) + 5(\overline{EC}) = 24$$

$$8(\overline{EC}) = 24$$

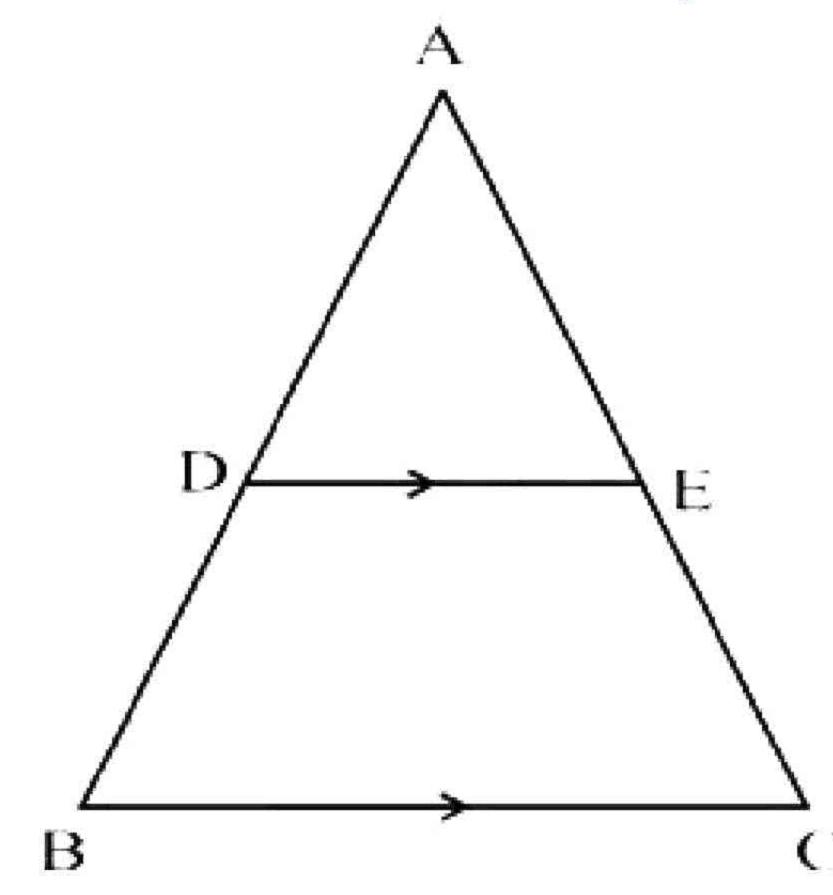
$$\left(\overline{EC}\right) = \frac{24^3}{8^3}$$

$$\overline{EC} = 3cm$$

$$\overline{AE} = \overline{AC} - \overline{EC}$$

$$=4.8-3$$

$$=1.8cm$$



If AD = 2.4 cmAE = 3.2 cmDE = 2 cmBC = 5 cm. Find \overline{AB} , \overline{DB} , \overline{AC} , \overline{CE} . (iv)

$$\frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}} = \frac{\overline{DE}}{\overline{BC}}$$

$$\frac{2.4}{\overline{AB}} = \frac{3.2}{\overline{AC}} = \frac{2}{5}$$

$$\frac{2.4}{\overline{AB}} = \frac{2}{5}$$

$$(2.4)5 = 2(\overline{AB})$$

$$\frac{12.0}{2} = AB$$

$$\overline{AB} = 6 \text{ cm}$$

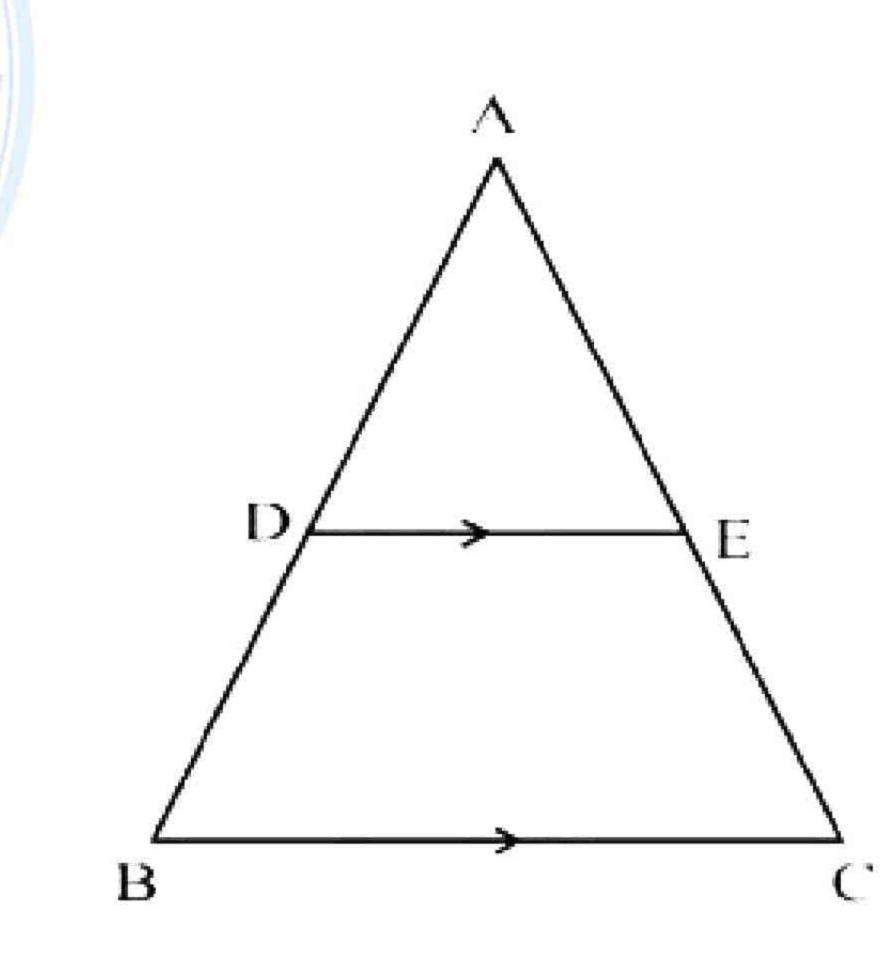
$$\frac{3.2}{1.5} = \frac{2}{1.5}$$

$$AC = 5$$

 $16.0 = 2(AC)$

$$\frac{\frac{16^{8}}{2} = AC}{\frac{2}{AC} = 8cm}$$

$$\overline{AC} = 8cm$$



$\overline{DB} = \overline{AB} - \overline{AD}$
$\frac{DB = 6 - 2.4}{-}$
$\frac{BD=3.6cm}{-1.5cm}$
$\frac{AD}{AB} = \frac{AE}{AC}$
$\frac{2.4}{6} = \frac{\overline{AE}}{8}$
$\overline{AE} = \frac{2.4}{6} \times 8$
$\overline{AE} = \frac{19.2}{6}$
$\frac{\overline{AE} = 3.2cm}{CE = \overline{AC} - \overline{AE}}$

If
$$\overline{AD} = 4x - 3$$
 $\overline{AE} = 8x - 7$

CE = 8 - 3.2

 $\overline{CE} = 4.8cm$

 $\overline{BD} = 3x - 1$ and CE = 5x - 3 Find the value of x

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

By putting the value of AD, AE, BD and CE

$$\frac{4x-3}{3x-1} = \frac{8x-7}{5x-3}$$

By cross multiplying

$$(4x-3)(5x-3) = (8x-7)(3x-1)$$

$$20x^2 - 12x - 15x + 9 = 24x^2 - 8x - 21x + 7$$

$$20x^2 - 27x + 9 = 24x^2 - 29x + 7$$

$$0 = 24x^2 - 20x^2 - 29x + 27x + 7 - 9$$

$$4x^2 - 2x - 2 = 0$$

$$2(2x^2 - x - 1) = 0$$

$$2x^2 - 2x + 1x - 1 = \frac{0}{2}$$

$$2x(x-1) + 1(x-1) = 0$$

$$(x-1)(2x+1)=0$$

$$x - 1 = 0$$
 $2x + 1 = 0$
 $x - 1$ $2x - 1$

$$x = 1 2x = -1$$

$$x = -\frac{1}{2}$$

Distance is not taken in negative it is always in positive so the value of x = 1.

В

Q.2 In $\triangle ABC$ is an isosceles triangle $\angle A$ is vertex angle and \overline{DE} intersects the sides \overline{AB} and \overline{AC} as shown in the figure so that

 $m\overline{AD}$: $m\overline{DB} = m\overline{AE}$: $m\overline{EC}$

Prove that $\triangle ADE$ is also an isosceles triangle.

Please visit for more data at: www.pakcity.org

Given:

 ΔABC is an isosceles triangle, $\angle A$ is vertex and \overline{DE} intersects the sides \overline{AB} and \overline{AC} .

$$\frac{m\overline{AD}}{m\overline{BD}} = \frac{m\overline{AE}}{m\overline{EC}}$$

To Prove

$$m\overline{AD} = m\overline{AE}$$

Proof

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

Or
$$\frac{\overline{BD}}{\overline{AD}} = \frac{\overline{EC}}{\overline{AE}}$$
Or
$$\frac{\overline{AD} + \overline{BD}}{\overline{AD}} = \frac{\overline{AE} + \overline{EC}}{\overline{EC}}$$

As we know

$$\overline{AB} = \overline{AD} + \overline{BD}$$

$$\overline{AC} = \overline{AE} + \overline{EC}$$

$$\frac{\overline{AB}}{\overline{B}} = \frac{\overline{AC}}{\overline{B}}$$

From this

$$\frac{\overline{AB}}{\overline{AB}} = \frac{\overline{AC}}{\overline{AB}}$$

$$\frac{AD}{AD} = \frac{AD}{AE}$$

$$\frac{AB}{AB} = \frac{AC}{AC}$$
 (Given)

Q.3 In an equilateral triangle ABC shown in the figure mAE:mAC=mAD:mAB find all the three angles of ΔADE and name it also.

ΔABC is equilateral triangle

To prove

To find the angles of $\triangle ADE$

Solution:

$$\frac{m\overline{AE}}{m\overline{AC}} = \frac{m\overline{AD}}{m\overline{AB}}$$

All angles are equal as it is an equilateral triangle which are equal to 60° each

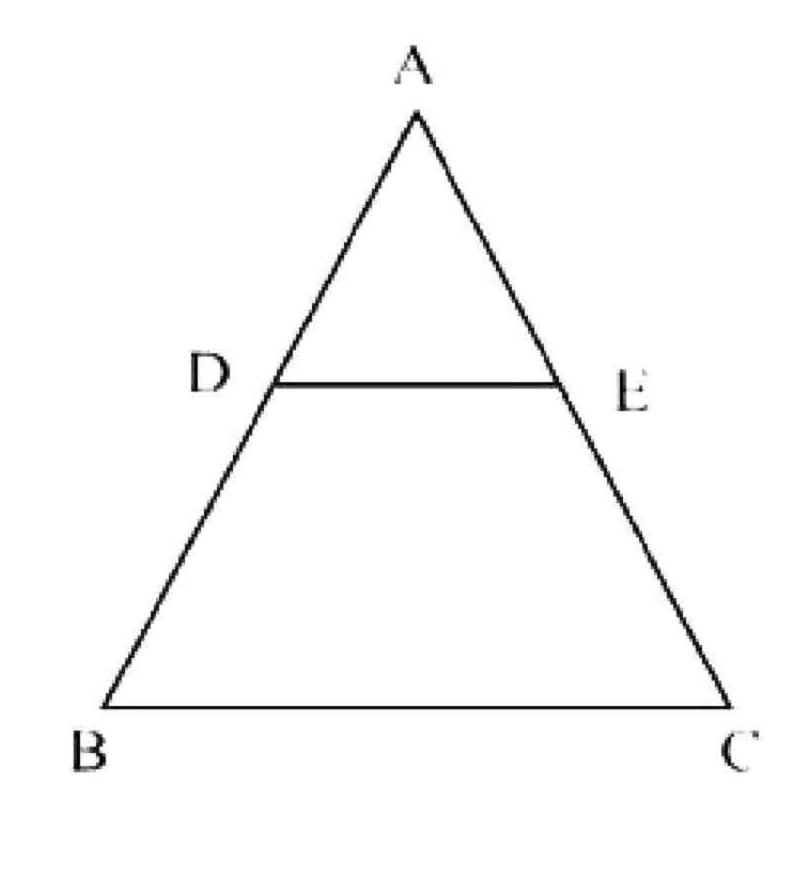
$$\angle \mathbf{A} = \angle \mathbf{B} = \angle \mathbf{C}$$

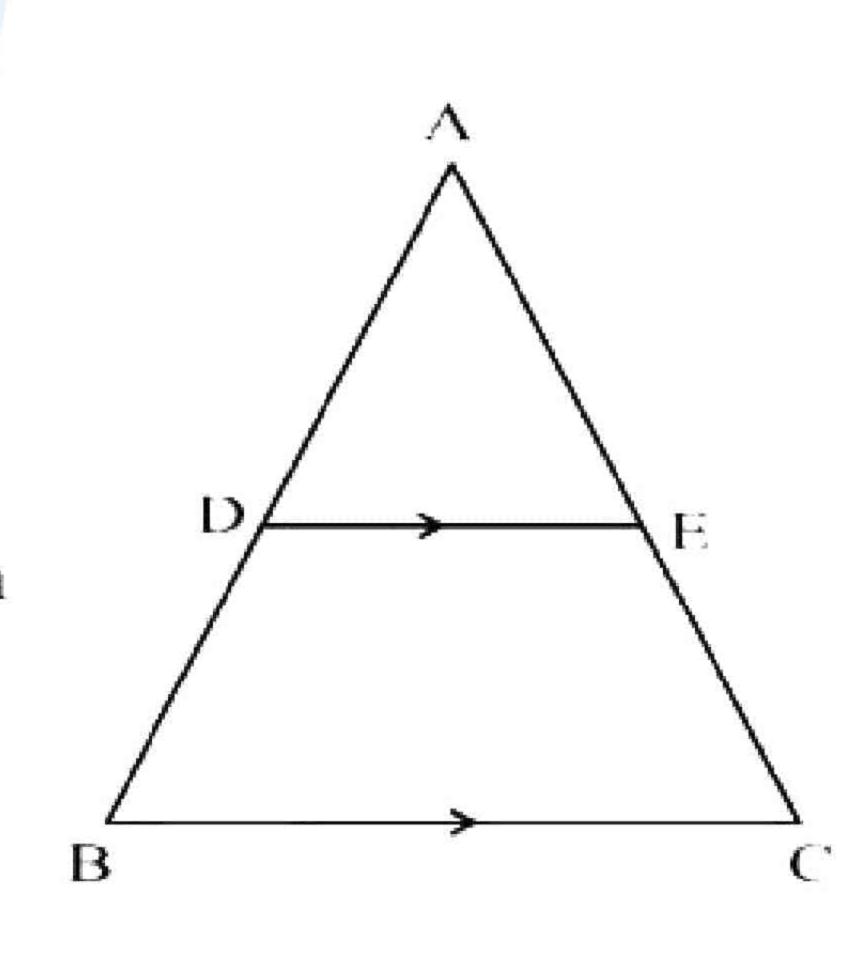
$$\angle ADE = \angle ABC = 60^{\circ}$$

$$\angle AED = \angle ACB = 60^{\circ}$$

$$\angle A = 60^{\circ}$$

ΔADE is an equilateral triangle





Q.4 Prove that line segment drawn through the midpoint of one side of a triangle and parallel to another side bisect the third side

Given

 $\overline{AD} = \overline{BD}$

 $\overline{\mathbf{DE}} || \overline{\mathbf{BC}}$

To Prove

 $\overline{AE} = \overline{EC}$

In ΔABC

 $\overline{DE}||\overline{BC}|$

In theorem it is already discussed that

$$\overline{AD}_{-}\overline{AE}$$

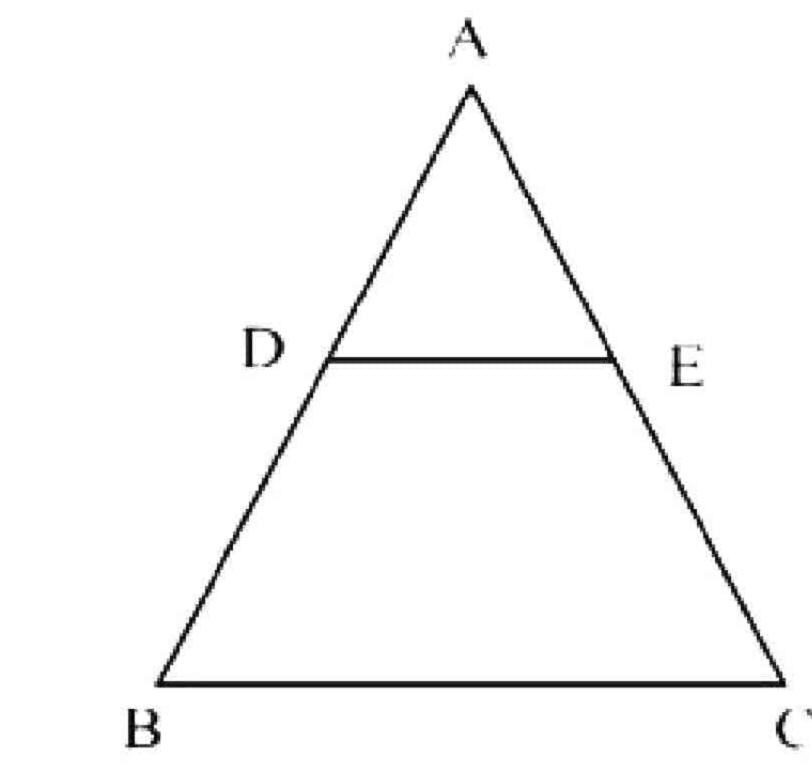
$$\overline{BD} = \overline{EC}$$

As we know $\overline{AD} = \overline{BD}$ or $\overline{BD} = \overline{AD}$

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

$$1 = \frac{\overline{AE}}{\overline{EC}}$$

$$\overline{EC} = \overline{AE}$$



Q.5 Prove that the line segment joining the midpoint of any two sides of a triangle is parallel to the third side

Given

ΔABC the midpoint of AB and AC are L and

M respectively

To Prove

$$\overline{LM}||\overline{BC}|$$
 and $\overline{mLM} = \frac{1}{2}\overline{BC}$

Construction

Join M to L and produce ML to N such that

$$\overline{ML} \cong \overline{LN}$$

Join N to B and in the figure name the angles

 $\angle 1$, $\angle 2$, and $\angle 3$

Proof

Statements	Reasons
$\Delta BLN \leftrightarrow \Delta ALM$	
$\overline{\mathbf{BL}} \cong \mathbf{AL}$	Given
$\angle 2 = \angle 1 \text{ or } \angle 1 = \angle 2$	Vertical angles
$\overline{NL} = \overline{ML}$	Construction
$\therefore \Delta BLN \cong \Delta ALM$	Corresponding angle of congruent triangles Given
∴∠A =∠3	
And $\overline{NB} \cong \overline{AM}$	
$\overline{NB} \overline{AM} $	

 $\overline{ML} = \overline{AM}$

NB≅ML

BCMN is parallelogram

 $\therefore \overline{BC} || \overline{LM} \text{ or } \overline{BC} || \overline{NL}$

 $\overline{BC} \cong \overline{NM}$

 $mLM = \frac{1}{2}m\overline{NM}$

Hence $m\overline{LM} = \frac{1}{2}m\overline{BC}$

Given

(Opposite side of parallelogram BCMN)

(Opposite side of parallelogram)

<u>Theorem 14.1.3</u>

The internal bisector of an angle of a triangle divides the sides opposite to it in the ratio of the lengths of the sides containing the angle.

Given

In $\triangle ABC$ internal angle bisector of $\angle A$ meets \overline{CB} at the points D.

To prove

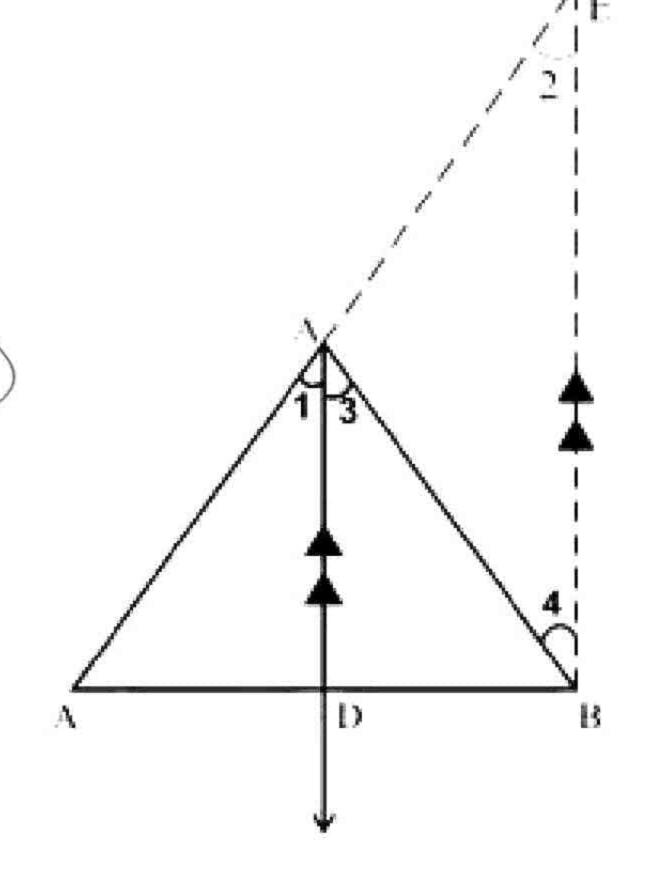
 $m\overline{BD}: m\overline{DC} = m\overline{AB}: m\overline{AC}$

Construction

Thus mBD:mDC=mAB:AC

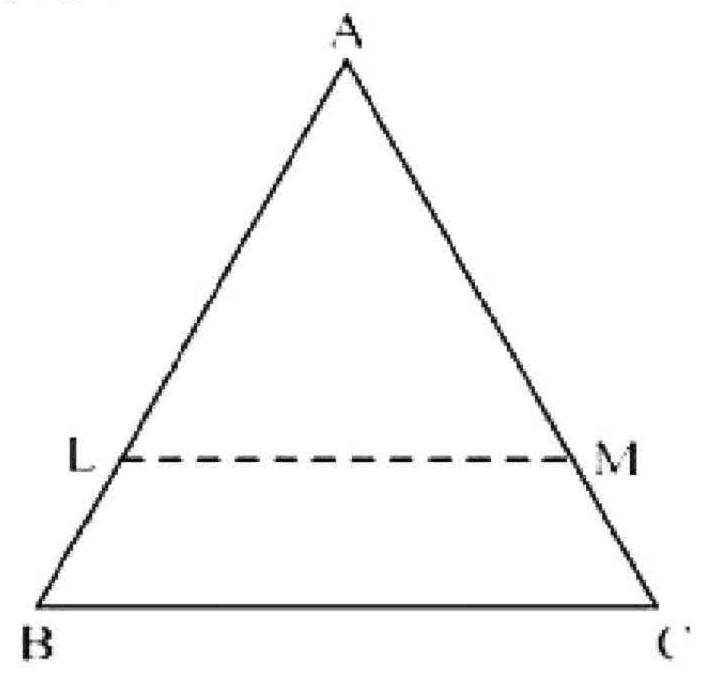
Draw a line segment $\overline{BE}||\overline{DA}|$ to meet \overline{CA} Produced at E

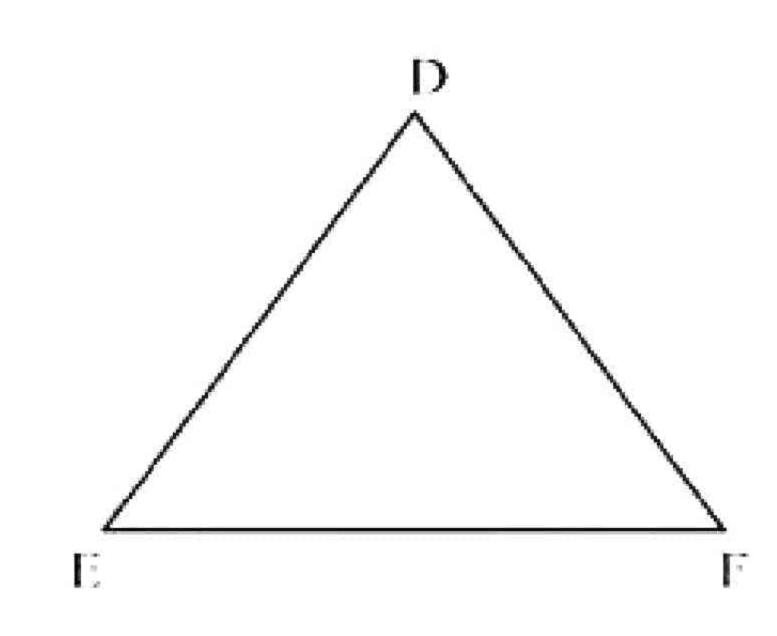
Proof



Frooi	
Statements	Reasons
∴ AD EB and EC intersect them	Construction
$m\angle 1=m\angle 2(i)$	Corresponding angles
Again AD EB and AB intersects them	Amazer a Mawfair's and
∴ m∠3 = m∠4(ii)	Alternate angles
But $m \angle 1 = m \angle 3$	Given
∴ m∠2 = m∠4	From (i) and (ii)
And $\overline{AB} \cong \overline{AE}$ or $\overline{AE} \cong \overline{AB}$	In a Δ , the sides opposite to congruent angles are also congruent
Now AD EB	Construction
$\therefore \frac{m\overline{BD}}{m\overline{DC}} = \frac{m\overline{EA}}{m\overline{AC}}$	A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.
or $\frac{\overline{mBD}}{\overline{mDC}} = \frac{\overline{mAB}}{\overline{mAC}}$	$m\overline{EA} = m\overline{AB}$ (proved)

If two triangles are similar, then the measures of their corresponding sides are proportional





Given

 $\Delta ABC \sim \Delta DEF$

i.e $\angle A \cong \angle D$, $\angle B \cong \angle E$ and $\angle C \cong \angle F$

To Prove

$$\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$$

Construction

- (I) Suppose that $mAB > m\overline{DE}$
- (II) mAB≤mDE

On \overline{AB} take a point L such that $\overline{mAL} = \overline{mDE}$

On \overline{AC} take a point M such that $\overline{mAM} = \overline{mDF}$

Join L and M by the line segment LM

Proof

Statements	Reasons

In $\triangle ALM \leftrightarrow \triangle DEF$

$$\angle A \cong \angle D$$

$$\overline{AL} \cong \overline{DE}$$

$$\overline{AM} \cong \overline{DF}$$

Thus $\triangle ALM \cong \triangle DEF$

And
$$\angle L \cong \angle E$$
, $\angle M \cong \angle F$

Now
$$\angle E \cong \angle B$$
 and $\angle F \cong \angle C$

$$\therefore \ \angle L \cong \angle B, \ \angle M \cong \angle C$$

Hence
$$\frac{m\overline{AL}}{m\overline{AB}} = \frac{m\overline{AM}}{m\overline{AC}}$$

Or
$$\frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{DF}}{m\overline{AC}}$$
....(i)

Similarly by intercepting segments on

 \overline{BA} and \overline{BC} , we can prove that

$$\frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{EF}}{m\overline{BC}}.....(ii)$$

Given

Construction

Construction

S.A.S Postulate

(Corresponding angles of congruent triangles)

Given

Transitivity of congruence

Corresponding angles are equal

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

$$m\overline{AL} = m\overline{DE}$$
 and $m\overline{AM} = m\overline{DF}$ (Construction)

Thus $\frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{DF}}{m\overline{AC}} = \frac{m\overline{EF}}{m\overline{BC}}$ Or $\frac{m\overline{AB}}{m\overline{AC}} = \frac{m\overline{BC}}{m\overline{BC}}$

mDE mDF mEF

If $m\overline{AB} = m\overline{DE}$

Then in $\triangle ABC \leftrightarrow \triangle DEF$

(II) If mAB<mDE, it can similarly be proved by taking intercepts on the sides of ΔDEF

 $\angle A \cong \angle D$

 $\angle \mathbf{B} \cong \angle \mathbf{E}$

And $\overline{AB} \cong \overline{DE}$

So \triangle ABC \cong \triangle DEF

Thus $\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}} = \frac{m\overline{BC}}{m\overline{EF}}$

Hence the result is true for all the cases.

By (i) and (ii)

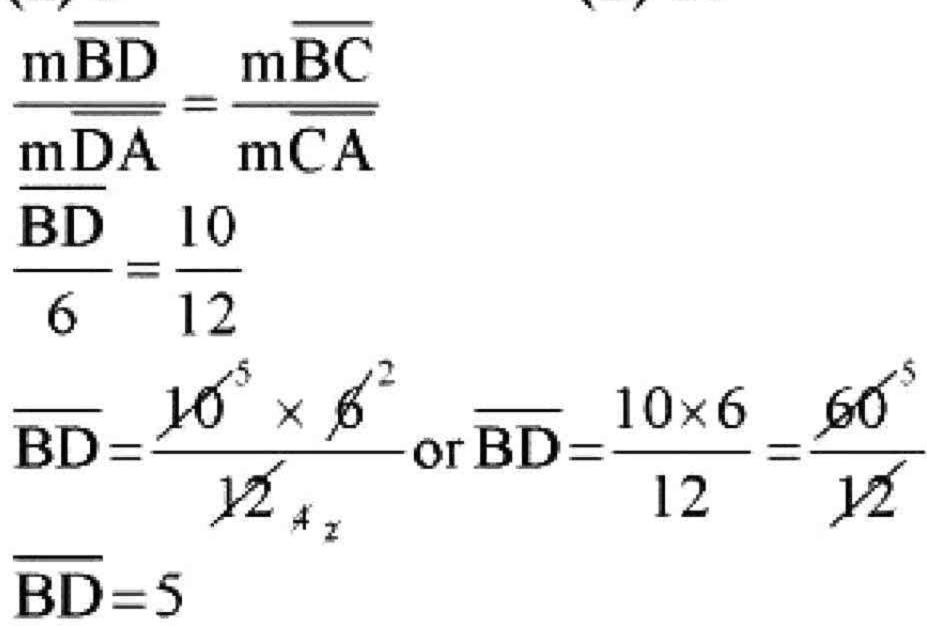
By taking reciprocals

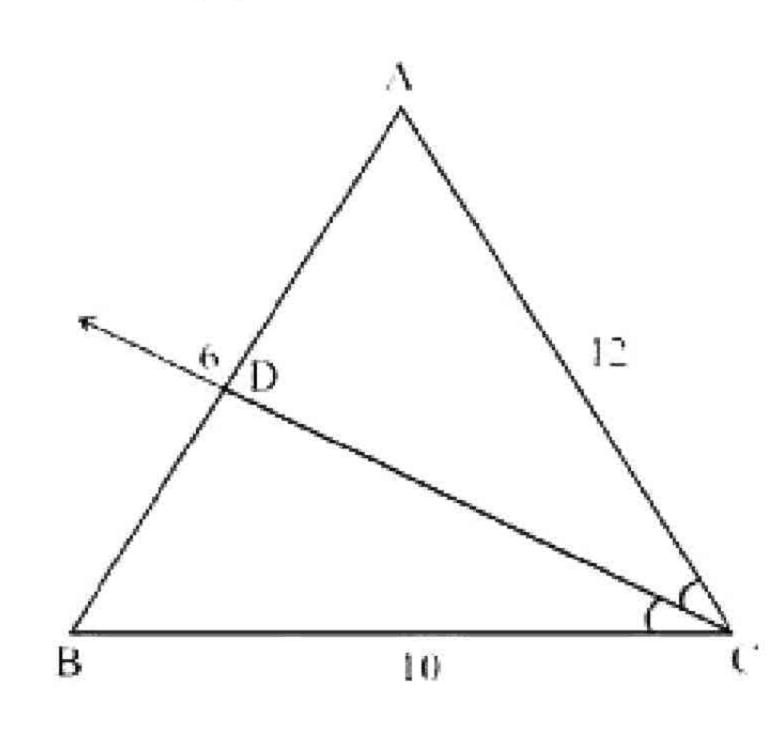
 $A.S.A \cong A.S.A$

 $\overline{AC} \cong \overline{DF}, \overline{BC} \cong \overline{EF}$

Exercise 14.2

In ∆ABC as shown in the figure CD bisects ∠C and meets AB at D.mBD is equal Q.1 to





In $\triangle ABC$ shown in the figure \overrightarrow{CD} bisects $\angle C$. If $\overrightarrow{MAC} = 3$, $\overrightarrow{CB} = 6$ and $\overrightarrow{MAB} = 7$ Q.2 then find mAD and DB

$$\overline{AB} = \overline{AD} + \overline{BD}$$

$$\overline{AD} = \overline{AB} - \overline{BD}$$

$$AD = 7 - x$$

$$\frac{m\overline{AD}}{m\overline{BD}} = \frac{m\overline{AC}}{m\overline{CB}}$$

$$\frac{\mathbf{x}}{7-\mathbf{x}} = \frac{\mathbf{z}^{1}}{\mathbf{z}^{2}}$$

$$\frac{\mathbf{x}}{7-\mathbf{x}} = \frac{1}{2}$$

$$2\mathbf{x} = 7-\mathbf{x}$$

$$7 - x_{2x - 7}^{-2}$$

$$2x + x = 7$$

$$3x = 7$$

$$x = \frac{7}{3} \quad \text{or} \quad \overline{AD} = \frac{7}{3}$$

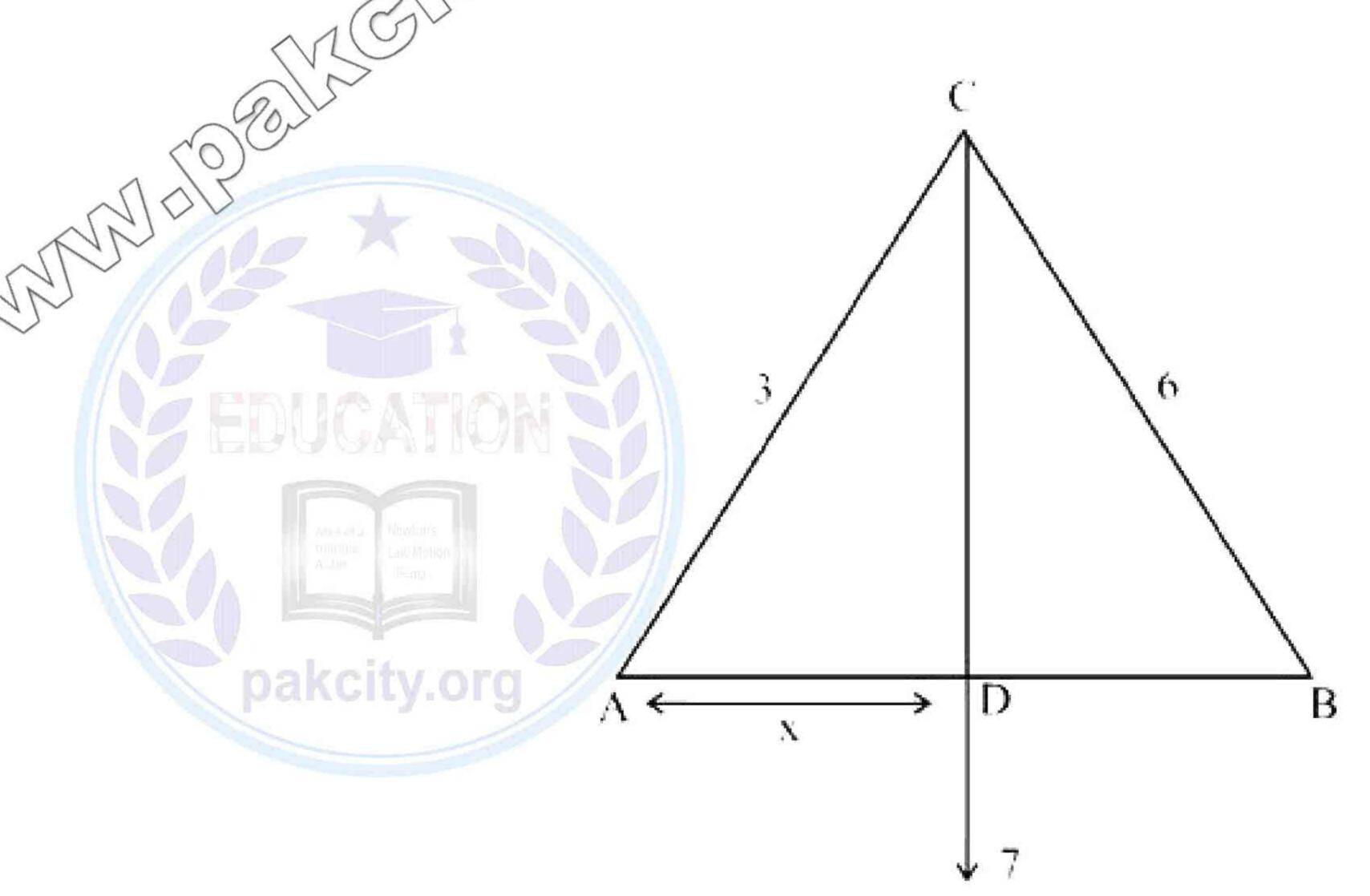
$$AB = AD + BD$$

$$7 = \frac{7}{3} + \overline{BD}$$

$$7 - \frac{7}{3} = \overline{BD}$$

$$\frac{21-7}{3} = \overline{BD}$$

$$\overline{BD} = \frac{14}{3}$$



Q.3 Show that in any corresponding of two triangles if two angles of one triangle are congruent to the corresponding angles of the other, then the triangle are similar

Given

 \triangle ABC and \triangle DEF

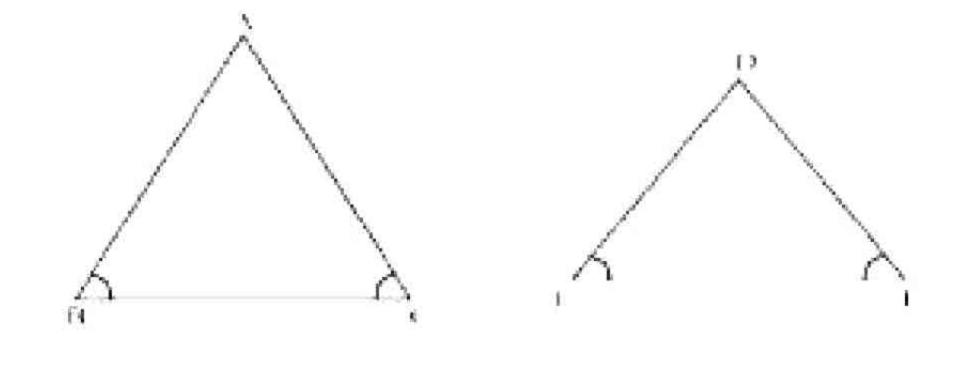
$$\angle \mathbf{B} \cong \angle \mathbf{E}$$

$$\angle C \cong \angle F$$

To Prove

 $\Delta ABC \cong \Delta DEF$

Proof



Statements	Reasons
$\angle \mathbf{A} + \angle \mathbf{B} + \angle \mathbf{C} = 180^{\circ}$	Sume of three angles of a triangle = 180°
$\angle \mathbf{D} + \angle \mathbf{E} + \angle \mathbf{F} = 180$	
$\angle A \cong \angle D$	(2)
$\angle \mathbf{B} = \angle \mathbf{E}$	
$\angle \mathbf{C} = \angle \mathbf{F}$	F(2)
Hence $\Delta ABC \cong \Delta DEF$	150°

Q.4 If line segment \overline{AB} and \overline{CD} are intersecting at point X and $\frac{mAX}{m\overline{XB}} = \frac{mCX}{m\overline{XD}}$ then

show that ΔAXC and ΔBXD are similar

Given

Line segment AB and CD intersect at X

$$\frac{m\overline{AX}}{m\overline{XB}} = \frac{m\overline{CX}}{m\overline{XD}}$$

To Prove

 Δ CXA and Δ DXB are similar

Proof

Statements	Reasons
$\frac{\overline{AX}}{\overline{XB}} = \frac{\overline{CX}}{\overline{XD}}$	Given
$\angle 1 \cong \angle 2$	
$\overline{\mathbf{AC}} \overline{\mathbf{BD}}$	Vertical angles
$\angle \mathbf{A} = \mathbf{m} \angle \mathbf{B}$	
$m\angle C = m\angle D$	Alternate angles
Hence proved the triangle are similar	

Please visite for more data at; www.pakcity.org

Review Exercise 14

Q.1 Which of the following are true which are false?

- (i) Congruent triangles are of same size and shape. (True)
- (ii) Similar triangles are of same shape but different sizes. (True)
- (iii) Symbol used for congruent is '~' (False)
- (iv) Symbol used for similarity is '≅' (False)
- (v) Congruent triangle are similar (True)
- (vi) Similar triangles are congruent (False)
- (vii) A line segment has only one midpoint (True)
- (viii) One and only one line can be drawn through two points (True)
- (ix) Proportion is non equality of two ratio (False)
- (x) Ratio has no unit (True)

Q.2 Define the following

(i) Ratio

The ratio between two a like quantities is defined as $a:b=\frac{a}{b}$ where a and are the elements $a:b=\frac{a}{b}$

the ratio.

(ii) Proportion

Proportion is defined as the equality of two ratio i, e a: b = c: d

(iii) Congruent Triangles

Two triangles are said to be congruent (symbols =) if there emits a corresponding betweet them such that all the corresponding sides and angles are congruent.

(iv) Similar Triangles

If two triangles are similar then the measures of their corresponding sides are proportional.

Q.3 In Δ LMN shown in the figure $\overline{MN}||\overline{PQ}|$

(i) If
$$mLM = 5cm$$
, $mLP = 2.5cm$
 $mLQ = 2.3$ cm then find LN

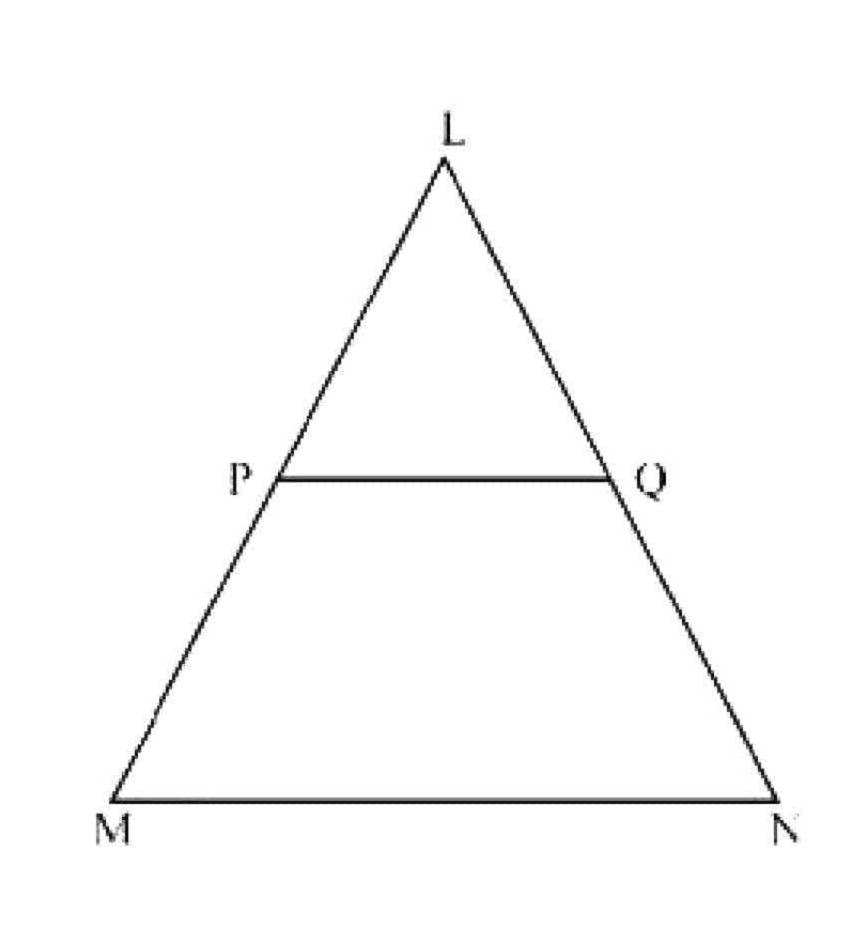
$$\frac{m\overline{LP}}{m\overline{LM}} = \frac{m\overline{LQ}}{m\overline{LN}}$$

$$\frac{2.5}{5} = \frac{2.3}{LN}$$

(2.5)
$$\overline{LN} = 5 \times 2.3$$

$$\frac{\overline{LN} = \frac{11.5}{2.5}$$

$$\overline{LN} = 4.6$$
cm



$$\frac{mLP}{mLM} = \frac{mLQ}{mLN}$$

If mLM = 6cm, mLQ = 2.5cm

mQN = 5cm then find

(ii)

$$\frac{\text{mLM}}{\text{LP}} = \frac{2.5}{\text{LN}}$$

$$\overline{LN} = \overline{LQ} + \overline{QN}$$

$$LN = 2.5 + 5$$

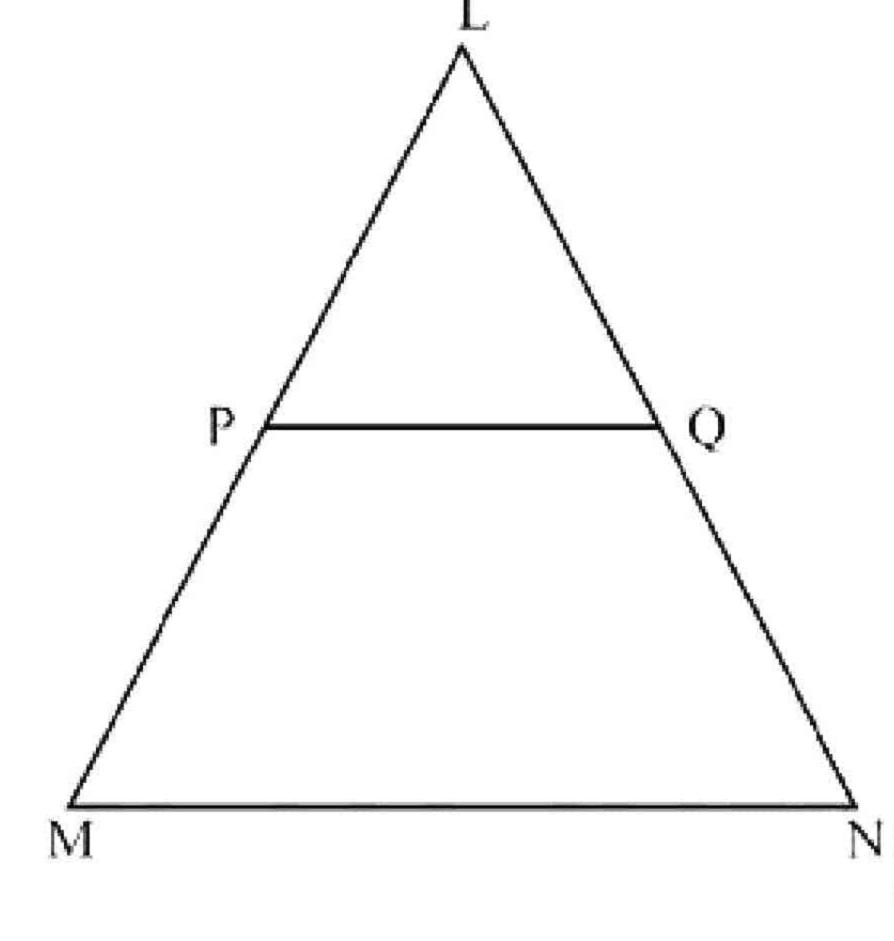
$$LN = 7.5cm$$

$$\frac{\overline{LP}}{6} = \frac{2.5}{7.5}$$

$$\overline{LP} = \frac{2.5 \times 6}{7.5}$$

$$\overline{LP} = \frac{15}{7.5}$$

$$LP = 2cm$$



Q.4 In the show figure let mPA = 8x - 7 mPB = 4x - 3

 $m\overline{BR} = 3x - 1$ find the value of x if $\overline{AB} \parallel \overline{QR}$

$$\frac{mPA}{mAQ} = \frac{mBP}{mBR}$$

$$\frac{8x-7}{5x-3} = \frac{4x-3}{3x-1}$$

By cross multiplying

$$(8x-7)(3x-1)=(4x-3)(5x-3)$$

$$24x^2 - 8x - 21x + 7 = 20x^2 - 12x - 15x + 9$$

$$24x^2 - 29x + 7 = 20x^2 - 27x + 9$$

$$24x^2 - 20x^2 - 29x + 27x + 7 - 9 = 0$$
 pakeity.org

$$4x^2 - 2x - 2 = 0$$

$$4x^2 - 4x + 2x - 2 = 0$$

$$4x(x-1)+2(x-1)=0$$

$$(x-1)(4x+2)=0$$

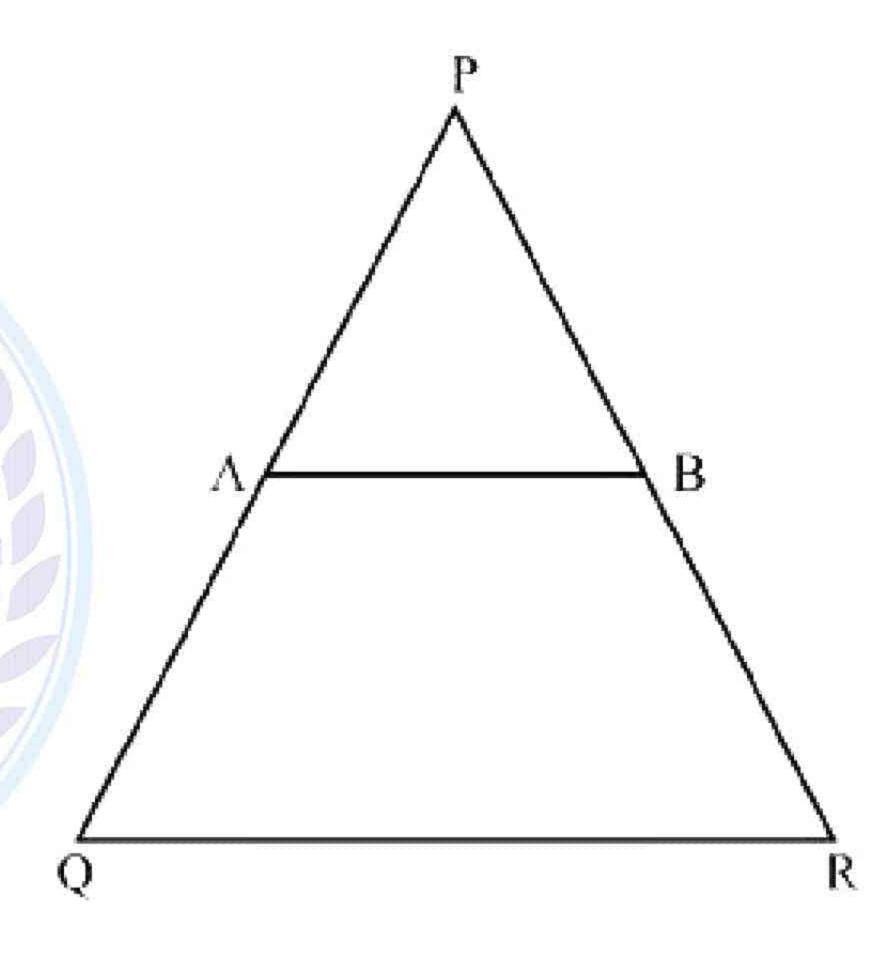
$$x - 1 = 0$$

$$x = 1$$

$$4x + 2 = 0$$

$$4x = -2$$

$$\mathbf{x} = \frac{-\mathbf{Z}^1}{\mathbf{A}_2}$$



$$x = \frac{-1}{2}$$

Length is always taken as positive not negative so value of x = 1

Q.5 In \triangle LMN Shown in figure \overrightarrow{LA} bisects \angle L. If $\overrightarrow{mLN} = 4m \ \overrightarrow{mLM} = 6cm \ \overrightarrow{mMN} = 8$ then find

 $m\overline{MA}$ and $m\overline{AN}$

$$\frac{m\overline{MA}}{m\overline{AN}} = \frac{m\overline{LM}}{m\overline{LN}}$$

$$\overline{MA} = x$$

$$\overline{AN} = 8-x$$

$$\frac{x}{8-x} = \frac{6}{4}$$

$$4x = 6(8-x)$$

$$4x = 48 - 6x$$

$$4x + 6x = 48$$

$$10x = 48$$

$$x = \frac{48}{10}$$

$$x = 4.8cm$$

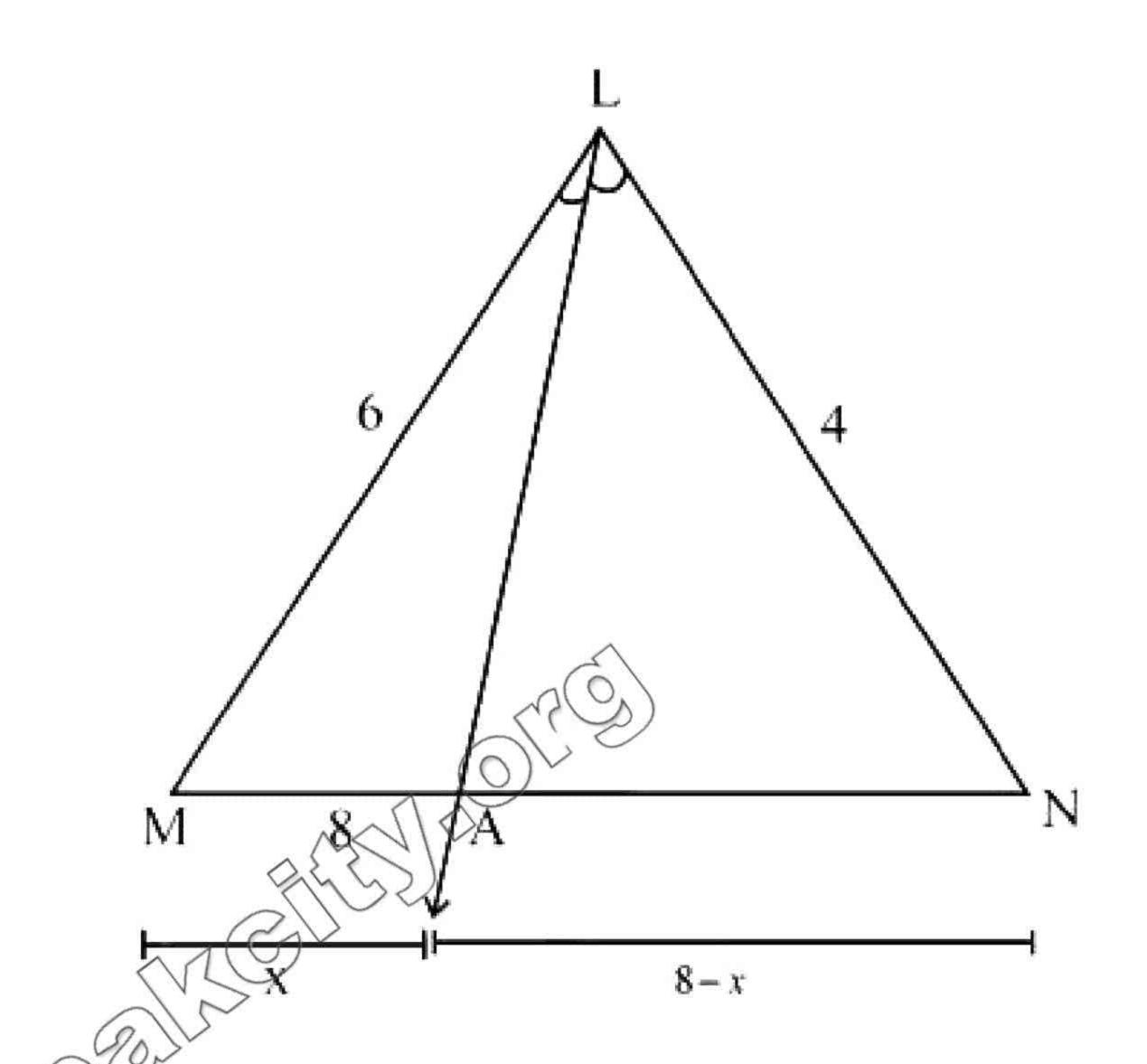
$$m\overline{MA} = 4.8cm$$

$$\overline{MN} = \overline{MA} + \overline{AN}$$

$$8 = 4.8 + \overline{AN}$$

$$8-4.8=\overline{AN}$$

$$\overline{AN} = 3.2cm$$



Q.6 In Isosceles $\triangle PQR$ Shown in the figure, find the value of x and y

As we know that it is isosceles triangle

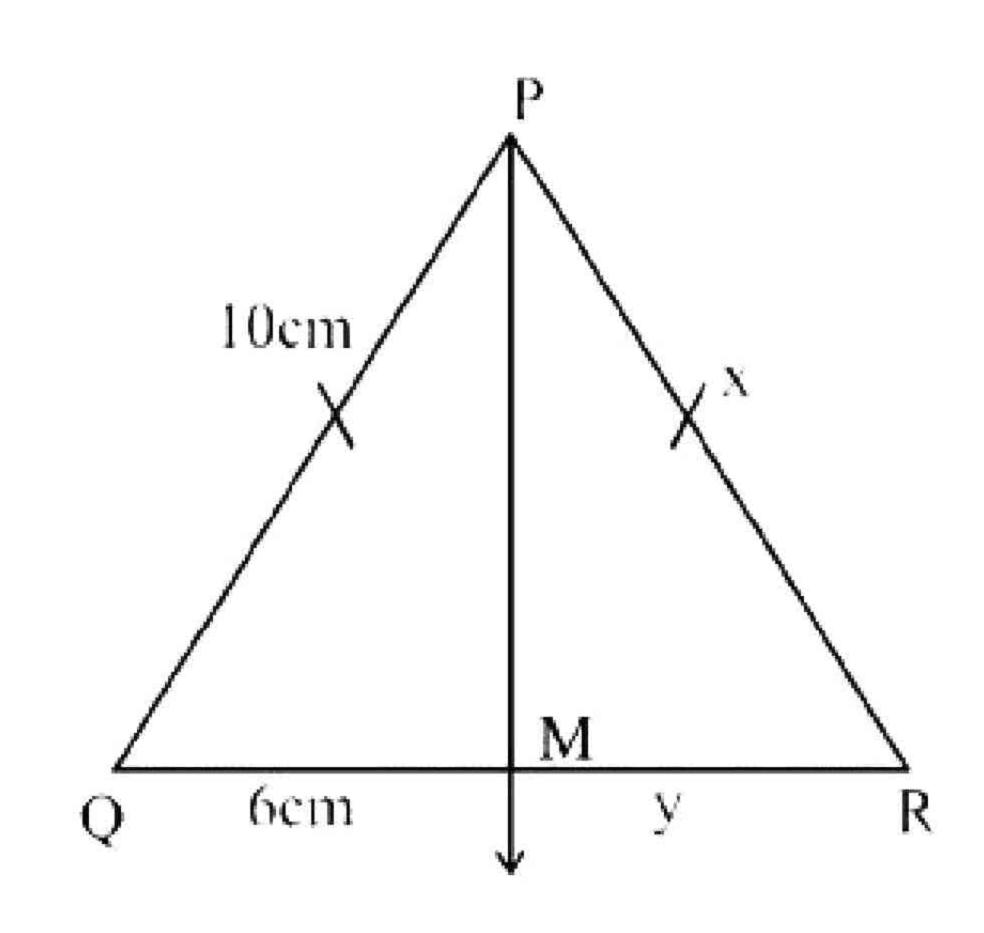
So

$$\overline{PQ} = \overline{RP}$$

$$10 = x$$

Or

$$x = 10$$
cm



 $\overline{PM} \perp \overline{QR}$

So it bisects the side and bisects the angle also

SO $\overline{QM} = \overline{MR}$

6 = y

Or

y = 6cm

Unit 14: Ratio and Proportion

Overview

Theorem 14.1.1

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

Given:

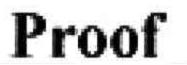
In $\triangle ABC$, the line ℓ is intersecting the sides \overline{AC} and \overline{AB} at points E and D respectively such that $\overline{ED} \parallel \overline{CB}$

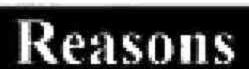
To Prove

 $m\overline{AD}: \overline{DB} = m\overline{AE}: m\overline{EC}$

Construction:

Join B to E and C to D .From D draw $\overline{DM} \perp \overline{AC}$ and from E draw $\overline{EL} \perp \overline{AB}$





In triangles BED and AED, EL is the common perpendicular

$$\therefore \text{Area of} \Delta \text{BED} = \frac{1}{2} \times m\overline{BD} \times m\overline{EL} \dots (i)$$

and Area of
$$\Delta AED = \frac{1}{2} \times m\overline{AD} \times m\overline{EL}$$
....(ii)

Statements

Thus Area of
$$\frac{\Delta BED}{\Delta AED} = \frac{m\overline{DB}}{m\overline{AD}}$$
.....(iii)

Similarly

$$\frac{\text{Area of }\Delta\text{CDE}}{\text{Area of }\Delta\text{ADE}} = \frac{m\overline{EC}}{m\overline{AE}}.....(iv)$$

But $\triangle BED \cong \triangle CDE$

$$\frac{m\overline{DB}}{m\overline{AD}} = \frac{m\overline{EC}}{m\overline{AE}} \text{ or }$$

$$\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EC}}$$
Hence $m\overline{AD}: m\overline{DB} = m\overline{AE}: m\overline{EC}$

Area of a $\Delta = \frac{1}{2}$ (base)(height)

Dividing (i) by (ii)

(Areas of triangles with common base and same altitudes are equal. Given that $\overline{ED}||\overline{CB}|$, so altitudes are equal).

Taking reciprocal of both sides.

Please visit for more data at: www.pakcity.org

Theorem: 14.1.2 Converse of Theorem 14.1.1

If a line segment intersects the two sides of a triangle in the same ratio, then it is parallel to the third side.

Given

In $\triangle ABC$, \overline{ED} intersect \overline{AB} and \overline{AC} such that $m\overline{AD}$: $\overline{DB} = m\overline{AE}$: $m\overline{EC}$

To Prove

 $\overline{ED} \parallel \overline{CB}$

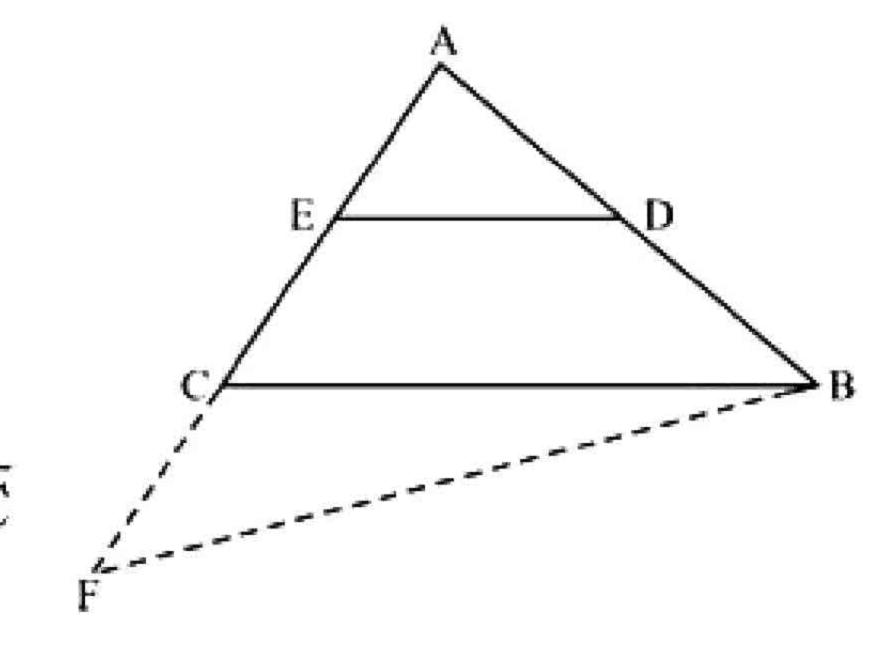
Construction

If $\overline{ED}/\!\!/\overline{CB}$ then draw $\overline{BF}||\overline{DE}|$ to meet \overline{AC}

Produced at F

Proof

Hence $ED \parallel CB$



Statements In $\triangle ABF$ $DE \parallel BF$ mAEmAD $mAD \quad mAE$ ButmECmDBmAE - mAEmEFmECor mEF = mEC, This is possible only if point F is coincident with C. .. Our supposition is wrong

Construction

(A line parallel to one side of a triangle divides the other two sides proportionally Theorem 14.1.1)

Reasons

Given

From (i) and (ii)

(Property of real numbers)

