Exercise 12.1

Q.1 Prove that the centre of a circle is on the right bisectors of each of its chords.

Given

A, B, C are the three non-collinear points.

Required: To find the centre of the circle passing through A,B,C

Construction

Join B to C, A take PQ is right bisector of \overline{AB} and \overline{RS} right bisector of BC, they intersect at O.

Join O to A, O to B, O to C.

.. O is the centre of circle.

Proof

Statements	Reasons
$\overline{OB} \cong \overline{OC}$ (i)	O is the right bisector of \overline{BC}
$\overline{OA} \cong \overline{OB}$ (ii)	O is the right bisector of \overline{AB}
$\overline{OA} = \overline{OB} = \overline{OC}$	From (i) and (ii)
Hence is equidistant from the A,B,C	
$\therefore O$ is center of circle which is required	

Where will the center of a circle passing through three non-collinear points? And Why? Q.2 Given

A.B.C are three non collinear points and circle passing through these points.

To prove

Find the center of the circle passing through vertices A, B and

Construction

- Join B to A and C. (i)
- Take QT right bisector of BC and take also PR right (ii) bisector of AB.

PR and QT intersect at point O. joint O to A,B and C. O is the center of the circle.

pakcity.ord

three villages. Given

Q.3

P,Q,R are three villages not on the same straight line.

To prove

The point equidistant from P,R,Q.

Construction

- (i) Joint Q to P and R.
- (ii) Take \overrightarrow{AB} right bisector of \overrightarrow{PQ} and \overrightarrow{CD} right bisector of \overrightarrow{QR} . \overrightarrow{AB} and \overrightarrow{CD} intersect at O.
- (iii) Join 0 to P, Q, R

 The place of children part at point O.

Proof

Statements	Reasons
$\overline{OQ} \cong \overline{OR}$ (i)	O is on the right bisector of QR
$\overline{OP} \cong \overline{OQ}$ (ii)	O is on the right bisector of \overline{PQ}
$\overline{OP} \cong \overline{OQ} \cong \overline{OR}$ (iii)	From (i) and (ii)
$\therefore O$ is on the bisector of $\angle P$	
Hence \overline{PO} is bisector of $\angle P$	

O is equidistant from P,Q and R

<u>Theorem 12.1.3</u>

The right bisectors of the sides of a triangle are concurrent.

Given

 ΔABC

To prove

The right bisectors of \overline{AB} , \overline{BC} and \overline{CA} are concurrent.

Construction

Draw the right bisectors of AB and BC which meet each other at the point O. Join O to A, B and C.

Statements	Reasons
$\overline{OA} \cong \overline{OB}$ ————————————————————————————————————	(Each point on right bisector of a segment is equidistant from its end points)
$\overline{OB} \cong \overline{OC}$ ————————————————————————————————————	As in (i) from (i) and (ii)
\therefore Point O is on the right bisector of $\overline{CA} \rightarrow (iv)$	(O is equidistant from A and C)
But point O is on the right bisector of \overline{AB} and of \overline{BC} ————— (v)	Construction
Hence the right bisectors of the three sides of triangle are concurrent at O	{from (iv) and (v)}

Please visit for more data at: www.pakcity.org

Theorem 12.1.4

Any point on the bisector of an angle is equidistant from its arms.

Given

A point P is on \overrightarrow{OM} , the bisector of $\angle AOB$

To Prove

 $\overrightarrow{PQ} \cong \overrightarrow{PR}$ i.e P is equidistant from \overrightarrow{OA} and \overrightarrow{OB}

Construction

Draw $\overrightarrow{PR} \perp \overrightarrow{OA}$ and $\overrightarrow{PQ} \perp \overrightarrow{OB}$

Proof

Statements	Reasons
In $\Delta POQ \leftrightarrow \Delta POR$	
$\overline{OP} \cong \overline{OP}$	Common
$\angle PQO \cong \angle PRO$	Construction
$\angle POQ \cong \angle POR$	Given
$\therefore \Delta POQ \cong \Delta POR$	$S.A.A \cong S.A.A$
Hence $\overline{PQ} \cong \overline{PR}$	(Corresponding sides of congruent triangles)

Theorem 12.1.5 (Converse of Theorem 12.1.4)

Any point inside an angle, equidistant from its arms, is on the bisector of it.

Given

Any point P lies inside $\angle AOB$, such that

$$\overline{PQ} \cong \overline{PR}$$
, where $\overline{PQ} \perp \overline{OB}$ and $\overline{PR} \perp \overline{OA}$

To prove

Point P is on the bisector of $\angle AOB$

Construction

Join P to O

Exercise 12.2

Q.1 In a quadrilateral ABCD $\overline{AB} \cong \overline{BC}$ and the right bisectors of $\overline{AD}, \overline{CD}$ meet each other at point N. Prove that \overline{BN} is a bisector of $\angle ABC$

Given

In the quadrilateral ABCD

$$\overline{AB} \cong \overline{BC}$$

 \overline{NM} is right bisector of \overline{CD}

 \overline{PN} is right bisector of \overline{AD}

They meet at N

To prove

 \overline{BN} is the bisector of angle ABC

Construction join N to A,B,C,D

Proof

Proof	IVI
Statements	Reasons
$\overline{ND} \cong \overline{NA}$ (i)	N is an right bisector of \overline{AD}
$\overline{ND} \cong \overline{NC}$ (ii)	N is on right bisector of \overline{DC}
$\overline{NA} = \overline{NC}$ (iii)	from (i) and (ii)
$\Delta BNC \leftrightarrow \Delta ANB$	$\mathcal{C}(\mathcal{S})$
$\overline{NC} = \overline{NA}$	Already proved (from iii) Given
$\overline{AB} \cong \overline{CB}$	Given (Contraction)
$\overline{BN} \cong \overline{BN}$	Common
$\therefore \Delta BNA \cong \Delta BNC$	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
Hence $\angle ABN \cong \angle NBC$	Corresponding angles of congruent triangles
Hence \overline{BN} is the bisector of $\angle ABC_{\bigcirc}$	

Q.2 The bisectors of $\angle A, \angle B$ and $\angle C$ of a quadrilateral ABCP meet each other at point O. Prove that the bisector of $\angle P$ will also pass through the point O.

Given

ABCP is quadrilateral. \overline{AO} , \overline{BO} , \overline{CO} are bisectors of $\angle A$, $\angle B$ and $\angle C$ meet at point O.

To prove

 \overline{PO} is bisector of $\angle P$

Construction:

Join P to O.

Draw $\overline{OQ} \perp \overline{AP}$, $\overline{ON} \perp \overline{PC}$ and $\overline{OL} \perp \overline{AB}$, $\overline{OM} \perp \overline{BC}$

Proof:

I I UUI.	
Statements	Reasons
$\overline{OM} \cong \overline{ON}$ (i)	O is on the bisector of $\angle C$
$\overline{OL} \cong \overline{OM}$ (ii)	O is on the bisector of $\angle B$
$\overline{OL} \cong \overline{OQ}$ (iii)	O is on the bisector of $\angle A$
$\overline{OQ} \cong \overline{ON}$	From i, ii, iii
Point O lines on the bisector of $\angle P$	
$\therefore \overline{OP}$ is the bisector of angle P	

Prove that the right bisector of congruent sides of an isosceles triangle and its altitude Q.3

are concurrent.

Given

 ΔABC

 $AB \cong AC$ due to isosceles triangle PM is right bisector

of AB

QN is right bisector of \overline{AC}

 \overrightarrow{PM} and \overrightarrow{QN} intersect each other at point \overrightarrow{Q}

Required

The altitude of $\triangle ABC$ lies at point \bigcirc

Join A to O and extend it to cut BC at D.

 $\angle BAD \cong \angle CAD$ $\Delta BAD \cong \Delta CAD$

 $\angle ODB \cong \angle ODC$

 $m\angle ODM + m\angle ODC = 180^{\circ}$

 $\therefore \overline{AD} \perp \overline{BC}$

Point 0 lies on altitude AD

Proved from (i)

 $S.A.S \cong S.A.S$

Each angle is 90° (Given)

R

Supplementary angle

Prove that the altitudes of a triangle are concurrent. Q.4

Given

In $\triangle ABC$

AD, BE, CF are its altitudes

i.e $\overline{AD} \perp \overline{BC}$, $\overline{BE} \perp \overline{AC}$, $\overline{CF} \perp \overline{AB}$

Required AD, BE and CF are concurrent

Construction:

Passing through A, B, C take

 $\overline{RQ} || \overline{BC}, \overline{RP} || \overline{AC} \text{ and } \overline{QP} || \overline{AB} \text{ respectively forming a } \Delta PQR$

Statements	Reasons
$\overline{\mathbf{BC}} \overline{\mathbf{AQ}}$	Construction
$\overline{AB} \overline{QC}$	Construction
∴ ABCQ is a gm	aw Motion Earm
Hence $\overline{AQ} = \overline{BC}$ pakci	y.org
Similarly $\overline{AB} = \overline{QC}$	
Hence point A is midpoint RQ	
And $\overline{AD} \perp \overline{BC}$	Given
$\overline{\mathbf{BC}}$	Opposite sides of parallelogram ABCQ
$\overline{AD} \overline{RQ}$	
Thus $\overline{AD} \perp$ is right bisector of \overline{RQ}	
similarly BE is a right bisector of RP and	
CF is right bisector of PQ	
∴ \bot AD, BE, CF are right bisector of sides of $\triangle PQR$	
$\therefore \overline{AD}, \overline{BE} \text{ and } \overline{CF} \text{ are}$	
Concurrent	

Theorem12.1.6

The bisectors of the angles of a triangle are concurrent

Given

 ΔABC

To Prove

The bisector of $\angle A$, $\angle B$, and $\angle C$ are concurrent

Construction:

Draw the bisectors of $\angle B$ and $\angle C$ which intersect at point I. From I, draw

 $\overline{IF} \perp \overline{AB}, \overline{ID} \perp \overline{BC} \text{ and } \overline{IE} \perp \overline{CA}$

Statements	Reasons
$\overline{ID} \cong \overline{IF}$	(Any point on bisector of an angle is equidistance from its arms.
Similarly	
$ID \cong IE$	
∴ IE ≅ IF	Each ≅ ID
So the point I is on the bisector of $\angle A$ (i)	
Also the point I is on the bisectors of $\angle ABC$ and $\angle BCA$ (ii)	Construction
Thus the bisector of $\angle A$, $\angle B$ and $\angle C$ are concurrent at $A = A$	{From (i) and (ii)}

Exercise 12.3

Q.1 Prove that the bisectors of the angles of base of an isosceles triangle intersect each other on its altitude.

Given $\frac{\Delta ABC}{\overline{AB} = \overline{AC}}$ Bisect $\angle B$ and $\angle C$ to intersect at point O Join A to D and extend to BC at D \overline{AD} is the ABCaltitude of $\triangle ABC$ $AD \perp BC$

IIOOI	
Statements	Reasons
In ΔABC	
$\overline{\mathbf{AB}} \cong \overline{\mathbf{AC}}$	Given
$\angle \mathbf{B} \cong \angle \mathbf{C}$	Due to isosceles triangle opposite angle are congruent
$ \frac{1}{2} \text{m} \angle \text{B} = \frac{1}{2} \text{m} \angle \text{C} $	Dividing both side by 2
∠1 ≅ ∠3	
$\Delta ABO \leftrightarrow \Delta ACO$	Action Industries Late Motion Action Empl
AO = AO	
$\overline{AB} = \overline{AC}$	pakcity.org
BO≅CO	Given
$\Delta ABO \cong \Delta ACO$	Due to isosceles triangle
$\Delta ABD \leftrightarrow \Delta ACD$	
$\overline{AD} \cong \overline{AD}$	
∠7 ≅ ∠8	
$\overline{AB} \cong \overline{AC}$	
$\Delta ABD \cong \Delta ACD$	
∠5+∠6 = 180	
$\angle 5 = \angle 6 = 90^{\circ}$	
So AD \(\overline{BC} \)	Supplementary angles
AD Passes from point O	

Prove that the bisectors of two exterior and third interior angle of a triangle are Q.2concurrent

Given

 ΔABC

 $\triangle ABC$ Exterior angles are $\angle ABQ$ and $\angle BAP$ \overrightarrow{AT} and \overrightarrow{BS} intersect each other at point O therefore joints O to C

Draw the angle bisecter of C

 $\angle 1 \cong \angle 2$

Construction

 $\overrightarrow{OM} \perp \overrightarrow{CQ}, \overrightarrow{OL} \perp \overrightarrow{AB}, \overrightarrow{ON} \perp \overrightarrow{CP}$

Proof

Statements	Go S	Reasons
	V- V(2)	

pakcity.org

 $\overline{ON}\!\cong\!\overline{OM}.....(i)$

 $\overline{OL} \cong \overline{OM}$

 $\overline{ON} \cong \overline{OL}$

Hence Angle Bisector of C

i,e $\angle 1 \cong \angle 2$

Comparing equation (i) and (ii)

Please

Review Exercise 12

- Q.1 Which of the following are true and which are false?
- (i) Bisection means to divide into two equal parts (True)
- (ii) Right bisection of line segment means to draw perpendicular which passes through the midpoint of line segment (True)
- (iii) Any point on the right bisector of a line segment is not equidistant from its end points

(False)

- (iv) Any point equidistant from the end points of a line segment is on the right bisector of it
 - (True) (False)

(v) The right bisectors of the sides of a triangle are not concurrent

(Taise)

(vi) The bisectors of the angles of a triangle are concurrent

- (True)
- (vii) Any point on the bisector of an angle is not equidistant from its arms
- (False)
- (viii) Any point inside an angle equidistant from its arms, is on the bisector of it (True)
- Q.2 If CD is right bisector of line segment AB, then

(ii)
$$m\overline{AQ} =$$

Solution

- (i) $m\overline{OA} = m\overline{OB}$
- (ii) $m\overline{AQ} = m\overline{BQ}$

- Q.3 Define the following
- (i) Right Bisector of a Line Segment

A line *l* is called a right bisector of a line segment if *l* is perpendicular to the line segment and passes through its midpoint.

(ii) Bisector of an Angle

A ray BP is called the bisector of $m \angle ABC$, if P is a point in the interior of the angle and $m \angle ABP = m \angle PBC$.

www.pakcity.org

The given triangle ABC is equilateral triangle and AD is bisector of angle A, then find, Q.4 the values of unknown x^{o} , y^{o} and z^{o} .

Solution

In equilateral triangle all side are equal to each and there angle of the triangle equal to 60°. So

$$\angle \mathbf{B} = \mathbf{z}^{o} = 60^{o}$$

AD is the bisector of $\angle A$

$$\angle A = 60^{\circ}$$

:. When angle A is bisected

$$x^{\circ} = y^{\circ}$$

$$x^{\circ} = \frac{1}{2} m \angle A$$

$$=\frac{1}{2}\times60^{\circ}$$

$$x^{\circ} = 30^{\circ}$$

$$y^{\circ} = 30^{\circ}$$
 $(:: x^{\circ} = y^{\circ})$

So
$$x^{0} = y^{0} = 30^{\circ}$$

In the given congruent triangle LMO and LNO find the unknowns x and m given Q.5

$$\Delta$$
LMO $\cong \Delta$ LNO

$$m\overline{LM} = m\overline{LN}$$

$$2x + 6 = 18$$

$$2x = 18 - 6$$

$$2x = 12$$

$$x = \frac{12^{\circ}}{2}$$

$$x = 6$$
 Unit

$$m\overline{\text{MO}} = m\overline{\text{ON}}$$

$$\therefore m = 12 \text{ unit}$$

CD is right bisector of the line segment AB $\mathbf{Q.6}$

If mAB=6cm then find the mAL and mLB (i)

Solution

L is the midpoint of AB

$$\therefore m\overline{AL} = m\overline{LB}$$

$$m\overline{AL} = \frac{1}{2}mAB = \frac{1}{2} \times 6$$

So
$$m\overline{AL} = 3$$
cm

$$m\overline{LB} = 3cm \quad (:. m\overline{AL} = m\overline{LB})$$

(ii) If mBD = 4cm then find mAD

 $m\overline{AD} = m\overline{BD}$ (Any point on the right bisector of a line segment is equidistant from its end points.)

$$m\overline{AD} = 4$$

$$m\overline{AD} = 4cm$$

Unit 12: Line Bisectors and Angle Bisectors

Overview

Right Bisector of a line segment:

Right bisection of a line segment means to draw a perpendicular at the mid-point of line segment.

Bisector of an angle:

Bisection of an angle means to draw a ray to divide the given angle into two equal parts.

Theorem 12.1.1

Statement:

Any point on the right bisector of a line segment is equidistant from its end points.

Given

A line \overrightarrow{LM} intersects the line segment AB at the point C Such that \overrightarrow{LM} \perp \overrightarrow{AB} and $\overrightarrow{AC} \cong \overrightarrow{BC}$. P is a point on \overrightarrow{LM}

$$\overline{PA} \cong \overline{PB}$$

Construction

Join P to the point A and B

Proof

Statements	Reasons
In $\triangle ACP \leftrightarrow \triangle BCP$	Associate Ministralis Triminglia Laktimotion Audits Serger
$\overline{AC} \cong \overline{BC}$	Given
$\angle ACP \cong \angle BCP$	Given $\overline{PC} \perp \overline{AB}$, so that each \angle at $C = 90^{\circ}$
$\overline{PC} \cong \overline{PC}$	Common
$\therefore \Delta ACP \cong \Delta BCP$	S.A.S Postulate
Hence $\overline{PA} \cong \overline{PB}$	(Corresponding sides of congruent triangles)

Theorem 12.1.2

{Converse of Theorem 12.1.1}

Any point equidistant from the end points of a line segment is on the right bisector of it.

Given

 \overline{AB} is a line segment. Point P is such that $\overline{PA} \cong \overline{PB}$

To prove

The point P is the on the right bisector of \overline{AB}

Construction

Join P to C, the midpoint of \overline{AB}

Statements	Reasons
In $\Delta ACP \leftrightarrow \Delta BCP$	
$\overline{PA} \cong \overline{PB}$	Given
$\overline{PC} \cong \overline{PC}$	Common
$\overline{AC} \cong \overline{BC}$	Construction
$\Delta ACP \cong \Delta BCP$	$S.S.S \cong S.S.S$
$\angle ACP \cong \angle BCP$ (i)	Corresponding angles of congruent triangles
But $m \angle ACP + m \angle BCP = 180^{\circ}$ (ii)	Supplementary angles
$\therefore m \angle ACP = m \angle BCP = 90^{\circ}$	From (i) and (ii)
i.e $\overline{PC} \perp \overline{AB}$ (iii)	$m\angle ACP = 90^{\circ} (Proved)$
Also $\overline{CA} \cong \overline{CB}$ (iv)	Construction
\therefore \overline{PC} is a right bisector of \overline{AB}	from (iii) and (iv)
i.e. the point P is on the right bisector of \overline{AB}	(29)

