| Math Sci 9: Test                                                                 | Total No. 40                                                                                           |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Name: Roll No. :                                                                 |                                                                                                        |
|                                                                                  |                                                                                                        |
| Date:20 Teacher's Signature:                                                     |                                                                                                        |
| Q.1: Tick (✓) the correct answer.                                                | سوال نمبر 1۔ درست جواب پر(√) کا نشان لگا <sup>کی</sup> یں۔<br>1۔ نسبت کوعلامتی طور پر ظاہر کیا جاتا ہے |
| The symbol of ratio is:                                                          | 1۔ نسبت کوعلامتی طور برظام رکیا جاتا ہے                                                                |
| = (D)    (C)                                                                     | ∷ (B) : (A)                                                                                            |
| Notation    means:                                                               | 2۔ علامت  کامطلبہ:                                                                                     |
| ہے/C) متوازی ہے/Parallel) متوازی ہے/D) (C) Unequal) برابر                        | (A) مماثل ہے/Congruent پر ایر مجیس ہ                                                                   |
| Ratio hasunit.                                                                   | 3۔ نسبت کی اُکائی ہے:                                                                                  |
|                                                                                  | (A) میٹرفی سیکنڈ / m <sup>-1</sup> کلوگرام ا                                                           |
| In right triangle, there can be right angles:                                    | 4_ قائمة الزاوبيه ثلث مين قائمه ذاويه وسكتے بين:                                                       |
| 3 (D) 2 (C)                                                                      | 1 (B) 4 (A)                                                                                            |
| In a right angled triangle the greatest angle is of:                             | 5۔ قائمہالزاویہ مثلث میں سب سے بڑازاویہ ہوتا ہے:<br>دور میں موجود                                      |
| $60^{\circ}$ (D) $90^{\circ}$ (C)                                                | 45° ( <b>B</b> ) 30° ( <b>A</b> )                                                                      |
| A triangle has types with respect of angels:  Three/تّن (D) Two/ (C)             | کے مثلثوں کی زاویوں کے لحاظ سے اقسام ہیں:<br>(A) یانچ / Five عیار / Aur                                |
| Three/تين (D) (C) (C) (C) (Two/المرابع (D) (The unit of area is:                 | (A) پاقی/B) جار/B) جار/B) جار/B) جار/B) جار/B)                                                         |
| $ms^{-1}$ (D) $m^3$ (C)                                                          | $m^2$ (B) $m$ (A)                                                                                      |
| A triangular is the union of a triangle and its interior: کتے ہیں: کے این        | · '. '. '. '. '. '. '. '. '. '. '. '. '.                                                               |
| V 2 3 / /                                                                        | (A) علاقه/Region) اندرونه/r                                                                            |
| If three altitudes of a triangle are congruent, then triangle is:                |                                                                                                        |
| (C) Equilateral متماوي الكياني فين / D) Right angled مادة الزاويه / Acute angled | (A) مساوى الاضلاع / Isosceles فائمة الزاويه /                                                          |
| Median of a triangle divide it into triangle of equal area: حات                  | 10۔ مثلث کا ہرایک وسطانیا سے برابرر قبے والی مثلثوں میں تفشیم                                          |
| 4 (D) (C)                                                                        | 2 (B) 1 (A)                                                                                            |
| $10 \times 2 = 20$ Write short answers to any ten (10) questions.                | سوال نمبر 2۔ کوئی ہے 10 سوالات کے جوابات تحریر سیجیے۔                                                  |
| What is the importance of knowledge of ratios and proportions?                   | i۔ نسبت تناسب کاعلم کیاا ہمیت رکھتا ہے؟                                                                |
| Write two practicle applications of similar triangles in daily life.             | ii۔ روزمرہ زندگی میں متشابہ ثلثوں کے دومملی استعال کھیے۔                                               |
| What is meant by proportion?                                                     | iii۔ تناسب سے کیامراد ہے؟                                                                              |
| Who was pythagoras and what did he discover?                                     | iv_ فیثاغورٹ کون تھااوراس نے کیادریافت کیا؟                                                            |
| What is meant by converse of theorem?                                            | ۷۔ مسلہ کے تکس سے کیامراد ہے                                                                           |
| Verify that this triangel is right angled: $a = 5cm$ , $b = 12cm$ , $c = 13cm$   | vi تصدیق تیجیے کہ بیہ مثلث قائمۃ الزاویہ ہے:                                                           |
| Write the axiom of congruent trianlge.                                           | vii_ متماثل رقبول کااصول متعارفه کی تعریف کریں۔                                                        |
| When are two triangles considered to be between two parallels?                   | viii_ دومثلثیں کب دومتوازی خطوط کے درمیان مجھی جاتی ہیں؟                                               |
| Define the altitude of triangle.                                                 | ix۔ مثلث کاارتفاع کی تعریف تیجیے۔                                                                      |
| What is meant by concurrent lines?                                               | ریت جیت<br>x_ نقطه اتصال سے کیا مراد ہے؟                                                               |
| Define circumcentre.                                                             | بری مستری می بر در ب<br>xi مثلث کےمحاصرہ مرکز کی تعریف تیجیے۔                                          |
| Define point of concurrency of the lines.                                        | .xii نقطه تثلیث کی تعریف سیجیے۔<br>xii                                                                 |
| $1 \times 10 = 10$ Write answer to any One (1) question.                         | ری معظم بیک ریب جبید<br>نوٹ: کوئی سے ایک سوال کا جواب کھیے۔                                            |
|                                                                                  |                                                                                                        |

**سوال نمبر 3۔** ثابت کریں کہ ایس مثلثیں جن کے قاعد ہے اور ارتفاع برابر ہوں وہ رقبہ میں برابر ہوں گا۔ . Prove that triangles on equal bases and equal altitudes are equal in area موال نمبر 4۔ ثابت کیجیے کہ برابر قاعد وں پرواقع اور برابرارتفاع والی متوازی الاصلاع اشکال رقبہ میں برابر ہوتی ہیں۔

Prove that the parallelograms on equal basis and having the same or equal altitude are equal in area.

#### Q.1 One angle of a parallelogram in 130°. Find the measures of its remaining angles.

In parallelogram

$$m\angle B = 130^{\circ}$$

$$\angle \mathbf{D} = \angle \mathbf{B}$$

(Opposite angles of a parallelogram)

$$m\angle D = m\angle B = 130^{\circ}$$

We know that

$$\angle A + \angle B = 180$$

$$\angle A + 130 = 180$$

(sum of int. ∠s on same side of a parallelogram is 180°)

$$\angle A = 180-130$$

$$\angle A = 50^{\circ}$$

If 
$$\angle D = \angle B$$

Then

$$\angle C = \angle A$$

$$\angle C = 50^{\circ}$$



# Q.2 One exterior angle formed on producing one side of a parallelogram is 40°. Find the measures of its interior angles.

pakcity.org

ABCD is a parallelogram.  $\overline{BA}$  is produced towards A.

$$m\angle DAM = 40^{\circ}$$

$$m\angle DAB = ?$$

$$m\angle D = ?$$

$$m\angle B = ?$$

$$m\angle C = ?$$

$$\angle DAM + \angle DAB = 180^{\circ}$$

$$40^{\circ} + \angle DAB = 180^{\circ}$$

$$\angle DAB = 180^{\circ} - 40^{\circ}$$

$$\angle DAB = 140^{\circ}$$

$$\angle DAB + \angle B = 180^{\circ}$$

$$140^{\circ} + \angle \mathbf{B} = 180^{\circ}$$

$$\angle B = 180^{\circ} - 140^{\circ}$$

$$\angle \mathbf{B} = 40^{\circ}$$

$$\angle D = \angle B = 40^{\circ}$$



130°

$$\angle \mathbf{D} = 40^{\circ}$$

$$\angle C = \angle DAB$$

$$\angle C = 140^{\circ}$$

#### **Theorem 11.1.2**

Statement: If two opposite sides of quadrilateral are congruent and parallel, it is a parallelogram

Given

In quadrilateral ABCD,

$$\overline{AB} \cong \overline{DC} \text{ and } \overline{AB} \parallel \overline{DC}$$

To prove

ABCD is a parallelogram

Construction

Join the point B to D and in the figure name the angles as



| 11001                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statements                                              | Reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| In $\triangle ABD \leftrightarrow \triangle CDB$        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\overline{AB} \cong \overline{DC}$                     | Given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\angle 2\cong \angle 1$                                | Alternate angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\overline{BD} \cong \overline{BD}$                     | Common (Common (Commo) (Common (Common (Common (Common (Common (Common (Common (Commo) |
| $\therefore \Delta ABD \cong \Delta CDB$                | SAS postulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Now $\angle 4 \cong \angle 3 \dots (i)$                 | (Corresponding angles of congruent triangles)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\therefore \overline{AD} \parallel \overline{BC}$ (ii) | from (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| and $\overline{AD} = \overline{BC}$ (iii)               | corresponding of sides of congruent triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Also $\overline{AB} \parallel \overline{DC}$ (iv)       | Given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hence ABCD is a parallelogram                           | From (ii)-(iv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

- Q.1 Prove that a quadrilateral is a parallelogram if its
  - (a) Opposite angles are congruent
  - (b) Diagonals bisects each other
- (a) Given

In quadrilateral ABCD

 $m\angle A = m\angle C, m\angle B = m\angle D$ 

To Prove

ABCD is a parallelogram



| ABCD is a parallelogram                                                  | # #\                 | D   |
|--------------------------------------------------------------------------|----------------------|-----|
| Statements                                                               | Reaso                | ns  |
| $m\angle A = m\angle C(i)$                                               | Given                |     |
| $m\angle B = m\angle D(ii)$                                              | Given                |     |
| $m\angle A + m\angle B + m\angle C + m\angle D = 360^{\circ}$            | Angles of quadrilate | ral |
| $m\angle A + m\angle B = 180^{\circ}$                                    |                      |     |
| $m\angle C + m\angle D = 180^{\circ}$                                    | 200)                 |     |
| $\overline{AD} \parallel \overline{BC}$                                  |                      |     |
| Similarity it can be proved that $\overline{AB} \parallel \overline{DC}$ |                      |     |
| Hence ABCD is a parallelogram                                            |                      |     |

#### (b) Given

In quadrilateral ABCD, diagonals  $\overline{AC}$  and  $\overline{BD}$  bisect each other.

i.e. 
$$\overrightarrow{OA} = \overrightarrow{OC}, \overrightarrow{OB} = \overrightarrow{ODD}$$

To prove ABCD is a parallelogram

| Prooi                                                    | Action of the Maderian State of the Maderian |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statements                                               | Reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| In $\triangle ABO \leftrightarrow \triangle CDO$         | ccity ord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\overline{OA} \cong \overline{OC}$                      | Given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\overline{OB} \cong \overline{OD}$                      | Given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\angle AOB \cong \angle COD$                            | Vertical opposite angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ∴ ∠1≅∠2                                                  | Corresponding angles of congruent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                          | triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\Delta ABO \cong \angle CDO$                            | $S.A.S \cong S.A.S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Hence, $\overline{AB} \parallel \overline{CD} \dots (i)$ | ∠1 ≅ ∠2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| By taking BOC and is ΔAOD it can be prove                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| that                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\overline{AD} \parallel \overline{BC}$ (ii)             | From (i) and (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Hence ABCD is a parallelogram                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Given

Q.2

In quadrilateral ABCD

(i) 
$$\overline{AB} \cong \overline{DC}$$

(ii) 
$$\overline{AD} \cong \overline{BC}$$

To prove

ABCD is a parallelogram i.e.  $AD \parallel BC$ 





| Statements                                  | Reasons                                     |
|---------------------------------------------|---------------------------------------------|
| $\Delta CDB \leftrightarrow \Delta ABD$     |                                             |
| $\overline{AB} \cong \overline{DC}$         | Given                                       |
| $\overline{AD} \cong \overline{BC}$         | Given                                       |
| $\overline{BD} \cong \overline{BD}$         | Common                                      |
| $\Delta ABD \cong \Delta CDB$               | $S.S.S \cong S.S.S$                         |
| Thus, $\angle 1 \cong \angle 2$             | Corresponding angles of congruent triangles |
| ∠4≅∠3                                       | Corresponding angles of congruent triangles |
| (i) $\overline{AD} \parallel \overline{BC}$ | Alternate angles are congruent              |
| $\overline{AB}    \overline{DC}$            | Alternate angles are congruent              |
| : ABCD is a parallelogram                   |                                             |

#### Example

The line segments, joining the mid-points of the sides of a quadrilateral, taken in

pakcity.org

order, form a parallelogram.

Given

A quadrilateral ABCD, in which P is the mid-point of

 $\overline{AB}$  Q is the mid-point of BC R is the mid-point of CD

S is the mid-point of DA

P is joined to Q, Q is joined to R.

R is joined to S and S is joined to P.

To prove

PQRS is a parallelogram.

Construction

Join A to C.





M

| In $\triangle BAC$ ,                         |
|----------------------------------------------|
| $\overline{PQ}$ $\overline{AC}$              |
| $m\overline{PQ} = \frac{1}{2}m\overline{AC}$ |
| $\overline{SR} \parallel \overline{PQ}$      |

$$m\overline{SR} = m\overline{PQ}$$

Thus *PQRS* is a parallelogram

P is the midpoint of AB

Q is the midpoint of  $\overline{BC}$ 

Each 
$$||\overline{AC}||$$
Each  $=\frac{1}{AC}$ 

 $\overline{SR} \parallel \overline{PQ}, m\overline{SR} = m\overline{PQ} \text{ (proved)}$ 

#### **Theorem 11.1.3**

The line segment, joining the midpoint of two sides of triangle, is parallel to the third side and is equal to one half of its length.

#### Given

In  $\triangle ABC$ , the mid-point of AB and  $\overline{AC}$  are L and M respectively

#### To prove

$$\overline{LM} \parallel \overline{BC}$$
 and  $m\overline{LM} = \frac{1}{2}m\overline{BC}$ 

#### Construction

Join M to L and produce ML to N sughthat  $ML \cong LN$ 

Join N to B and in the figure, name the angles  $\angle 1$ ,  $\angle 2$  and  $\angle 3$  as shown.

| Statements                                           | EDITOR Reasons                                |
|------------------------------------------------------|-----------------------------------------------|
| In $\triangle$ BLN $\leftrightarrow$ $\triangle$ ALM | Annual Models                                 |
| $\overline{BL} \cong \overline{AL}$                  | Given Laid Motion lines                       |
| ∠1≅∠2                                                | Vertical angles                               |
| NL≅ML                                                | Construction                                  |
| $\Delta BLN \cong \Delta ALM$                        | S.A.S postulate                               |
| $\therefore \angle A \cong \angle 3(i)$              | (Corresponding angles of congruent triangles) |
| And $\overline{NB} \cong \overline{AM}(ii)$          | (Corresponding sides of congruent triangles)  |
| But $\overline{NB} \parallel \overline{AM}$          | from (i), alternative <s< td=""></s<>         |
| Thus                                                 |                                               |
| $\overline{NB}    \overline{MC} \dots (iii)$         | (M is a point of $\overline{AC}$ )            |

 $\overline{MC} \cong AM \dots (iv)$ 

 $\overline{NB} \cong \overline{MC} \dots (v)$ 

BC MN is a parallelogram

 $\therefore \overline{BC} \parallel \overline{LM} \text{ or } \overline{BC} \parallel \overline{NL}$ 

 $\overline{BC} \cong \overline{NM} \dots (vi)$ 

 $m\overline{LM} = \frac{1}{2}m\overline{NM}$  .....(vii)

Hence, m  $\overline{LM} = \frac{1}{2} m \overline{BC}$ 

Given

from (ii) and (iv)

From (iii) and (v)

(Opposite sides of a parallelogram BCMN)

(Opposite sides of a parallelogram)

Construction.

from (vi) and (vii)



# Q.1 Prove that the line segments joining the midpoint of the opposite side of a quadrilateral bisect each other.

#### Given

ABCD is quadrilaterals point QRSP are the mid point of the sides  $\overline{RP}$  and  $\overline{SQ}$  are joined

they meet at O.

$$\overline{OP} \cong \overline{OR} \quad \overline{OQ} \cong \overline{OS}$$

#### Construction

Join P,Q,R and S in order join C to A or A to C





| Proot                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statements                                                         | Reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <i>SP</i>    <i>AC</i> (i)                                         | In $\Delta ADC$ , S, P are mid point of AD, DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $m\overline{SP} = \frac{1}{2}m\overline{AC}(ii)$                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\overline{AC} \parallel \overline{RQ}(iii)$                       | In $\triangle ABC$ , $R$ are midpoint of $\overline{BC}$ , $\overline{AB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $m\overline{RQ} = \frac{1}{2}\overline{AC}(iv)$                    | CHEEN CONTRACTOR OF THE PARTY O |
| $m\overline{SP} \parallel \overline{RQ}(\mathbf{v})$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and $\overline{RQ} = \overline{SP}(vi)$                            | From (ii) and (iv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Now $\overline{RP}$ and $\overline{QS}$ diagonals of parallelogram | CATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PQRS intersect at O.                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\therefore \ \overline{OP} \cong \overline{OR}$                   | Diagonals of a parallelogram bisects each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\overline{OS} \cong \overline{OQ}$ pak                            | other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# Q.2 Prove that the line segments joining the midpoint of the opposite sides of a rectangle are the right bisectors of each other.

[Hint: Diagonals of a rectangle are congruent] Given

- (i) ABCD is a rectangle
- (ii) P,Q.R.S are the midpoints of  $\overline{AB}$ ,  $\overline{CD}$  and  $\overline{DA}$
- (iii)  $\overline{SQ}$  and  $\overline{RP}$  cut each other at point O

$$\overline{OS} \cong \overline{OQ}$$
 $\overline{OP} \cong \overline{OR}$ 



#### Construction

Join P to Q and Q to R and R to S and S to P Join A to C and B to D

| Proof                                                  |                                                    |
|--------------------------------------------------------|----------------------------------------------------|
| Statements                                             | Reasons                                            |
| Midpoint of $\overline{BC}$ is $Q$                     | Given                                              |
| Midpoint of $\overline{AB}$ is $P$                     | Given                                              |
| $\therefore \overline{AC} \parallel \overline{PQ}$ (i) |                                                    |
| $\frac{1}{2}\overline{AC} = \overline{PQ}(ii)$         |                                                    |
| In ΔADC                                                |                                                    |
| $\overline{AC} \parallel \overline{SR}$ (iii)          |                                                    |
| $\frac{1}{2}\overline{AC} = \overline{SR}(iv)$         |                                                    |
| $\overline{PQ} = \overline{SR}$                        | From equation (i) and (ii) each are parallel to    |
| $\overline{SP} = \overline{RQ}$                        | $\overline{AC}$ each are half of $\overline{DB}$   |
| By joined $B$ to $D$ we can prove                      |                                                    |
| $\overline{RQ} \parallel \overline{SP}$                |                                                    |
| $m\overline{SR} \parallel m\overline{PQ}$              | Each of them $=\frac{1}{2}\overline{AC}$           |
|                                                        | 2                                                  |
| $m\overline{AC} \parallel m\overline{BD}$              |                                                    |
| PQRS is a parallelogram all it sides are equal         |                                                    |
| $OP \cong OR$                                          | DUCATION                                           |
| $OS \cong OQ$                                          | American Mowtains  Tomorphia  Law/Motion  Figure 1 |
| $\Delta OQR \leftrightarrow \Delta OQP$                |                                                    |
| $OR \cong OP$                                          | Proved or g                                        |
| $\overline{OQ} \cong \overline{OQ}$                    | Common                                             |
| $\overline{RQ}\cong \overline{PQ}$                     | Adjacent                                           |
| $\therefore \Delta OQR \cong \Delta OQP$               |                                                    |
| $\angle ROQ \cong \angle POQ$ (vii)                    |                                                    |
| $\angle ROQ + \angle POQ = 180(viii)$                  | Supplementary angle                                |
| $\angle ROQ = \angle POQ = 90^{\circ}$                 | From (vii) and (viii)                              |
| Thus $\overline{PR} \perp \overline{QS}$               |                                                    |

# Q.3 Prove that line segment passing the midpoint of one side and parallel to other side of a triangle also bisects the third side.

#### Given

In  $\triangle ABC$ , R is the midpoint of  $\overline{AB}$ ,  $\overline{RQ} \parallel \overline{BC}$ 

$$\overline{RQ} \parallel \overline{BS}$$

To prove

$$\overline{AQ} = \overline{QC}$$

Construction

$$\overline{QS} || \overline{AB}$$



| Proof                                    |       |                                               |
|------------------------------------------|-------|-----------------------------------------------|
| State                                    | ments | Reasons                                       |
| $\overline{RQ} \parallel \overline{BS}$  |       | Given                                         |
| $\overline{QS} \parallel \overline{BR}$  |       | Construction                                  |
| RBSQ is a                                |       |                                               |
| Parallelogram                            |       | 1 (3/4/52)                                    |
| $\overline{QS} \cong \overline{BR}(i)$   |       | Opposite side                                 |
| $\overline{AR} \cong \overline{RB}(ii)$  |       | Given                                         |
| $\overline{QS} \cong \overline{AR}(iii)$ | Why.  | From (i) and (ii)                             |
| $\angle 1 \cong \angle B$ and            |       | CATION                                        |
| ∠1 ≅ ∠2(iv)                              |       | Mera et al. Mostaris Commis Laiv-Motion E-mai |
| $\Delta ARQ \leftrightarrow \Delta QSC$  |       | city.org                                      |
| ∠2 ≅ ∠1                                  |       | From (iv)                                     |
| $\angle 3 \cong \angle C$                |       |                                               |
| $\overline{AR} \cong SQ$                 |       | From (iii)                                    |
| Hence, $\Delta ARQ \cong \Delta QSC$     |       | $A.A.S \cong A.A.S$                           |
| $\overline{AQ} \cong \overline{QC}$      |       | Corresponding sides                           |

#### Theorem: 11.1.4

Statement: The median of triangle are concurrent and their point of concurrency is the point of trisection of each median.

#### Given $\Delta ABC$

#### To prove

The medians of the  $\triangle ABC$  are concurrent and the point of concurrency is the point of trisection of each median

#### Construction

Draw two medians  $\overline{BE}$  and  $\overline{CF}$  of the  $\Delta ABC$  which intersect each other at point G. Join A to G and produce it to the point H such that  $AG \simeq \overline{GH}$  Join H to the points B and C  $\overline{AH}$  Intersects  $\overline{BC}$  at the point D.





Q.1 The distance of the point of concurrency of the medians of a triangle from its vertices are respectively 1.2 cm. 1.4 cm and 1.6 cm. Find the length of its medians.

Let  $\triangle ABC$  with the point of concurrency of medians at G

$$\overline{AG}$$
=1.2cm,  $\overline{BG}$ =1.4cm and  $\overline{CG}$ =1.6cm

$$\overline{AP} = \frac{3}{2}\overline{AG} = \frac{3}{2} \times 1.2 = 1.8cm$$

$$\overline{BQ} = \frac{3}{2}\overline{BG} = \frac{3}{2} \times 1.4 = 2.1cm$$

$$\overline{CR} = \frac{3}{2}\overline{CG} = \frac{3}{2} \times 1.6 = 2.4cm$$



Prove that the point of concurrency of the medians of a triangle and the triangle which is made by joining the midpoint of its sides to the same.

Given In  $\triangle ABC$ , AQ, CP, BR are medians which meet at G. Q.2



To prove

G is the point of concurrency of the medians of  $\Delta ABC$  and  $\Delta PQR$ 

 $\Delta ABC$ 

| Proof                                                              | Area er a Mowlan's trouvelle Law Motion             |                                                        |
|--------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|
|                                                                    | Statements (a)                                      | Reasons                                                |
| $\overline{PR} \parallel \overline{BC}$                            | pakcity.org                                         | P, R are midpoint of $\overline{AB}$ , $\overline{AC}$ |
| $\overline{BQ} \parallel \overline{PR}$                            |                                                     |                                                        |
| Similarly $\overline{QR} \parallel \overline{BP}$                  |                                                     |                                                        |
| ∴PBQR is a parallelogra                                            | am it diagonals $\overline{BR}$ and $\overline{PQ}$ |                                                        |
| bisector each other at T                                           |                                                     |                                                        |
| Similarly $U$ is the midpo                                         | oint of $QR$ and $S$ is midpoint of $\overline{PR}$ |                                                        |
| $\therefore \overline{PU}, \overline{QS}, \overline{RT}$ are media | $ans of \Delta PQR$                                 |                                                        |
| (i) $\overline{AQ}$ and $\overline{SQ}$ pass through               | $\operatorname{igh} G$                              |                                                        |
| (ii) $\overline{BR}$ and $\overline{TR}$ pass through              | $\operatorname{ugh} G$                              |                                                        |
| (iii) $\overline{UP}$ and $\overline{CP}$ pass thro                | $\operatorname{ugh} G$                              |                                                        |
| Hence $G$ is point of conc                                         | currency of medians of $\Delta PQR$ and             |                                                        |

#### Example

A line, through the mid-point of one side, parallel to another side of a triangle, bisects the third side.

#### Given

In  $\triangle ABC$ , D is the mid-point of AB.

 $\overline{DE} \parallel \overline{BC}$  which cuts  $\overline{AC}$  at E.

#### To prove

$$\overline{AE} \cong \overline{BC}$$

#### Construction

Through A, draw  $LM \parallel BC$ .

#### Proof

| 11001                                     |                                                                                                                    |                                                                             |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
|                                           | Statements                                                                                                         | Reasons                                                                     |  |
| Intercepts cut                            | t by $\overrightarrow{LM}$ , $\overrightarrow{DE}$ , $\overrightarrow{BC}$ on $\overrightarrow{AC}$ are congruent. | Intercepts cut by parallels $\overrightarrow{LM}$ , $\overrightarrow{DE}$ . |  |
| i.e., $\overline{AE} \cong \overline{EC}$ |                                                                                                                    | $\overline{BC}$ on $\overline{AB}$ are congruent (given)                    |  |
| A A                                       |                                                                                                                    |                                                                             |  |
| Q.                                        |                                                                                                                    |                                                                             |  |
| <u>Theorem 11.1.5</u>                     |                                                                                                                    |                                                                             |  |
| Statement:                                | In three or more parallel lines make of                                                                            | congruent segments on a traversal they als                                  |  |
| $\mathcal{L}_{\mathcal{A}}$               |                                                                                                                    |                                                                             |  |

#### **Theorem 11.1.5**

Statement: intercept congruent segments on any other line that cuts them.

#### Given

$$\overrightarrow{AB} \parallel \overrightarrow{CD} \parallel \overrightarrow{EF}$$

transversal intersects

 $\overrightarrow{AB}$ ,  $\overrightarrow{CD}$  and  $\overrightarrow{EF}$  at the points M, N

respectively, such that

 $MN \cong NP$ . The transversal QY

intersects them at point R, S and Trespectively.

#### Prove

$$RS \cong ST$$

#### Construction

From R, draw  $RU \parallel LX$ , which meets CD at U, from S draw  $SV \parallel LX$  which meets EF at V. as shown in the figure let the angles be labeled as  $\angle 1$ ,  $\angle 2$ ,  $\angle 3$  and  $\angle 4$ .

| Statements                                        | Reasons                                                                                  |
|---------------------------------------------------|------------------------------------------------------------------------------------------|
| MNUR is parallelogram                             | $\overline{RU}    \overline{LX}$ (Construction) $\overline{AB}    \overline{CO}$ (given) |
| $\therefore \overline{MN} \cong \overline{RU}(i)$ | (Opposite side of parallelogram).                                                        |
| Similarly.                                        |                                                                                          |
| $\overline{NP} \cong \overline{SV}(ii)$           |                                                                                          |
| But $\overline{MN} \cong \overline{NP}(iii)$      | Given                                                                                    |
| $\therefore \overline{RU} \cong \overline{SV}$    | {from (i) (ii) and (iii)} each is $  \overline{LX} $ (construction)                      |

Also  $\overline{RU} \parallel \overline{SV}$   $\therefore \angle 1 \cong \angle 2$  Corresponding angles

and  $\angle 3 \cong \angle 4$  Corresponding angles

In  $\Delta RUS \leftrightarrow \Delta SVT$   $\overline{RU} \cong \overline{SV}$  Proved  $\angle 1 \cong \angle 2$  Proved

Hence  $\overline{RS} \cong \overline{ST}$  (Corresponding sides of congruent triangles)



#### Q.1 In the given figure

 $\overrightarrow{AX} \parallel \overrightarrow{BY} \parallel \overrightarrow{CZ} \parallel \overrightarrow{DU} \parallel \overrightarrow{EV}$  and  $\overrightarrow{AB} = \overrightarrow{BC} = \overrightarrow{CD} = \overrightarrow{DE}$ If  $\overrightarrow{MN} = 1cm$  then find the length of  $\overrightarrow{LN}$  and  $\overrightarrow{LQ}$ 

$$\therefore \overline{PQ} \cong \overline{NP} \cong \overline{MN} \cong \overline{LM}$$

$$MN = 1cm$$

#### Given

$$\overline{AP} \cong \overline{PQ} \cong \overline{QR} \cong \overline{RS} \cong \overline{ST}$$

Therefore,  $\overline{LN} = \overline{LM} + \overline{MN}$ 

$$\overline{LM} = \overline{MN}$$

so, 
$$LN = MN + MN$$

$$\overline{LN} = 1 + 1$$

$$LN = 2cm$$

$$\overline{LM} = \overline{NP} = \overline{PQ} = \overline{MN} = 1cm$$

$$So, \overline{LM} = 1cm, \overline{NP} = 1cm, \overline{PQ} = 1cm$$

$$LQ = \overline{LM} + \overline{MN} + \overline{NP} + \overline{PQ}$$

$$LQ = 1 + 1 + 1 + 1$$

$$LO = 4cm$$



Q.2 Take a line segment of length 5.50m and divide it into five congruent parts

Hint: draw an acute angle  $\angle B$  AX. On

$$\overline{AX}$$
 take  $\overline{AP} \cong \overline{PQ} \cong \overline{RS} \cong \overline{SD}$  join  $T$  to  $B$  draw

lines parallel to  $\overline{TB}$  from the point P,Q R and S. Proof

#### Construction:

- (i) Take a line segment AB = 5.5cm
- (ii) Draw any acute angle  $\angle BAX$
- (iii) Draw arcs on  $\overrightarrow{AX}$  which are  $\overrightarrow{AP} \cong \overrightarrow{PQ} \cong \overrightarrow{QR} \cong \overrightarrow{RS} \cong \overrightarrow{ST}$
- (iv) Join T to B
- (v) Draw lines  $\overline{SF}$ ,  $\overline{RE}$ ,  $\overline{QD}$ , &  $\overline{PC}$  Parallel to  $\overline{TB}$ .

Result line segment  $\overline{AB}$  is divided into congruent line segments  $\overline{AC} \cong \overline{CD} \cong \overline{DE} \cong \overline{EF} \cong \overline{FB}$ .



# lease visit for more data at: www.pakcity.org

# Review Exercise 11

#### Q.1 Fill in the blanks

- (i) In a parallelogram opposite side are ......
- Ans: Congruent
- (ii) In a parallelogram opposite angles are .......
- Ans: Congruent
- (iii) Diagonals of a parallelogram ..... each other at a point.
- Ans: Bisects
- (iv) Medians of a triangle are ......
- Ans: Concurrent
- (v) Diagonals of a parallelogram divide the parallelogram into two ...... Triangles
- Ans: Congruent

#### Q.2 In parallelogram ABCD

- (i) mAB = .....
- Ans:  $m\overline{AB} = m\overline{DC}$
- (ii) mBC.....
- **Ans:**  $m\overline{BC} = m\overline{AD}$
- (iii) *m*∠1≅......
- Ans:  $m\angle 1 = m\angle 3$
- (iv)  $m\angle 2 = .....$
- Ans:  $m\angle 2 = m\angle 4$



#### Q.3 Find the unknown in the figure given

Solution

$$n^{\circ} = 75$$

$$y^{\circ} = n^{\circ}$$

Substituting the value of  $n^{\circ}$ 

$$y^{\circ} = 75^{\circ}$$

$$x^{\circ} + 75 = 180$$
 Adjacent and supplementary

$$x^{\circ} = 180 - 75$$

$$x^{\circ} = 105^{\circ}$$

$$m^{\circ} = x^{\circ}$$

$$m^{\circ} = 105^{\circ}$$



#### Q.4 If the given figure ABCD is a parallelogram then find x, m

$$11x^{\circ} = 55^{\circ}$$

$$x^{\circ} = \frac{55^{\circ}}{11}$$

$$x^{\circ} = 5^{\circ}$$

$$\angle A + \angle B = 180^{\circ}$$

$$\angle B = 180^{\circ} - \angle A$$

$$\angle B = 180^{\circ} - 55 = 125^{\circ}$$



$$\angle B = 130^{\circ}$$

$$\angle D + \angle C = 180^{\circ}$$

$$5m + 10^{\circ} + 55^{\circ} = 180^{\circ}$$

$$5m + 65^{\circ} = 180^{\circ}$$

$$5m = 180^{\circ} - 65^{\circ}$$

$$5m = 115^{\circ}$$

$$m = \frac{115^{\circ}}{5^{\circ}}$$

$$m = 23^{\circ}$$

#### Q.5 The given figure $\angle MNP$ is a parallelogram finds the value of m, n

$$4m + n = 10.....(i)$$

In parallelogram opposite sides are congruent  $8m - 4n = 8 \dots$  (ii)

Multiply 4 with equation

$$4(4m + n) = 4 \times 10$$

$$16m + 4n = 40...$$
 (iii)

Adding equation (ii) and (iv)

$$8m-4n=8$$

$$16m + 4n = 40$$

$$24m = 48$$

$$m = \frac{48}{24}$$

$$m=2$$

Putting the value of m in equation (i) 4(2) + n = 10

$$8 + n = 10$$

$$n = 10 - 8$$

$$n = 2$$

# Q.6 In the equation 5, sum of the opposite angles of the parallelogram in 110°

$$\angle$$
L +  $\angle$ M = 180

$$55^{\circ}+\angle M=180^{\circ}$$

$$\angle M=180^{\circ}-55^{\circ}$$

$$\angle M = 125^{\circ}$$



 $\angle P = \angle M$  opposite angles are congruent in parallelogram

 $\angle P = 125^{\circ}$ 



### Unit 11: Parallelograms and Triangles

## Overview

#### Parallelogram:

If two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram.

#### Medians

A line segment joining a vertex of a triangle to the mid-point of the opposite side is called median of the triangle.

#### **Trisection**

The process to divide a line segment into three equal parts.

#### <u>Theorem 11.11</u>

In a parallelograms

- (i) Opposite sides are congruent
- (ii) Opposite angles are congruent
- (iii)The diagonals bisect each other

Given

In a quadrilateral  $\overrightarrow{ABCD}$ ,  $\overrightarrow{AB} \parallel \overrightarrow{DC}$ ,  $\overrightarrow{BC} \parallel \overrightarrow{AD}$  and the diagonals  $\overrightarrow{AC}$ ,  $\overrightarrow{BD}$  meet each other at point O.

#### To Prove

- (i)  $\overline{AB} \cong \overline{DC}, \overline{AD} \cong \overline{BC}$
- (ii)  $\angle ADC \cong \angle ABC$ ,  $\angle BAD \cong \angle BCD$
- (iii)  $\overline{OA} \cong \overline{OC}, \ \overline{OB} \cong \overline{OD}$

Construction

In the figure as shown, we label the angles as  $\angle 1$ ,  $\angle 2$ ,  $\angle 3$ ,  $\angle 4$ ,  $\angle 5$  and  $\angle 6$ .

pakcity.org



| $\angle 2 \cong \angle 3$ (b)                                  |  |
|----------------------------------------------------------------|--|
| $\therefore m \angle 1 + m \angle 2 = m \angle 4 + m \angle 3$ |  |
| or $m\angle ADC = m\angle ABC$                                 |  |
| or $\angle ADC \cong \angle ABC$                               |  |
| and $\angle BAD \cong m \angle BCD$                            |  |
| (iii) In ΔBOC ↔ΔDOA                                            |  |

$$BC \cong AD$$

$$\angle 3\cong \angle 2$$

$$\therefore \Delta BOC \cong \Delta DOA$$

Hence 
$$\overline{OC} \cong \overline{OA}$$
 ,  $\overline{OB} \cong \overline{OD}$ 

Proved From (a) and (b)

Proved in (i)

Proved in (i)

Vertical angles

Proved

$$(A,A,S \cong A,A,S)$$

(Corresponding sides of congruent triangles)

#### Example

The bisectors of two angles on the same side of a parallelogram cut each other at right  $\geq$ 

angles.

#### Given

A parallelogram ABCD, in which

$$\overline{AB} \parallel \overline{DC}, \overline{AD} \parallel \overline{BC}$$

The bisectors of EA and EB cut each other at E.

To Prove

#### Construction:

Name the angles  $\angle 1$  and  $\angle 2$  as shown in the figure.

