12th Computer Science Notes www.pakcity.org

L T T T T T T T T T T T e e T T T T e A T

IL
i

e Chapter 13 : Functions in C

13.1 Overview

Q ; 13-01-01 : Describe Unstructured and Structured Programming ?
Define Function and differentiate between Unstructured and Structured Programming
?

Answer :

Overview : The 1dea of modular programming is the result of inspiration from the
hardware manufacturing where replicable components of different items are available.
If a component of an item gets out of order, 1t 1s replaced with a newer one. Many
different components from different manufacturers can be combined together to form
a hardware device such as computers, cars, and washing machines.

Functions : Functions are the building blocks of C programs. They encapsulate pieces
of code to perform specific operations. Functions allow us to accomplish the similar
kinds of tasks over and over again without being forced to keep adding the same code
into the program. Functions pertorm tasks that may need\o be repeated many times.
Unstructured Programming : When the whole proglf 1Vlogic is contained in a single
main function, the style of writing programs 1s kx %\Mﬂ as unstructured programming.
Structured Programming : It is a modular %@y f writing programs. The whole
program logic 1s divided into number of er modules or functions. The main
function calls these functions where tjaey}\ﬁre needed. A function is a self-contained
piece of code with a specific purp(a\é@"
Difference between Unstru t d and Structured Programming : In Unstructured
Programming, the entire of the program 1s implemented 1n a single module
(function), which caus@&i\g}[c)rogram error prone, difficult to understand, modity and
debug. Whereas in Structured Programming, the entire logic of the program 1s divided
into number of smaller modules, where each module (piece of code) implements a
different functionality.

13.2 Importance of Functions
Q : 13-02-01 Describe Importance / Benefits of Use of Functions ?

Answer :
Importance of Functions : A program may have repetition of a piece of code at
various places. Without the ability to package a block of code into a single function,
programs would end up being much larger. But the real reason to have functions is to
break up a program into easily manageable chunks.
Benefits of Functions : The use of functions provides several benefits :
Easier to Understand : They make programs significantly easier to understand
and maintain. The main program can consist of a series of function calls rather
than countless lines of code.
Reusability of Code : Functions increase reusability of the code. Well written

O T T e T T T T T T T e e e
wr T A T T I T T T T T T T T e T T T T T e e e i om

AT e e i e M T e e i T f g e

Please visit for more data at: www.pakcity.org

12th Computer Science Notes

www.pakcity.org

=H L e T T T T T T e T T T Y e T T T T T T T e

O T T e T T T T T T T e e e

functions may be reused 1in multiple programs. The C standard library 1s an
example of the reuse of functions.

Parallel Development of The Software : Different programmers working on
one large project can divide the workload by writing different functions, hence
ensuring the parallel development of the software.

Repeated Execution : Functions can be executed as many times as necessary
from different places in the program.

Easy Debugging : When an error arises, rather than examining the whole
program, the infected function 1s debugged only.

13.3 Types of Functions

Q : 13-03-01 Explain the TWO Types of Functions ?

Answer :
Types of Functions : There are two types of functions in C :

Built-In Functions : Built-in functions are predefined functions that provide us

convenient ways to perform variety of tasks. These functions are packaged in
libraries. Through these functions we can easily access complex programming
functionality. We should not re-invent the whegl qul that we need to do 1s just
making a function call and the rest of the tasl€§~3 performed by the called
function. Some of the built-in functlons,g\exgo stdio library and some of the
functions defined 1n it, printf and Scaiﬁé\%lch are defined 1n the library of

standard 1nput / output, smnlarl}i\ ave getch and getche functions which are

defined 1n the library of congs e”ifnput / output.

Important Note : T\@ﬁise a Built-In Function in C, we need to include the

header file deﬁmm§ the function. To use printf() and scanf(), we have to
include stdm\h file in our program.
User-Defined F\unctlons Built-In Functions are not sufficient for solving
every kind of problem. A programmer may need to write own functions
depending on the nature of problem being solved. Such functions are called
user-defined functions.

13.4 Writing Functions In C

Q ; 13-04-01 Explain the procedure of writing a Function in C ?

Answer : épakcworg%

Writing Functions In C : Every function in C has almost the same basic structure as
that of the main() function. A function 1in C consists of a function header which
1dentifies the function followed by the body of the function between curly braces
containing the executable code for the function. Every function in C 1s written
according to the following general form :
returen_type FunctionName (parameter_list) // number, order and types of
parameters

{

Executable Statement (S) ;

I T e e T e T T T e T T e T T T T T e e e e

Please visit for more data at: www.pakcity.org

wr T A T T I T T T T T T T T e T T T T T e e e i om

12th Computer Science Notes www.pakcity.org

L T T T T T T T T T T T e e T T T T e A T

IL
i

return expression ;

}

Function Header : The first line of function definition 1s called the function header
1.e.

return_type FunctionName (parameter_list)
It consists of three parts : The type of the return value, the name of the function and
the parameters of the function enclosed in parentheses.
The Return Type : The return_type can be any valid data type. If the function does
not return a value, the return type 1s specified by the keyword void. A function that has
no parameter specifies the keyword void as its parameter list. Hence, a function that
has no parameter and does not return any value to the calling function, will have the
header :

voild FunctionName (void)
However the keyword void is optional. The above function header for a function that
has no argument can be re-written as follows :

vold FunctionName ()
The Function Body : Variables declaration and the program logic are implemented in
the function body. Function body makes use of the arguments passed to the function.
It 1s enclosed in curly braces. A function can be calledm\;he body of another function.
The return Statement : The return statement 1s usé@\to specify the value retuned by a

function. BN \<>
The general form of return statement is : @\9
return [expression] ; Y

When the return statement 1s execufs ‘d expresswn 1s evaluated and returned as the
value of the function. Execution Dﬁ\;%e function stops when the return statement 1s
executed, even 1f there are oﬂ\l\ef statements still remaining in the function body. If the
type of the return value hfl\s\Eeen specified as void in the function header then there 1s
no need to use a return statement.

13.5 Function Prototype
Q : 13-05-01 Explain the Function Prototype in C ?

Answer :
Writing Functions In C : The compiler must know functions used in the program.
That’s why we include corresponding header files in the source program before using
built-in functions such as stdio.h and conio.h etc. A header file contains the prototypes
of the functions provided by the library. The compiler actually needs enough
information to be able to identify the function that we are using. A function prototype
1s a statement that provides the basic information that the compiler needs to check and
use a function correctly. It specifies the parameters to be passed to the function, the
function name, and the type of the return value. The general form of the function
prototype 1s as follows :

Return_type FunctionName (parameter_list) ;

O T T e T T T T T T T e e e
wr T A T T I T T T T T T T T e T T T T T e e e i om

O T T e T T T T T T T e T A e T T e EE e g

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

L T T T T T T T T T T T e e T T T T e A T

IL
i

The prototype for a function which i1s called from another function must appear before
the function call statement. Functions prototypes are usually placed at the beginning of
the source file just before the function header of the main function.

Important Note : Function Prototype looks like Function Header but with a Semi
Colon (;) at the end.

13.6 Calling A Function

Q ; 13-06-01 : Explain the Function Call in C ?

Answer :

Function Call In C : Function call 1s a mechanism that is used to invoke a function to
perform a specific task. A function call can be invoked at any point in the program. In
C the function name, the arguments required and the statement terminator (;) are
specified to invoke a function call.

When function call statement 1s executed, 1t transfers control to the function that 1s
called. The memory 1s allocated to variables declared in the function and then the
statements in the function body are executed. After the last statement in the function 1s
executed, control returns to the calling function.

13.7 Local Variables And Their Scope ';)\ >

Q : 13-07-01 Explain L /]
Memory Allocation / De-allocation an% Scope of a Local Variable w1th an
example program ? >

Answer : § S\

Local Variables And Thblr Scope InC:
Life Time of The Variable : When the program executes, all variables are
created in memory for a limited period. They come 1nto existence from the
place where they are declared and then they are destroyed. The duration in
which a variable exists in memory 1s called life time of the variable.
Memory Allocation / De-allocation : Operating System (Memory Management
Module) manages the allocation (reserve space in RAM) and de-allocation (free
space in RAM) of memory for all variables in our program. Destroying a
variable means returning the memory allocated to a variable back to the
operating system for other programs. The value stored 1n such a variable 1s lost
for ever.
The Scope of a Variable : The scope of a variable refers to the region of a
program 1n which it 1s accessible. The name of a variable 1s only valid within its
scope. So a variable can not be referred outside its scope. Any attempt to do so
will cause a compiler error.
Local Variables : All variables declared within a block (within the extent of a
pair of curly braces) are called local variables and have local scope. The scope
of a local variable 1s from the point in the program where it 1s declared until the
end of the block containing its declaration.
Example :

O T T e T T T T T T T e e e
wr T A T T I T T T T T T T T e T T T T T e e e i om

I T e e T e T T T e T T e T T T T T e e e e

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

=H T T T T T T T T T e T e T ey

#include<stdio.h>
void main (void)

{
int nCount =0 ;
1f (nCount == 0)
{
int chk ;
chk =10 ;
}
printf(“%d”, chk) ;
}

Explanation : Two variables are used in this program; these are nCount, and
chk. Both of these are local variables. But, they have different scope. The scope
of the variable nCount 1s the block of main() function 1.e., from its point of
declaration to the end of the main() function. Whereas the scope of the variable
chk 1s the block of if statement 1.e., from its point of declaration until the end of
the block of if statement.
These variables can only be referenced within their respective scopes. Any
reference made to them outside of their scopes would be 1llegal, thus the
program causes the following compiler error : o\

‘chk’ : undeclared 1dentifier (f@
This 1s because 1n the last printf() state\rgleahﬁof the program, the variable chk 1s
referenced outside of 1f block 1.e. out%fvlts scope, which 1s 1llegal. The lifetime
of local variables 1s the duration(1Ch the program control remains 1n the
block in which they are decla >As soon as the control moves outside of their
scope, these variables arqd&s oyed.

xv)
13.8 Global Variables. Thelr Scopes
R
Q : 13-08-01 Explain Global Variables 1in C, their Life Time,

Memory Allocation / De-allocation and The Scope of a Local Variable with an
example program ?

Answer :
Global Variables : The variables which are declared outside all blocks i.e. outside /
above the main() and all other functions are called global variables and have global
scope.
Global Scope : The global variables are accessible from the point where they are
declared until end of the file containing them. It means they are visible throughout all
the functions 1n the file, following their point of declaration.
Life Time of Global Variables : The lifetime of global variables is from the start of
the program till i1ts termination. They exist in memory from the start to the end of the
program.

Example :

#include<stdio.h>
#include<conio.h>
voild main (void)

T T T T D e e T T T T e ey
wr T A T T I T T T T T T T T e T T T T T e e e i om

O T T e T T T T T T T e T A e T T e EE e g

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

L T T T T T T T T T T T e e T T T T e A T

{

-
"

int nCount =1 ;
clrscr() ; // a function of conio.h used to clear screen
while (nCount <= 10)
{
int chk = 10 ;
printf(“%d\t”, chk) ;
chk =chk + 1 ;
nCount++ ;

J
j

Important Note : Every time the block of statements containing a declaration for a
local variable 1s executed, the variable is created anew, and 1f we specify an 1nitial
value for the local variable, 1t will be re-initialized each time it 1s created. Thus the
previous value will be lost for ever.
Explanation : In the example program above, each repetition of the loop prints the
same value of the variable. The addition to the value of chk will have no effect,
because at the end of execution the body of the loop, the control moves outside the
loop body (which 1s also the scope of chk variable) and returns to the while statement,
this causes the chk variable to be destroyed it each rep@”ti\uon The chk variable 1s again
created 1n the next repetition and gets destroyed at t@/éeﬁd of the repetition This
process continues until the loop condition 1s m{L@.\O
Example : 0% e
#1nclude<std’t9
#1nclude 0.h>

void Q@g}qxer (void) ;
t\i‘q{%unt =

\%ld main (V01d)
U
forintn=0;n<=10;n+=2)
Counter () ;
printf(“nCount = %d”, nCount) ;
J

void Counter (void)

{
j

Explanation : This 1s a simple program which demonstrates the use of global variable.
Here, we have declared a global variable 1.e., nCount outside the main and the Counter
functions. This 1s not contained 1n any block. The global variable nCount, the function
main, and the function Counter all are defined in the same file. Because, the variable
nCount 1s declared on top of the two functions, therefore it 1s visible within them. The
function Counter, increments the value of nCount by one each time it 1s called. The
main() executes a loop six times and call the function Counter to increment the value
of nCount. The value of the variable nCount 1s printed as the final output of the
program 1.e.,

Output :

nCount++ ;

T T T T D e e T T T T e ey
wr T A T T I T T T T T T T T e T T T T T e e e i om

T e e T T T T e e T T e T T T e T e e

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

% nCount = 6 %
% Important Note : The variable nCount 1s declared outside the functions main() and %
s Counter(), but these two functions can access and manipulate it as if it was declared =
s within these. The nCount 1s created in the memory before the start of execution of =
% main() and exists until the execution of the program ends. %
% 13.9 Functions Without Arguments %
g Q : 13-09-01 Explain Functions Without Arguments with an %
= example program ? %
% Answer : %
= Functions Without Arguments : The simplest type of function is one that returns no =
= value and no arguments are passed to them. The return type of such functions 1s void %
= and the Parameter_List may either be empty or containing the keyword void. =
% Example : Write a function named Print_Asterisks that will print asterisks (*) %
% according to the pattern shown and invoke a function call from the function main to %
= print the asterisks. =
- sk sk sk sk sk -
% Rsedesk sk {{g\ %
5 S ,§§:¥ﬁ* -
E & ‘:/ %
. ;a“’
% #include< fj}) h> %
= void E;\mﬁ_ Asterisks (void) ; // function prototype :
% vga@ﬁﬁém(vmd) %
- & // Function call =
= Print_Asterisks () ; =
= void Print_ Asterisks (void) // function header %
- { -
- // Function Body Starts -
% int 1nner ; %
% for (int outer = 7 ; outer >= 1 ; outer--) %
= inner =1 ; =
: while (1nner <= outer) =
- { :
- printf(“*”) ; =
% inner++ ; %
- } =
printf (“\n”) ;
% // Function Body Ends %

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

L T T T T T T T T T T T e e T T T T e A T

-

Explanation : The next line to the #include<stdio.h> directive is the prototype for the
function Pririt_Asterisks(). It tells the compiler about the function, its return_type and
number of parameters (void 1n this case). Our main function consists of just one line of
code 1.e.,

Print_Asterisks () ;
It represents a function call to the function Print_Asterisks(). We can think of a
function as a worker who takes necessary steps to accomplish the task assigned to him.
The function Print_Asterisks () 1s capable of printing asterisks in a specific order.
When the function call statement 1s executed, the control 1s immediately transferred to
the Print_Asterisks() function. Memory is allocated to the variables inner and outer.
Then comes the for and while loops, which print asterisks. When the task 1s
completed, the control 1s transferred to the function main from the function
Print_Asterisks(), and the memory allocated to the variables inner and outer 1s
returned to the operating system again. Then, the control 1s transferred to the next
statement to the function call statement in the calling function 1.e., main(). As there 1s
no statement 1n the main function other than the function call, so the program will
terminate.

13.10 Functions that Return a Value and Accept Arguments / Parameters

A O
Ne\D)

(

Q : 13-10-01 Explain Functions@@ Return a Value and Accept
Arguments / Parameters with example progrq/x@@\?@ ‘ ,
7% pakcity.org
1 (D) “ -
Answer : <\\J}E;/
Functions that Return a Value an "ch\ccept Arguments / Parameters : We may
need a function that could return\a: alue and arguments could be passed to it. We have
seen a number of such buipl_‘t—.ﬂiif\f‘iﬁ"ﬁrary functions e.g., sqrt(), toupper(), tolower() etc.
Let’s consider the geneg%@ orm of function header :

return_type FunctionName (parameter_list)
The return_type specifies the data type of the value that the function returns.
Parameter_list is a comma separated list which specifies the data type and the name of
each parameter 1n the list.
Example :

#include<stdio.h>
#include<conio.h>

int Add (int numl, int num?2) ;
void main (void)

{

inta, b;
Int sum ;
clrscr() ; // clears the screen
printf (“Enter Values for ‘a’ and ‘b’ =>7) ;
scanf (“%d %d”, &a, &b) ;
sum = Add(a, b) ;
printf(“%d + %d = %d”, a, b, sum) ;
}

int Add(int numl, int num?2)

T T T T D e e T T T T e ey
T T S T T T T T T T T e T T T Y e T O T T T T T T T T T e i

I T e e T e T T T e T T e T T T T T e e e e

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

= T T T T i T T T T T T e e e e e e g g

{
j

Explanation : If we enter 12 and 15 for a and b respectively then the output of the of
the program will be :
12 + 15 =27

The 6" line of code in the main function is a function call to the Add() function. The
Add() requires two parameters of type int to be passed to it. In the function call, we
have passed two variables 1.e., a and b of type int to the function. These arguments
(1.e., variables a and b) are called actual arguments or actual parameters of the
function. These are local variables and their scope 1s the body of main() function.
Whereas the parameters specified in the function header (1.e., int numl and int num?2)
are called formal arguments or formal parameters of the function and their scope is the
body of Add() function. These are also called dummy arguments. When parameters
are passed to a function, the value of actual parameters 1s copied in the formal
parameters of the function. The function uses its formal parameters for processing data
passed to 1t. Any change made to the value of formal parameters does not affect the
value of actual parameters. Here, the values of a and b are copied in numl and num?2
respectively. The function Add() returns the sum of the two values to the main
function which 1s then assigned to the variable sum. 0\
Example : o)

#include<stdio.h> /\5\ (S

#include<conio. h%f v

float Area oﬂgp’z{ngle (int base, 1nt altitude) ; // Function

Prototypeﬁ\
v01d maﬁmmd)

return numl + num?2 ;

\/W ﬂoat area ;
clrscr() ; // clears the screen
printf (“Enter Value for Altitude => ") ;
scanf (“%d”, &a) ;
printf (“Enter Value for Base => ") ;
scanf (“%d”, &b) ;
area = Area_of_Triangle (a, b) ;
printf(““Area of Triangle = %.21”, area) ;
J
float Area_of_Triangle (int base, int altitude) // Function
Header
{
return (0.5 * base * altitude) ;
J

Explanation : Suppose we enter 25 and 45 for altitude and base respectively, then the

program output will be :
Area of Triangle = 562.50

L T T T T T D T T e T T e e e e g
wr T A T e T T T T e e T R e i T T T A T T T T T T e e Y T v o

T T T e e T T T T T T T T T e T T T T e e T T e T e e e e g

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

LT T T e T T T T T T T T T T T T T T T T T A A

-
i

Exercise 13
Q-8. Write a program that calls two functions Draw_Horizontal and Draw_Vertical
to construct a rectangle. Also write functions Draw_Horizontal to draw two parallel

horizontal lines, and the function Draw_Vertical to draw two parallel vertical lines.

Answer :

#include<math.h>
#include<stdio.h>
void Draw_Horizontal() ; / Function Prototype
void Draw_Vertical() ; / Function Prototype
voild main (void)
{
clrscr() ; / clears screen
Draw_Horizontal() ; // draws upper horizontal line
Draw_Vertical() ; // draws two vertical lines
Draw_Horizontal() ; // draws lower horizontal line
}
void Draw_Horizontal() // Function Header
{ // Go to new line and display 25 stars
printf(“\n”) ;)\ i
for (int1 =0 ;i <\% i++)
rint 2
) ?\J”L\j)
void Drayy, %’%mcal() // Function Header
[<>\\’
< xWor (int1=0;1<15;1++)
W printf(*\n* *7) 5 // 23 Spaces
between stars

// We can write Draw_Horizontal() function like this also —
have only one
void Draw_Horizontal() // Function Header

{ // Go to new line and display 25 stars
printf(“\n*************************”) .

bJ

j

Q-9. Write a program that prompts the user for the Cartesian coordinates of two
points P; (xi, y1) and P, (X2, y2) and displays the distance between them. To compute
the distance, write a function named Distance() with four input parameters. The
function Distance() uses the following distance formula to compute the distance and
return the result to the calling function :

\/ (Xo—X1)* + (y2— Y1)~

Answer :

#include<stdio.h>
#include<conio.h>
#include<math.h>

L T T T T T D T T e T T e e e e g
wr T T T I T T T T T T T e T T T T T T v T I T T T e e e

T T T e T T T e T e e T e T T T e e e

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

H T T T I T T T T T T T T T T T T T A R T e g

float Distance(int x1, int y1, int X2, int y2) ;
void main (void)
{

int x1, y1, x2, y2 ;

float distance ;

clrscer() ; // clears screen

printf(“\nEnter x-Coord of Point 1 =>7) ;
scanf(“%ft”, &x1) ;
printf(“\nEnter y-Coord of Point 1 =>7) ;
scanf(“%f1”, &yl) ;
printf(“\nEnter x-Coord of Point 2 => ") ;
scanf(“%f1”’, &x2) ;
printf(“\nEnter y-Coord of Point 2 =>7) ;
scanf(“%f1”, &y2) ;

distance = Distance(x1, y1, x2, y2) ;
printf(“‘\nDistance Between P1 and P2 = % .21,
distance) ; N

] (/6)\/ -

float Distance(int X%\{:g{i\ﬁiyl, int X2, int y2)

{ S

return@’éé%(&((x2 —x1)*(x2-x1))+ ((y2—yl) * (y2 -
yl,}gﬁ@
N

S

pts the user to enter a number and then reverses it.
Write a function Rever everse the number. For example, if the user enters 2765,
the function should reverse it so that it becomes 5672. The function should accept the
number as an input parameter and return the reversed number.

#include<stdio.h>

#include<conio.h>

#include<math.h>

int Reverse(int n) ;

void main (void)

{
inta,b;
clrscr() ; // clears screen
printf(“\nEnter The Number To Reverse =>) ;
scanf(“%f1”, &a) ;
b = Reverse(a) ;
printf(“\n%d Reversed = %d”, a, b) ;
}
int Reverse(int n)
{

L T T D T T e e e T T e e e e ey
L T T T T e T T T T T T T T T T T T e T Y e e e

T T T e T T T e T e e T e T T T e e e

=

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

% int negative =0 ; %
int first = 0, second = 0, third = 0, fourth = 0, fifth =0
% if (n < 0) %
= { %
= negative = 1| ; 5
% n *=-1; %
= J %
= first = n% 10 ; E
: n = n/10; =
= second = n% 10 ; -
n - n/10;
third = n%10;
% n = n/10; %
- fourth = n% 10 ; E
% n = n/10; %
fifth - 1n9%10;
% n = n/10; %
b =fifth*1; 6)
-) += fourth : @ =
E b += third* =
b (se qufd/\lflooo
b st * 10000 ;
: @Sj gatlve =1) =
= ~ b=b*-1; =
= ~ -
- @3} return b ; %
= Q-11. Write a function named Draw_Asterisks that will print asterisks (*) according to =
= the pattern shown and make a function call from the function main to print the =
= asterisks pattern. :
= sslk SRk ok sk ok =
% sk sk sk sk ok %
% % %
#include<stdio.h>
% void Draw_Asterisks (void) ; // function prototype %
- vold main(void) =
{
- // Function call =
% Draw_Asterisks () ; %
% void Draw_Asterisks (void) // function header %
{
= // Function Body Starts -

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

Int 1nner ;
for (int outer = 9 ; outer >=1 ; outer -= 2)
{
inner = 1 ;
while (1inner <= outer)
{
printf(“*”) ;
inner++ ;
}
printf (“\n”) ;
J
// Function Body Ends

j

Q-12. Write a function Is_Prime that has an input parameter i.e num, and returns a
value of 1 if num 1s prime, otherwise returns a value of 0.

Answer : o@{pakcity.org}%o

#include<math.h>
#include<stdio.h>
int Is_Prime(int num) ; (@ﬁ\

void main (void) O

{ A\ O
unsigned }%OQ{A{?\E/
printw a Positive Number > 2 To Check
PI‘L u : y — 7 :

PR ' (“%f,a &a))
N (a<3)
@ printf(“In-appropriate Number %d to Check

Primality”, a) ;

else
{
int result = Is_Prime(a) ;
if (result == 0)
printf(*“The Number %d 1s NOT Prime”,
a);
else
printf(““The Number %d 1s Prime”, a);
J
j
int Is_ Prime(int num)
{
1f (num % 2 == 0)
return O ;
else
{

for (int1 =3 ;1 <= sqrt(num) ; 1 += 2)
1f (num % 1==0)

L T T D T T e e e T T e e e e ey
wr T T T e T T e e v e e

T T T e T T T e T e e T e T T T e e e

Please visit for more data at: www.pakcity.org

12th Computer Science Notes

-

}

Answer :

VOI1d
void
void
void
void

{

O

j
{
j
{

L T T T T T D T T e T T e e e e g

www.pakcity.org

LT T T e T T T T T T T T T T T T T T T T T A A

return O ;
return 1 ;

)

Q-13. Write a complete C program that inputs two integers and then prompts the user
to enter his / her choice. If the user enters 1 the numbers are added, for the choice of 2
the numbers are divided, for the choice of 3 the numbers are multiplied, for the choice
of 4 the numbers are divided (divide the larger number by the smaller number, if the
denominator 1s zero display an error message), and for the choice of 5 the program
should EXIT (terminate). Write four functions Add(), Subtract(), Multiply() and

Divide() to complete the task.

#include<stdio.h>
#include<conio.h>

| Add(int x, int y) ;

| Subtract(int X, inty) ;
| Multiply(int X, int y) ;
 Divide(int X, int y) ;

| main (void)

. (P‘@A\
inta, b; (’5)\/
Ao

char choice ;/\.<~5\\

M

RS2
O
clrscr@#%lears screen

P

70
\rQ L |
\<~Qﬁ®1gf(“\nEnter First Integer => ") ;
f*§Wcanf(“%f’, &a) ;

printf(“\nEnter Second Integer => ") ;

scanf(“%f”’, &b) ;

printf(“\nEnter Your Choice 1 .. 4=>"7);

scanf(“%ft”, &choice) ;

switch(choice)

f
case ‘1’ : Add(a, b) ; break ;
case ‘2’ : Subtract(a, b) ; break ;
case ‘3’ : Multiply(a, b) ; break ;
case ‘4’ : Divide(a, b) ; break ;
default : printf(*\n%c 1s a Bad Choice”,
choice) ; break ;

}

void Add(int X, int y) ;

printf(“%d + %d = %d”, x+y) ;

vold Subtract(int x, int y) ;

T T T e e T T T T T T T T T e T T T T e e T T e T e e e e g

Please visit for more data at: www.pakcity.org

=

L T T T T T e T T T T T T T e T R Y T T vy

12th Computer Science Notes www.pakcity.org

% printf(“%d - %d = %d”, x-y) ; %
- void Multiply(int X, int y) ; g
: { :
printf(*“%d * %d = %d”, x*y) ;
void Divide(int x, int y) ;
= { %
if (X >y)
if (y == 0)
% printf(“Error — Divisor Can’t be ZERO”) %
% else %
printf(“%d / %d = %.2f", x / y) ;
: else if (y > x) :
= if (x ==0) =
= prlntf(“Eg(}\ Divisor Can’t be ZERO”) =
o4
% else %
Qﬁrﬁﬁf(“%d [%d=%2",y/X);
= } E
= el,&@@ :
= C \ printf(“Both Numbers are EQUAL thus result = =
% 1”) %
% KN %
= Q-14. Write a program that prompts the user to enter a number and calls a function =
% Factorial() to compute 1ts factorial. Write the function Factorial() that has one input %
= parameter and returns the factorial of the number passed to it. -
% Answer : %
% #include<conio.h> %
% #include<stdio.h> %
- long 1nt Factorial(int n) ; -
: void main (void) -
= { :
= unsigned int a ; :
% long int factorial ; %
= printf(“Enter a Valid Number > 1 To Calculate E
= Factorial == 7) ; =
- scanf(“%f1”, &a) ; -
if (a<2)
% printf(“In-Valid Number < 2 To Calculate %
: Factorial”) ; =
% else %

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

{
= factorial = Factorial(a) ; =
= printf(“%d Factorial = %ld”, a, factorial) ; §
E long int Factorial(int n) 5
{
£ long int fact =1 ; :
if (n==11n==0)
- fact=1; =
= else =
= { :
- for(inti=n;1>=2;1--) =
= fact *=1; =
- j -
= return fact ; =
}
= Q-15. Write a function GCD that has two input parameters and returns the greatest :
- common divisor of the two numbers passed to it. Write a complete C program that =
= inputs two numbers and calls the function GCD to co e the greatest common =
s divisor of the numbers entered. O =
E Answer : =
= int ged ; -
- printf(“Enter TWO integers To Calculate GCD =>") ; =
- scanf(“%d %d”, &a, &b) ; -
if(a<1|b<1)
= printf(“In-Valid Numbers To Calculate GCD”) ; %
% else =
s gcd = GCD(a, b) ; =
= printf(“GCD(%d, %d) = %d”, a, b, ged) ; -
= int GCD(int m, int n) =
|
= int temp ; =
- if (m > n) -
{
if (m % n == 0)
% return n ; %

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org
temp =n ;
n=m% n;
m = temp ;
}

else if (n > m)

{
1f (n % m == 0)
return m ;
temp = m ;
m=n% m;
n =temp ;

else
return n ;

O©Q®

%@@
O@@

T T T e D T T T T T T e e
wr T T T e T T e e v e e

T T T e T T T e T e e T e T T T e e e

Please visit for more data at: www.pakcity.org

