'Koll	No.	of Candidate:				
CHE	MIS	TRY	Intermediate Part-II, Cl	ass 12 th (1 st A 424-II)	Paper: II	Group – I
Time	: 20	Minutes -	OBJECTIVE	Code: 8483		Marks: 17
Note:	fill t		each objective type question a t question number. Use marke tark in that question.		Cutting or filling	ng two or mo
1.	1.	The main pollutant o	f leather tanneries in the wa	ste water is due to salt of	⇒® pak	city.org
		(A) Lead	(B) Chromium (VI)	(C) Copper	(D) Chromi	ium (III)
	2.	One of the following	will have the highest boilin	g point		350 S.
		(A) methanal	(B) ethanal	(C) propanal	(D) 2 – hex	anone 🛑
	3.	The normal amount of	of overhead Ozone is about			
		(A) 150 DU	(B) 250 DU	(C) 350 DU	(D) 450 DU	J
	4.	Ethanol can be conve	erted into ethanoic acid by			
		(A) Hydrogenation	(B) Hydration	(C) Oxidation	(D) Fermen	tation
	5.	Phosphorus helps the	growth of			
		(A) root	(B) leaf	(C) stem	(D) seed	
			O .			
	6.	When ethanal (CH ₃ -	-C-H) is made to react with	h ethyl Magnesium Brom	ide followed b	y acid
		hydrolysis, the produ	ct formed is			
		(A) 1-propanol	(B) 2-propanol owing elements is not prese	C) 1-butanol	(D) 2-butar	iol 🛑
	7.	Which one of the foll	owing elements is not prese	nt in all proteins?		
		(W) Saibilai =	(b) Caroon	(C) Hydrogen	(D) Nitroge	n
	8.	The anhydride of HC			· ~ 1 ~ .	
		(A) ClO_3	(B) ClO ₂	(C) Cl ₂ O ₅	(D) Cl_2O_7	
	9.		to reduce a Carboxylic gro		ATON T ' A OT T	
	_	(A) H_2/Ni	(B) H ₂ /Pt	(C) NaBH ₄	(D) LiAlH4	
i	0.	In ring test, the colour	traodic	NgWhon's Law Micrion	~~\ ~!	
ű.	•	(A) Brown	(B) Red	(C) Green	(D) Black	
1	1.		nexane into benzene by heat	tv.org		
1 /	2	(A) Isomerization	(B) Aromatization	(C) de-alkylation	(D) Re-arra	ngement
1.	2.	The chief ore of alum		(C) A1 ()	(ID) A I () I	1 0
1 ′	2	(A) Na ₃ AlF ₆	(B) Al ₂ O ₃ ·2H ₂ O •	(C) Al ₂ O ₃	(D) $Al_2O_3 \cdot I$	120
Į.	3.		Iphide is commonly known		(D) Dhancan	
1	1	(A) Laughing gas	(B) Bio-gas	(C) Mustard gas	(D) Phosgen	le gas
1.	4.	One of the following i		(C) Dubidium	(D) Padium	
14	5	(A) Francium The state of hybridize	(B) Caesium yıon of Carbon atom in Meth	(C) Rubidium	(D) Radium	
1.5		(A) sp ³	(B) sp ²	NA SERVICE	(D) dsp ²	
14			ts which are present in third	(C) sp	(D) usp	
1.6		(A) Li, Be	(B) Na, Mg	(C) K, Ca	(D) Rb, Sr	
17			s a typical transition metal	(0) 11, 04	(2) 10, 01	
7 2 ° 6	***/ !	(A) Sc	(B) Y	(C) Co	(D) Ra	
		\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	\		()	

317-(II)-1stA 424-30000 Please visit for more data at: www.pakcity.org

Intermediate Part-II, Class 12th (1st A 424) Paper: II ..EMISTRY

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

Group - I

Time: 2:40 Hours

SUBJECTIVE

Marks: 68

SECTION - I

2. Write short answers to any EIGHT questions.

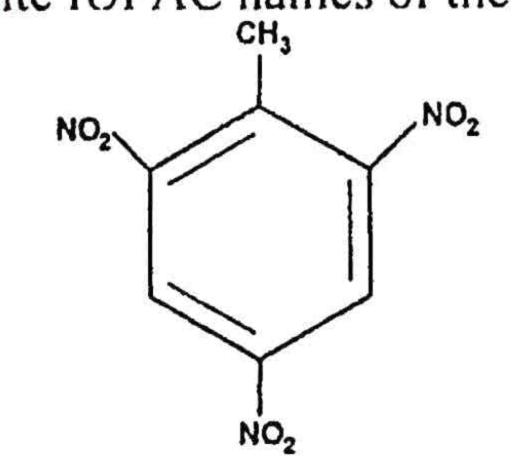
 $(2 \times 8 = 16)$

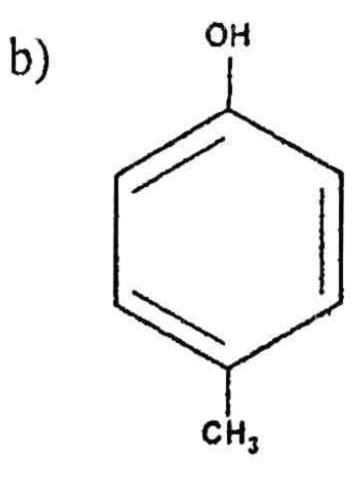
- Why the ionic radii of negative ions are larger than the size of their parent atoms? Give example.
- Give two defects in Mendeleev's periodic table. ii.
- Why transition elements have variable oxidation states? iii.

- KMnO₄ acts as oxidizing agent? Justify with two examples. iv.
- Write the chemistry of setting of cement in first twenty four hours. ٧.
- Alkali metals give ionic hydrides. Give reason. vi.
- Write the formula of (a) Asbestos (b) Halite VII.
- viii. What is the excellent method to prepare Alkyl Iodide?
- What is terpolymer? Give one example. ix.
- What are the monosaccharides? Give one example. Х.
- Compare the compound protein with derived protein. xi.
- How Grignard reagent reacts with "HCHO"? xii.

$(2 \times 8 = 16)$

3. Write short answers to any EIGHT questions.


- What is aqua regia? How does it dissolve gold? i.
- NO₂ is oxidizing agent. Prove it with two suitable examples. ii.
- Arrange the oxidizing power of following with reason: F2, Cl2, Br2, I2 iii.
- Why I2 is solid while F2 is gas? iv.
- Define functional group with any two examples. ٧.
- Differentiate between metamerism and position isomerism, with suitable examples. vi.
- How oxalic acid is prepared from acetylene? vii.
- Why ethyne is less reactive than ethene? viii.
- Why alkanes are called as paraffins? ix.
- What are leachate? X.
- Define Biochemical Oxygen demand. xi.
- xii. What is lithosphere?


a)

$(2 \times 6 = 12)$

4. Write short answers to any SIX questions.

- How to prepare borax from coleminte?
- Give two important uses of silicates. ii.
- What is white lead? Give its use. iii.
- Write IUPAC names of the following molecules iv.

(Turn Over)

- 2 -

8	٧.	Ethyl alcohol is a liquid while methyl chloride is a gas, justify it. Pakcity.org	9
	vi.	Give the reaction of phenol with: (a) Zn (b) HNO ₃	
1	/ii.	How acetaldehyde reacts with the following reagents? (a) HCN (b) I ₂ /NaOH	
V	iii.	What is vinegar and give its use?	
9	ix.	Write down the mechanism of reaction between acetic acid and methanol.	
		<u>SECTION – II</u>	
5.	(a)	What is hydration energy? Give one example. Discuss its variation in groups and periods of periodic table.	(1+1+2=4
	(b)	Write down any eight uses of lime in industry.	(4
5.	(a)	Give the reactions of Bleaching powder with i. dil H ₂ SO ₄ ii. HCl iii. NH ₃ iv. CQ ₂	(4
	(b)	Describe the process of digestion of paper pulp in Neutral Sulphite chemical process.	(4
7.	(a)	What are organic compounds? Describe the following terms (give one example for each). i. Alicyclic Compounds ii. Aromatic Compounds iii. Heterocyclic Compounds	(4
	(b)	Write down the chemical reaction of Ethyl Magnesium Bromide with CO ₂ , HCHO, Acetone and Epoxide	(4
8.	(a)	Explain acidic nature of alkyne in detail by giving two examples.	(4
	(b)	What is aldol condensation? Give its mechanism.	(4
9.	(a)	Discuss catalytic oxidation of Benzene.	(4
	(b)	How ethers are prepared from following?	(4
		i. Williamsons Synthesis ii. Ag ₂ O	

317-1stA 424-30000

- A. C.	pakcity.org	
-		

Roll No. of Candidate	:	
CHEMISTRY		

Intermediate Part-II, Class 12th (1st A 424-IV) Paper: II Group - II

Time: 20 Minutes OBJECTIVE Code: 8488 Marks: 17

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.

	circle	es will result in zero mark	in that question.		
	1.	Which one of the follow (A) Benzene	ving compounds is most r (B) Ethene	eactive? (C) Ethane	(D) Ethyne
	2.	Which one of the follow (A) Cr	ving is a non-typical trans (B) Mn	sition element? (C) Zn	(D) Fe
	3.	β-β'-dichloroethyl sulph (A) Laughing gas	ide is commonly known as (B) Bio-gas	s (C) Phosgene gas	(D) Mustard gas
	4.	Which three elements as (A) N, S, P	re needed for the healthy (B) N, Ca, P	growth of plants? (C) N, P, K	(D) N, K, C
	5.	The reaction between fa (A) Esterification	t and NaOH is called (B) Hydrogenolysis	(C) Fermentation	(D) Saponification
	6.	Which compound is mo (A) C ₂ H ₅ OH	(B) C_6H_5OH	(C) CH ₃ COCH ₃	(D) n-hexanol
	7.	Which one of the follow (A) Na ⁺	ving ions has maximum v (B) Cs ²⁺	alue of heat of hydration? (C) Ba ²⁺	(D) Mg ²⁺
	8.	Hydrogen bond is the st (A) HF	rongest between the mole (B) HCl	ecules of (C) HBr	(D) HI
D#3	9.	Tincal is a mineral of (A) Al	(B) B	(C) Si	(D) C
	10.	The amount of Ozone in (A) KJ	the atmosphere is expression (B) KJ/mole	ssed in units (C) 13U	(D) N
	11.	The solution of which a (A) Formic acid	cid is used for seasoning (B) Acetic acid		(D) Butanoic acid
	12.	The state of hybridization (A) sp ³	on of Carbon atom in Met (B) sp ²		(D) dsp ²
	13.	Peroxyacetyl nitrate (PA (A) Eyes	(B) Ears	n beings and it affects (C) Stomach	(D) Nose
	14.	Choose the gas which is (A) CO	obtained by the reaction (B) CO ₂	of Ethyl alcohol with con (C) C ₂ H ₂	c. H ₂ SO ₄ (D) C ₂ H ₄
	15.	Select the two normal el (A) K, Ca	lements present in sixth p (B) Rb, Sr	eriod (C) Cs, Ba	(D) La, Hf
	16.	Cannizzaro's reaction is (A) Formaldehyde (C) Benzaldehyde	not given by	(B) Acctaldehyde (D) Trimethylacetaldehy	de
	17.	When water (H – OH) is	s made to react with Ethy	l Magnesium Bromide, th	e product formed is

318-(IV)- 1stA 424-30000

(A) $CH_2 = CH_2$ (B) HC = CH (C) $CH_3 - CH_3$ (D) CH_4

CHEMISTRY Intermediate Part-II, Class 12th (1st A 424) Paper: II Group -- II

Time: 2:40 Hours SUBJECTIVE Marks: 68

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

SECTION - I

2. Write short answers to any EIGHT questions.

i. Why diamond is non-conductor and graphite is fairly a good conductor?

ii. Write the names of families in periodic table.

- iii. Why 'd' and 'f' block elements are called transition elements?
- iv. How KMnO₄ and K₂Cr₂O₇ react with H₂S?
- Write the chemistry of setting of cement in between 1-7 days. v.
- Justify that BeO is amphoteric in nature.
- vii. What will happen when Magnesium reacts with (i) H₂ (ii) N₂
- viii. Starting from primary alkyl halide, prepare ethyl alcohol.
- ix. What is degree of polymerization?
- What are the oligosaccharides? Give one example. х.
- хi. What do you mean by denaturation of protein?
- xii. How does Grignard reagent react with CO₂?

3. Write short answers to any EIGHT questions.

- Write down the structures of N₂O₃ and NO₂. i.
- ii. Why the elements of group VI A other than Oxygen show more than two oxidation states?
- iii. Write down any four uses of bleaching powder.
- Define disproportionation reaction with an example. iv.
- Define sp hybridization with an example. ν.
- How wood is converted into coal? Give its equation too. VI.
- What is Wolf-Kishner's reduction? Give reaction. vii.
- How is PCl₃ produced from SOCl₂? viii.
- How chloroprene is prepared from acetylene? Give reaction, also. ix.
- How aeration is used for purification of H₂O? х.
- What is acid rain? How does it affect on aquatic life? xi.
- How smog is produced? Write down its conditions of formation. xii.

4. Write short answers to any SIX questions.

- What is the action of an aqueous solution of borax on litmus?
- ii. Give any two uses of boric acid.
- How and under what conditions does Aluminium react with the following: iii.
 - (b) Alkalies (a) Halogens
- (b) Halogenation What is meant by the terms: (a) Nitration iv.
- Why Ethanol has higher boiling point than diethyl ether?

 $(2 \times 8 = 16)$

 $(2 \times 8 = 16)$

pakcity.or

(Turn Over)

 $(2 \times 6 = 12)$

- 2 -

vi. How will you distinguish between methanol and ethanol?

- vii. Give the mechanism of addition of HCN to acetone.
- viii. How to prepare acetic acid from ethyne?
- ix. What are zwitter ions?

		<u>SECTION – II</u>	
5.	(a)	What are hydrides? Explain types of hydrides with their properties.	(4)
	(b)	What is the role of lime in agriculture and ceramic industries?	(4)
í.	(a)	Write down any eight applications of noble gases in daily life.	(4)
	(b)	What is significance of potassium fertilizers in plant growth? Explain the manufacturing of KNO ₃ on industrial scale.	(4)
1.	(a)	Explain any four types of structural isomerism by giving one example of each.	(4)
	(b)	What are alkyl halides? How are the alkyl halides prepared from alcohol by three different reactions?	(4)
}.	(a)	Write a note on photochemical halogenation of methane.	(4)
	(b)	Describe the Reduction reactions of Carbonyl Compounds with following reagents: i. NaBH ₄ /H ₃ O ⁺ ii. Ni/H ₂ (Give two reactions for each)	(4)
	(a)	What is Kekule's Structure of Benzene? How did he support his theory?	(1+3=4)
	(b)	How will you prepare phenol from the following?	(4)
		i. Chlorobenzene ii. Sodium salt of Benzene Sulphonic Acid	

318-1stA 424-30000

Roll CHE		of Candidate:	diate Part-II ,	Class 12th (1	stA 423-I)	Paper: II Group - I
)BJECTIVE			Marks: 17
	You	have four choices for each object at circle in front of that question	tive type question	on as A, B, C an	d D. The choice	which you think is correct
	circle	es will result in zero mark in the	at question.		₩	pakcity.org
1.	1.	Keeping in view atomic and ic	onic radii, mark	the correct stat	ement 🥞	
	4	(A) $Na^+ < Na$	(B) $Cl^- < Cl$	(C)	$Cl^- = Cl$	(D) $Na^+ > Na$
	2.	Chile Saltpeter has the chemic	cal formula			
		(A) KNO ₂	(B) Na NO ₃	(C)	$Na_2B_4O_7$	(D) $Na_2CO_3.H_2O$
	3.	The element belongs to group	IV-A of the pe	riodic table		
		(A) Barium	(B) Iodine	(C)	Lead	(D) Oxygen
	4.	Laughing gas is chemically				
		(A) NO	(B) N_2O	(C) 1	N_2O_4	(D) NO ₂
	5.	The anhydride of HClO ₄ is				
		(A) ClO ₃	(B) ClO ₂	(C)	Cl ₂ O ₅	(D) Cl ₂ O ₇
	6.	Which of the following is a ty	pical transition	metal?	20)	
		(A) Sc	(B) Y	(9)	Ra	(D) Co
	7.	A double bond consists of		25/20		
		(A) two sigma bonds	. 10		two pi bonds	
		(C) one sigma and one pi bor	nd S	(D)	one sigma and	two pi bonds
	8.	Formula of chloroform is	(0)00	X		
		(A) CH ₃ Cl	(B) CCl4	(C)	CHCl ₃	(D) CH_2Cl_2
	9.	The electrophile in aromatics			AL	m) got
		(A) H ₂ SO ₄	(B) HSO_4^{-1}	(C)	SO ₃	(D) SO_3^+
	10.	Which one of the following is	s not a nucleoph	nile?		
		(A) H ₂ O	(B) BF ₃	(C)	NH ₃	(D) H_2S
	11.	The ethanol can be converted	into ethanoic a			
		(A) Hydrogenation	(B) Hydration	(C)	Oxidation	(D) Fermentation
	12.	Carbolic acid is the other nan	ne of			20.40
		(A) phenol	(B) toluene	(C)	nitrobenzene	(D) aniline
	13.	40% aqueous solution of form	naldehyde is ca			
		(A) formalin	(B) Tollen's I	Reagent (C)	paraldehyde	(D) wood spirit
	14.	Histidine is an amino acid				100 m
		(A) acidic	(B) basic	(C)	amphoteric	(D) neutral
	15.	PVC is a polymer				
		(A) thermosetting	(B) thermople	astic (C)	autosetting	(D) wet setting
	16.	The % age of nitrogen in NH	3 is			
		(A) 82	(B) 81	(C)	80	(D) 88
	17.	Ozone layer is present in				_
		(A) troposphere	(B) thermosp	here (C)	stratosphere	(D) mesosphere
					316	-(I)-1stA 423-26000

Gujranwala Board-2023 Intermediate Part-II, Class 12th (1stA 423) Paper: II Group - I **CHEMISTRY** Marks: 68 SUBJECTIVE Time: 2:40 Hours Note: Section I is compulsory. Attempt any THREE (3) questions from Section II. SECTION - I pakcity.org 🛞 (2 x 8 = 16) 2. Write short answers to any EIGHT questions. Why CO₂ is gas at room temperature while SiO₂ solid? i. Give any four uses of boric acid. ii. Give reaction of H₃BO₃ with C₂H₅OH. iii. Convert benzene into toluene. iv. Give x-ray structure of benzene. v. What are polyester resins? Give uses. vi. Convert sodium benzoate into benzene. vii. How protein is denatured? Give one example. viii. Give hydrolysis reaction of triglycerides. ix. How is oil spillage affecting the marine life? x.

3. Write short answers to any EIGHT questions.

What is ozone hole? Give comments.

xi.

xii.

 $(2 \times 8 = 16)$

i. Write down the structural formulas of two possible somers of C₄H₁₀.

What are primary and secondary pollutants? Give examples

- ii. What are heterocyclic compounds? Give one example.
- iii. Identify each lettered product of the reaction. Ethylalcohol conc.H₂SO₄ A Br₂ I
- iv. Why alkenes are more reactive than alkanes?
- v. What is Raney nickel? How is it prepared?
- vi. What is the effect of hear on solid N2O4?
- vii. Why the elements of group VI-A other than Oxygen show more than two oxidation states?
- viii. Complete and balance the following equations $P + NO \longrightarrow ?$ $HNO_2 + CO(NH_2)_2 \longrightarrow ?$
- ix. How will you carry out the following conversion?

 CH₃— CH₃ (CH₃— CH₂)₄ N⁺Br⁻
- x. Differentiate between nucleophile and electrophile.
- xi. What are common bleaching agents used in paper industry?
- xii. What are fertilizers?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. What is co-ordination number? Give its example.
- ii. Fe³⁺ shows maximum paramagnetic behavior. Justify it.
- iii. Ethanol has higher boiling point than diethyl ether. Give reason.
- iv. How is ethanol prepared from molasses?
- v. Write down mechanism of reaction between C₂H₅OC₂H₅ and HI.

(Turn Over)

- vi. Write down names and formulas of two ores of iron.
- vii. Write down two tests to differentiate between carbonyl and non-carbonyl compounds.
- viii. Show the dry distillation of a mixture of calcium salts of formic acid and acetic acid.
- ix. Draw structures of phthalic acid and malonic acid.

SECTION - II

Not	e: Att	empt any THREE (3) questions.	
5.	(a)	Define oxidation state. Write down its variation trends in modern periodic table.	(4)
	(b)	Describe the peculiar behaviour of beryllium.	(4)
6.	(a)	What happens when bleaching powder reacts with (i) dil.H ₂ SO ₄ (iii) NH ₃ (iv) HCl	(4)
	(b)	Write essential qualities of good fortilizer.	(4)
7.	(a)	Define cracking of petroleum. Also discuss catalytic and steam cracking.	(4)
	(b)	Write down a note on stability of benzene.	(4)
.8.	(a)	How does ethyne react with (i) Halogen acid (ii) Alkaline KMnO ₄ (iii) Ammonical cuprous Chloride (iv) 10% H ₂ SO ₄ in the presence of HgSO ₄	(4)
	(b)	Define nucleophilic substitution reactions? Explain SN ₁ mechanism in detail.	(4)
9.	(a)	Write down a note on aldol condensation in detail.	(4)
	(b)	Write down a note on peptides and proteins in detail.	(4)
		316-1 st A 423-26	000

316-1st A 423-26000

Roll	No. o	f Candidate :				
CHE	MIST	TRY Int	ermediate Part-II , Cla	$12^{th} (1^{st}A 423 - IV)$	Paper:	II Group – II
Time	: 20 N	Ainutes	OBJECTIVE	Code: 8488		Marks: 17
Note:	fill th	have four choices for each at circle in front of that qu is will result in zero mark	n objective type question a sestion number. Use market in that question.	s A, B, C and D. The chor or pen to fill the circles	Cutting or	ou think is correct, filling two or more
1.	1.	Phosphorus helps the gr (A) root	rowth of (B) leave	(C) stem	(D)	seed
	2.	Which set of hybrid orb (A) SP ³	ital has linear shape? (B) SP ²	(C) SP	(D)	dSP^2
	3.	The electrophile in aron (A) H ₂ SO ₄	natic sulphonation is (B) $\bar{\text{HSO}}_4$	(C) SO ₃	(D)	SO_3^+
	4.	Which is neutral amino (A) lysine	acid? (B) glycine	(C) histidine	(D)	glutamic acid
	5.	Vinyl acetylene combin (A) polyacetylene	nes with HCl to form (B) benzene	(C) chloroprene	(D)	divinyl acetylene
	6.	(A) Sodium Sulphate	sulphate iş not soluble ir (B) Potasşium Sulpha	water? te (C) Zine Surphate	(D)	Barium Sulphate
	7.	The carbon atom of car (A) SP – hybridized hybridized	bonyl group is. (B) SP ² – hybridized	SP ³ – hybridiz	ed (D)	dSP ² -
	8.	Aluminium oxide is (A) acidic	(B) basic go	(C) amphoteric	(D)	neutral
	9.	Mark the correct statem (A) NA ⁺ is smaller tha (C) Cl ⁻ is smaller tha	an Na atom	(B) NA ⁺ is larger (D) Cl ⁻ ion and C		
	10.	Which catalyst is used (A) Fe ₂ O ₃	(B) V_2O_5	(C) NO	(D)	SO ₃
	11.	The strength of binding (A) number of electron (C) number of neutron		nents depends upon (B) number of unp (D) number of pro		ons
	12.	Which of these polyme (A) animal fat	rs is a synthetic polymer (B) starch	? (C) cellulose	(D)	polyester
	13.	Which compound is ca (A) H ₂ O	lled a universal solvent? (B) C ₂ H ₅ OH	(C) CH ₃ - O - CH	(D)	CH₃OH
	14.	The anhydride of HClC (A) ClO ₃	(B) ClO ₂	(C) Cl ₂ O ₅	(D)	Cl ₂ O ₇
	15.	Ecosystem is a smaller (A) biosphere	(B) lithosphere	(C) hydrosphere	(D)	atmosphere
	16.	Elimination bimolecular (A) zero order reaction (C) second order reaction	n	(B) first order rea (D) third order rea		
	17.	Methyl alcohol is not u (A) as a solvent (C) as a substitute for		(B) as an antifreez (D) for denaturati	on of ethyl a	alcohol stA 423-26000

CHEMISTRY

Intermediate Part-II, Class 12th (1stA 423) Paper: II

pakcity.org

Group - II

Time: 2:40 Hours

SUBJECTIVE

Marks: 68

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

SECTION - I

2. Write short answers to any EIGHT questions.

Describe the preparation of borax from boric acid. i.

- ii. What is chemical garden?
- iii. Write down the chemistry of borax-bead test.
- Convert benzene into hexabromocyclohexane. iv.
- Describe Wurtz-Fitting reaction. v.
- Write down the mechanism of Friedel-Crafts acylation. vi.
- What is saponification of fat? Write down its equation. vii.
- How is PVC (polyvinyl chloride) formed? Write down its equation. viii.
- Draw the structure of cellulose. ix.

$(2 \times 8 = 16)$

- How is oil spillage affecting the marine life?

 3. Write short answers to any EIGHT questions

 i. Define functional groups. Write down the life.

 What is vital force the life. Define functional groups. Write down the frame of any two nitrogen containing functional groups.

 - Differentiate between saturated and unsaturated hydrocarbons. iii.
 - Why sigma bond is inert? iv.
 - How can ethyne be produced from calcium carbide? ٧.
 - vi. How does aqua regia dissolve gold?
 - vii. Why is nitrogen trivalent but phosphorus has variable oxidation state?
 - viii. How is PCl₃ produced from SOCl₂?
 - ix. Which is the best method for preparation of alkyl halides from alcohols?
 - What is meant by β-elimination reaction? x.
 - xi. Define the term fertilizers.
 - Write down any two woody and two non-woody raw materials for paper manufacturing. xii.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Give the reaction of chromyl chloride test.
- ii. Define chelates. Give one example.
- iii. Give four properties of transition elements.
- iv. How methanol is prepared in laboratory? Give reaction.
- ٧. Convert phenol into cyclohexanol.

(Turn Over)

-2-

vi. Give reaction of C₂H₅OC₂H₅ with HI.
vii. What is formalin? How is it formed?
viii. Give any four uses of formaldehyde.
ix. Convert acetic acid into ethane.

SECTION - II

No	ote: A	Attempt any THREE (3) questions.	
5.	(a)	How does classification of elements in different blocks help in understanding their chemistry.	(4)
	(b)	Describe the commercial preparation of sodium hydroxide by the diaphragm cell.	(4)
6.	(a)	How is bleaching powder prepared by Beckmann's method?	1x4 (4)
	(b)	Describe different zones of the rotary kin of manufacture of cement.	1x4 (4)
7.	(a)	What is octane number? How can it be improved?	(4)
	(b)	Describe atomic orbital treatment of benzene.	(4)
8.	(a)	Write down a note on halogenation of alkane.	2+2 (4)
	(b)	Explain the following terms by giving suitable examples (i) Nucleophile (ii) Electrophile (iii) Leaving group (iv) Substrate	1+3 (4)
9.	(a)	Explain the mechanism of addition of sodium bisulphite to acetone.	(4)
	(b)	Write down the mechanism for reaction of acetic acid and ethanol. pakcity.or	rg 🐉 (4)

317-1stA 423-26000

(Intermediate Part-II, Class 12th) 422 Paper II CHEMISTRY (Group - I)

Time: 2:40 Hours Marks: 68 **SUBJECTIVE**

Note: Section I is compulsory, Attempt any THREE (3) questions from Section II.

(SECTION - I)

pakcity.org

2. Write short answers to any EIGHT questions.

- i. Why oxidation state of noble gases is usually zero?
- ii. Why metallic character increases from top to bottom in group?
- iii. Define alkali and alkaline earth metals.
- iv. Why is the aqueous solution of Na₂CO₃ alkaline in nature?
- ٧. Write down four uses of silicones.
- vi. Why CO₂ is acidic in character?
- vii. How does nitrogen differ from other elements of its group?
- viii. Give methods of preparation of PCl₃.
- ix. How chromate ions are converted into dichromate ions?
- x.
- xi.
- Define cement, Write down names of its important raw materials.

 e short answers to any EIGHT questions.

 Which is weak acid than the xii.

3. Write short answers to any EIGHT questions,

 $(2 \times 8 = 16)$

- i.
- Write down any four uses of bleaching powder. ii.
- Define cis-trans isomerism. Give one example. iii.
- iv. How wood can be converted into anthracite?
- How will you convert i) Ethene into ethane v. ii) Ethyne into ethene
- vi. How does propyne react with the following reagents?
- ii) Cu₂Cl₂/NH₄OH i) AgNO₃/NH₄OH
- vii. Why alkenes are more reactive than alkanes?
- Write down any two differences between E1 and E2 reactions. viii.
- ix. What is Grignard reagent? How it can be prepared?
- x. Define proteins. Give any two importance of proteins.
- xi. Define iodine number and acid number.
- xii. Write down any four importance of lipids.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Give the mechanism of sulphonation of benzene.
- ii. Give two methods for the preparation of benzene in laboratory.
- iii. How phenol reacts with dil. and conc.HNO₃?
- Dehydration of ethyl alcohol occur under different conditions. Give reactions. iv.

(Turn Over)

Please visit for more data at: www.pakcity.org

Give any four uses of formaldehyde.

v.

	vi.	How would you convert acetic acid into i) acetyl chloride ii) acetic anhydride	
vii.		What are essential and non-essential amino acids?	
,	viii.	What are primary pollutants? Give examples.	
	ix.	Give any four causes of water pollution.	
		(SECTION - II)	
Not	e: At	ttempt any THREE (3) questions from Section II.	
5.	(a)	Define the oxides. Classify the oxides on the basis of their acidic and basic character.	(4)
	(b)	Discuss briefly triplumbic tetraoxide (Pb ₃ O ₄) and lead dioxide (PbO ₂).	2+2 (4)
6.	(a)	Write down any eight points regarding the peculiar behaviour of lithium.	(4)
	(b)	Explain the electrochemical theory of corrosion.	(4)
122			
7.	(a)	What is orbital hybridization? Explain SP ³ hybridization with example.	(4)
	(b)	Define nucleophillic substitution reaction and discuss the S _N 1 reaction in detail.	(4)
8.	(a)	Discuss the Kolbe's electrolysis method for the preparation of alkene. (ethene)	(4)
	(b)	Explain the mechanism of cannizzaro's reaction with one example.	(4)
9.	(a)	How will you prepare benzene from	1x4 (4)
		i) cyclohexane ii) n-hexane	
		iii) phenol iv) acetylene	
	(b)	Define alcohols. How different types of alcohols are differentiated by Lucas test.	1+3 (4)
		pakcity.org	315-422-33000

Roll CHE		f Candidate :		II, Class 12 th) 4	22 - (I) Paper II	(Group – II)
		Minutes	OBJECTIVE	Code: 84	<u>82</u>	Marks: 17
	You I fill th circle	have four choices for each at circle in front of that can will result in zero many and leave others blank.	question number. Use mark in that question. Atte	arker or pen to fill t	he circles. Cutting or fi tions as given in objec	lling two or mor
1.	1.	Keeping in view the si	ze of atoms which orde	er is the correct on	epan	City.org &
		(A) $Mg > Sr$	(B) $Ba > Mg$	(C) Lu:	> Ce (D)	CI > I
	2.	The oxides of berylliu	m are			
		(A) acidic	(B) basic	(C) am	photeric (D)	none of these
	3.	Which element is used	l in the thermite proces	s because of its rea	activity?	
		(A) iron	(B) copper	(C) alu	minium (D)	zinc
	4.	Laughing gas is chemi	ically			
		(A) NO	(B) N ₂ O	(C) NO	O_2 (D)	N_2O_4
	5.	Hydrogen bond is the	strongest between the	nolecules of	<u> </u>	
		(A) HF	(B) HCl	(C) H	(D)	HI
	6.	The total number of tr	ansition elements is	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	30	
		(A) 10	(B) 14	(C) 40	(D)	58
	7.	The state of hybridiza	tion of carbon atom in	methane is	_•	
		(A) SP^3	(B) SP^2	(C) SP	(D)	dSP ²
	8.	Formula of chloroform	n is	100 X 30		
		(A) CH ₃ Cl	(B) CC345	(C) CI	I_2CI_2 (D)	CHCl ₃
	9.	During nitration of be	nzene, the active nitrat	ing agent is		
		(A) NO ₃	(B) NO_2^+	(C) N	O_2^- (D)	HNO ₃
	10.	For which mechanism	the first step involved	is same?		
		(A) E ₁ and E ₂			1 and E_2 (D)	E_1 and $S_N 1$
	11.	Which compound sho	ws hydrogen bonding?			
		(A) C_2H_6	(B) C ₂ H ₅ Cl	pakcity CF	H_3OCH_3 (D)	C ₂ H ₅ OH
	12.		ng will have the highest			
		(A) mathanal	(B) ethanal	(C) pro	panal (D)	2-hexanone
	13.	Acetic acid is manufa	ctured by			
		(A) distillation	(B) fermentation	(C) ozo	onolysis (D)	esterification
	14.	Which of these polyn	ners is an addition poly	mer?		
			(B) polystyrene		rylene (D) epoxy resin
	15.	Phosphorus helps the	growth of			
		(A) root	(B) leave	(C) ste	em (D)	seed
	16.	The pH range of the a	acid rain is			
		(A) 7-6.5		(C) 6-	-5.6 (D) less than 5
	17.	Which one heavy me	tal is highly toxic and o	loes not has safe li	mit?	
		(A) Hg	(B) Ca	(C) M) Al
						22-33000

CHEMISTRY

(Intermediate Part-II, Class 12th) 422

Paper II

(Group - II)

Time: 2:40 Hours

SUBJECTIVE

Marks: 68

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

2. Write short answers to any EIGHT questions.

(SECTION - I) pakcity.org

- Why the second value of electron affinity of an element is usually shown with a positive sign? i.
- Lanthanide contraction controls the atomic sizes of elements of 6th and 7th periods. Give reason briefly. ii.
- KO₂ is used in breathing equipments for mountaineers and in space crafts, why? iii.
- Aqueous solution of Na₂CO₃ is alkaline in nature. How it can be justified? iv.
- What is the structure of CO₂ and SiO₂ and why they differ from each other? v.
- How boric acid is prepared on commercial scale from colemanite? vi.
- vii. How moderately dilute and conc. HNO₃ reacts with zinc?
- viii. Why is SO₃ dissolved in H₂SO₄ and not in water?
- ix.
- x.
- xi.
- How digestion process is carried out in paper industry?

 What reactions take place in the setting of What reactions take place in the setting of cement from 01 to 07 days? xii.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- What is Teflon? Write down its formula and uses. i.
- ii. Bleaching powder acts as an oxidizing agent. Explain.
- iii. Define metamerism. Give an example.
- iv. What are heterocyclic compounds? Give two examples.
- How methane and ethane can be prepared from sodium acetate? v.
- Write down any two uses of ethyne. vi.
- vii. State and explain Markownikov's rule with an example.
- viii. What is Grignard's reagent? How it can be prepared?
- ix. Define nucleophile by giving its two examples.
- How is polystyrene prepared? Give its two uses. X.
- xi. What is meant by denaturation of proteins?
- xii. Write down names of nitrogenous bases present in DNA.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. How can you prepare m-chloronitrobenzene from benzene?
- ii. Draw the structure of anthracene and phenanthrene.
- iii. What is Dow's method?
- What do you mean by denaturing of alcohol? iv.

(Turn Over)

v.

vi.

Write down four uses of formaldehyde.

What are essential and non-essential amino acids?

	vii.	Why the boiling points of carboxylic acids are relatively high?
viii.		How is oil spillage affecting the marine life?
ix.		What is biological oxygen demand (BOD)?
		(SECTION - II)
N	ote:	Attempt any THREE (3) questions from Section II
5.	(a)	Explain periodic trends in the following physical properties: (4)
		i) Ionization energy ii) Metallic character
	(b)	Discuss the importance of oxides of lead in paints: (4)
6.	(a)	Write down names and formulas of four minerals of sodium. 1x4 (4)
	(b)	Give systematic names to following complexes.
		i) $Na_3[CoF_6]$ ii) $K_2[PtCl_6]$
		iii) [Cr(OH) ₃ (H ₂ O) ₃] iv) [Co(NH ₃) ₆]Cl ₃
7.	(a)	Define hybridization. Explain SP hybridization with the formation of ethyne. (4)
	(b)	Compare S_N1 reactions with S_N2 reactions by four points. (4)
8.	(a)	Give the mechanism of the following reactions: 2+2 (4)
		i) Ethene with Br ₂ ii) Ethene with ozone
	(b)	What are condensation reactions? Explain the mechanism of Aldol condensation. 1+3 (4)
9.	(a) (b)	Write down four methods of preparation of benzene. Write down reactions of phenol in which benzene ring is used. pakcity.org (4)
		316-422-33000

Roll No.	of Candidate :	(INTERMEDIA	ATE PART-I	I) 421 - (II)	Paper II	(Group – I
Time: 20	0 Minutes	OBJECTIV	E Co	de: 8483		Marks: 17
fill	u have four choices for ear that circle in front of that of cles will result in zero ma per and leave others blank.	question number. U rk in that question.	se marker or pe	en to fill the circ	les. Cutting or fi	lling two or more tive type question
1. 1.	The strength of binding of	energy of transition	n elements dep	ends upon:		oakcity.o
	(A) number of electron	pairs	(B)	number of unp	paired electrons	
	(C) number of neutrons		(D)	number of pro	tons	
	Which compound shows (A) CH ₃ OH	maximum hydrog (B) C ₂ H ₅ Cl		th water? CH ₃ -O -CH ₃	(D) C ₆ H ₅	ЮН
3.	SN ₂ reactions can be bes	t carried out with				
	(A) primary alkyl halid	es	` '	ry alkyl halides	S	
	(C) tertiary alkyl halide		(D) all of the			
4.	The solution of which ac					
	(A) formic acid	(B) acetic acid	(C)	befizoic acid	(D) buta	noic acid
5.	The oxide of Beryllium			200		
	(A) acidic	(B) basic	. ,	amphoterio	(D) none	
6.	Which of the following		M	41.		
	(A) acetaldehyde	(B) acetone	2//	butanone	(D) 3-pe	ntanone
7.	Which of the following i	is not a fatty acid?	NS		m> 1	,
	(A) propanoic acid	(B) acetic acid	(C)	phthalic acid	(D) buta	noic acid
8.	Which is the strongest as (A) HClO	(B) HClos		HClO ₃	(D) HC	.O ₄
9.	Which element belongs	VAIN	ne periodic tab	le?		
	(A) barium	(B) lodine	(C)	lead	(D) oxyg	gen
10.	Micro-nutrients are requ			No. Co.		
	(A) 4-40 g	∕B) 6-200 g		6 – 200 kg	(D) 4 -4	40 kg
11.	Select from the following			tarrorchin	(D) (AVI	av
	(A) CH ₃ - CH ₂ - OH					$_3$ – CH $_2$ – Br
12.	Which of the following			_		_
	(A) O ₂	(B) O_2^{T}	(C)	O_2	(D) O_2^2	
13.	Which one of the follow	ving has the lowest	melting point	?		
	(A) Be	(B) Mg	(C)	Ca	(D) Sr	
14.	Which one of the follow	ving compounds w	ill react with F	ehling's solution	on?	
15.	(A) C₂H β-β'- dichloroethyl sul	(B) CH₃CHO phide is commonly		CH₃COOH	(D) CH	₃COCH₃
	(A) laughing gas	(B) mustard gas	s (C)	phosgene gas	(D) bid	-gas
16.	The benzene molecule of	contains				
	(A) three double bond	S	(B) two do	uble bonds		
	(C) one double bond		(D) delocal	ized π-electron	charge	
17.	The halogen with the lo	west melting and	boiling points	is		
	(A) fluorine	(B) chlorine	(C)	bromine	(D) iod	ine
					318-(II)	-421-30000

HEMISTRY (INTERMEDIATE PART-II) 421

Paper II

(Group - I)

Time: 2:40 Hours SUBJECTIVE Marks: 68

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

pakcity.org

(SECTION - I)

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. Why the size of an anion is larger than its neutral atom?
- ii. What is the role of shielding effect on ionization energy?
- iii. Write down electronic configuration of Na and Ca.
- iv. Why the group I-A elements are called alkali metals?
- v. Give four uses of borax.
- vi. Write down two points about the peculiar behaviour of carbon from its group.
- vii. What happens when borax is heated with NH₄Cl. Write down balanced equation.
- viii. Write down formulas of the following minerals:
 - (a) Galena (b) Heavy Spar
- ix. Sulphuric acid is a dehydrating agent. Prove it by giving two equations.
- x. Briefly describe the role of nitrogen in plants.
- xi. Write down the major steps involved in the synthesis of urea fertilizer.
- xii. What are the raw materials used in the manufacture of cement?

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. Prepare Cl₂O₇ with the help of chemical reaction.
- ii. Prepare HClO₄. Also write down its two properties.
- iii. Write down any four uses of bleaching powder.
- iv. Write down the name of any four methods for prevention of corrosion.
- v. How Zinc coating or anode coating prevents the iron from corrosion?
- vi. Describe the x-rays structure of benzene.
- vii. Prepare benzene and toluene from alkane with equation.
- viii. Write down the reaction of acetone with 2, 4 dinitrophenylhydrazine.
- ix. Write down any four uses of acetaldehyde.
- x. How acetic acid is prepared from acetylene?
- xi. Write down the chemical reaction of CH₃COOH with (i) C₂H₅OH (ii) NH₃
- xii. How would you convert acetic acid into acetic anhydride?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

318-421-30000

- i. Define geometric isomerism giving one example.
- ii. What are aliphatic compounds? Give their two examples.
- iii. What is clemmensen reduction? Give example. DakCity.org
- iv. Convert (a) Methane into ethane (b) Ethene into ethylene glycol.
- v. State Markownihove's Rule with an example.
- vi. Define nucleophile and substrate. Giving one example in each case.
- vii. Convert ehyl chloride into (a) Ethane (b) Tetraethyl Lead

i) Na ii) PCl₅ iii) CH₃MgI iv) SO Cl₂

- viii. What is denaturing of alcohol?
- ix. How will you distinguish between ethanol and methanol by a chemical test?

(SECTION - II)

5. (a)	Define electron affinity. How does it vary in groups and periods generally in the periodic table.	4
(b)	Give the formula of Sylvite, Borax, Trona, Natron, Dolomite, Alunite, Asbestos and Barite.	4
6. (a)	Discuss the preparation of nitric acid by Birkeland and Eyde's process.	4
(b)	Discuss the binding energies and oxidation states of transition elements.	4
7. (a)	Write down note on reforming of gasoline.	4
(b)	Explain oxidation of aldehydes and ketones with two examples in each case.	4
8. (a)	How alkanes can be prepared by Kolbe's electrolytic method. Write down its mechanism.	4
(b)	What is β -Elimination reaction? Differentiate between E_1 and E_2 elimination reactions.	4
9. (a)	Describe Kekule's structure of benzene.	4
(b)	How does ethanol react with	4

(INTERMEDIATE PART-II) 421 CHEMISTRY

Paper II

(Group - II)

SUBJECTIVE Marks: 68 Time: 2:40 Hours

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

(SECTION - I)

2. Write short answers to any EIGHT questions. Explain the variation in melting points along the short periods.

 $(2 \times 8 = 16)$

ii.

Why the ionic radii of negative ions are larger than the size of their parent atoms?

Why the elements of group IIA are called alkaline earth metals? iii.

- Write down major problems faced during the preparation of sodium hydroxide by the diaphragm cell. iv.
- Write down the four uses of borax. ٧.
- Give the chemistry of borax bead test. vi.
- How will you convert boric acid into borax and vice versa? vii.
- Describe "ring test" for the confirmation of nitrate ions in solution. viii.
- What is "aqua regia"? How does it dissolve gold? ix.
- What are essential nutrient elements? Why these are needed for plant growth? x.
- Write down the important raw materials used for the manufacture of cement. xi.
- What do you mean by prilling of urea?

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- Convert acetic acid into ethane by reduction method. i.
- ii. Give the mechanism for ester formation.
- How acetic acid is prepared from Grignard's Reagent? Give reaction iii.
- How will you distinguish between ethanal and propanal? iv.
- Convert methanol into ethanal? ٧.
- Convert ethyl benzene into benzoic acid. vi.
- What is wurtz-fitting reaction? How it helps to prepare ethyl benzene? vii.
- Why does damaged tin plated iron get rusted quickly? viii.
- ix. Mention any four properties of transition elements:
- Give uses of bleaching powder. X.
- What are oxyacids of chlorine? Give their names and formulas. xi.
- How does chlorine react with NaOH at different temperatures? xii.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- Define functional group? Give examples of oxygen containing functional groups. i.
- How quality of fuel can be improved? ii.
- iii. What is ozonolysis? Write down chemical equation.
- How does propyne react with the following reagents: iv.
 - (a) $AgNO_3/NH_4OH$ (b) Cu_4Cl_2/NH_4OH
- What is \(\beta\)-Elimination reaction? ٧.
- What is nucleophile? Give two examples of nucleophiles. vi.
- How methanol and ethanol can be distinguished? vii.
- Write down two reactions of alcohol in which O -H bond is broken. viii.
- What is mustard gas? How it can be prepared? ix.

(SECTION - II)							
5. (a)	Write down note on ionization energy. Give its variation within groups and periods.						
(b)	Explain peculiar behaviour of beryllium among its group members.	4					
6. (a)	Write down four similarities and four differences between oxygen and sulphur.	4					
(b)	Discuss the following properties of transition metals:	4					
	(i) Para magnetism (ii) Oxidation State						
7. (a)) Define hybridization. Explain SP ² hybridization with one example.						
(b)	(b) Write down any eight uses of formaldehyde.						
8. (a)	How will you convert ethyne into	4					
	(i) Acetaldehyde (ii) Divinyl Acetylene (iii) Chloroprene (iv) Glyoxal						
(b)	(b) What is cannizzaro's reaction? Give an example and mechanism.						
9. (a)	Predict the major products of bromination of the following:						
	(a) Toluene (b) Nitrobenzene (c) Benzaldehyde (d) Benzoic acid						
(b)	How methanol is prepared on industrial scale? Why is it also called wood spirit?	4					

319-421-30000

			Gujranwala E	3oard-2019	, s	pakcity.org	9
Roll N	1 0. 0	f Candidate:			38	6	8
		(New Scheme) Minutes	(INTER PART-I OBJECT Code: 84	IVE	Group: I	Paper: II Marks: 17	
Note:	that circ	circle in front of that que	h objective type question a estion number. Use marked in that question. Attempt a	s A, B, C and D. The r or pen to fill the	circles. Cutting or f	illing two or more	
l.	1.	Formula of chlorofo A) CCl ₄	orm is: B) CHCl ₃	C) CH ₂ Cl ₂	D) CH	1 ₃ Cl	
	2.	The chemist who sy A) Berzelius	nthesized urea from an B) Kolbe	nmonium cyanat C) Wohler		voisier	
	3.	Which of these poly A) animal fat	mers is a synthetic pol B) starch	ymer? C) cellulose	D) pol	yester	
	4.	Co-ordination numb A) 1	er of Pt in [Pt (CL) (B) 2	NO ₂) (NH ₃) ₄] ²⁺ C) 4	is D) 6		
	5.	and the same and the	included in calcarious B) clay	materials except	(() (rine shell	
	6.	The solution of which A) formic acid	ch acid is used for season. B) acetic acid	oning of food?	oid D) but	anoic acid	
	7.	Oxidation of NO in A) N ₂ O	air produces B) N ₂ O ₂	C) N ₂ O ₄	D) N ₂ 0)5	
	8.	Rectified spirit conta A) 80 %	ins about how many p	ercent of alcohol C) 90 %	l? D) 95 9	%	
	9.	The reaction between A) esterification	n fat and NaOH is cal	led: C) fermentation	on D) sap	onification	
	10.	Which of following of A) silicon	element is not abundan B) aluminum		rth's crust? D) oxy	gen	
	11.	Non-metals are prese A) s-block	ent in which block of p B) p-block	eriodic table? C) d-block	D) f-bl	ock	
	12.	Which halogen occur A) fluorine	rs naturally in a positiv B) Chlorine	e oxidation state C) bromine	? D) iodi	ne	
	13.	For which mechanism A) E ₁ and E ₂	ns, the first step involv B) E ₂ and SN ₂	ved is the same? C) SN ₁ and I	E_2 D) E_1	and SN ₁	
	14.	Which of the following A) mathanal	ng will have the higher B) ethanal	st boiling point? C) propanal		exanone	
	15.	Aromatic hydrocarbo A) alkanes	ns are the derivatives B) alkenes	of: C) benzene	D) cycl	ohexane	
	16.	The pH range of the A) $7-6.5$	acid rain is: B) 6.5 – 6	C) 6 - 5.6	D) less		
	17.	Which hydroxide get A) LiOH	s decomposed on heati B) NaOH		D) RbO		
					321-(III)-419-23000	

Gujranwala Board-2019 Group: I Paper: II (INTER PART-II) 419 Chemistry (New Scheme) Marks: 68 SUBJECTIVE Time: 2:40 Hours Note: Section I is compulsory. Attempt any THREE (3) questions from Section II. (SECTION - I) 2. Write short answers to any EIGHT questions. $(2 \times 8 = 16)$ Why the values of the ionization energy decreases down the group? i. Why ZnO is regarded as amphoteric oxide? ii. Why lime water turns milky with CO₂ but becomes clear with excess of CO₂? iii. How boric acid is prepared on commercial scale from Colemanite? iv. Why Aluminium sheets are said to be corrosion free? ٧. Why CO₂ is a gas at room temperature while SiO₂ is a solid? vi. vii. How an aqua regia dissolves gold? viii. How orthophosphoric acid is converted into pyro and metaphosphoric acid? How hot concentrated H₂SO₄ reacts with Cu and Ag metals? ix. Name four macronutrients and also mention per acre range of their requirement. x. Name any four parts of paper making machine. xi. What is "Chemical Oxygen Demand (COD)"? How is it measured? xii. 3. Write short answers to any EIGHT questions. $(2 \times 8 = 16)$ What is "Catalytic Cracking"? i. ii. Compounds containing double bonds are more reactive, give reason. Write mechanism for the addition of halogen in alkene. iii. iv. Prepare benzene from acetylene and n-hexane. Draw structural formulas of p-nitrotoluene and p-Dibenzylbenzene. v. vi. Starting from suitable Grignard reagent prepare cthane and ethyl cyanide. Write reaction to prepare tetra ethyl lead and Nitro ethane vii. viii. Prepare ethanol from starch. Convert ethanol to Iodoform. ix. Write strecker synthesis to prepare amino acid: X. What is glacial acetic acid. xi. Write structural formula of Lysine and Valine. 4. Write short answers to any SIX questions. $(2 \times 6 = 12)$ What is an "Iodized Salt"? i. Why iodine has metallic luster? Justify. iì. Name any two methods to manufacture bleaching powder. Also give reaction for this. iii. Name different forms of Iron and mention which is the purest form? iv. Describe Tollen's test for the identification of aldehydes. ٧. Write any four uses of formaldchyde. vi. vii. Define saponification number with a suitable example. viii. Write two points of difference between a fat and oil. Differentiate with at least two points between "Amylose" and "Amylopectin". (SECTION - II) Explain "Hydration Energy" as periodic property. 5. (a) 4 Point out the eight differences between Li and its group members. (b) What is meant by "Corrosion"? Explain electrochemical theory of corrosion. 6. (a) What is "Acid Rain"? Give detailed effects of acid rain on environment. (b) 4 (a) Write down any four important features of organic compounds. 7. Draw structural formulas of following compounds: 4 (b) i) m-chlorobenzoic acid ii) 2, 4, 6 trinitrotoluene iii) p-hydroxybenzoic acid iv) m-nitrophenol 8. How is ethyne converted into following compounds? Acetaldehyde ii) Chloroprene iii) Acrylonitrile iv) Methyl nitrile (b) Name the following compounds according to I.U.P.A.C system: 4 i) $H_3C - C_2H - C_2H - O - C_3H$ ii) $H_3C - O - C_6H_5$ iv) (H₃C)₃ COH iii) $H_5C_2 - CH - OH$ CH_3 🛭 pakcity.org 9. (a) Discuss "Aldol Condensation" with mechanism. Using ethyl bromide as a starting material, how will you prepare the following (b) compounds: i) n-Butane ethyl alcohol iii) propanoic acid iv) ethene Please visit for more data at: www.pakcity39-23000

JI N	o. of (Candidate:	Gujranwala Boa	rd-2019	‱ p	akcity.org
Chemistry (New Scheme) Time: 20 Minutes			(INTER PART-II) 419-(III) OBJECTIVE Code: 8486		oup: II	Paper: II Marks: 17
Note:	that circles	ircle in front of that question	bjective type question as A, I on number. Use marker or I that question. Attempt as ma	en to fill the circ	les. Cutting or filli	ing two or more
1.	1.	A polymeric substance to a rigid solid is called A) fibre	that is formed in the lid a B) varnish	uid state and th		amide resin
	2.		bitals has planar triangu B) Sp ²		D) dSp ³	
	3.	The electrophile used i A) H ₂ SO ₄	n aromatic sulphonation B) HSO ₄ ⁻¹	n is: C) SO ₃	D) SO ₃ ⁺	
	4.	Which one of the follo A) urease	wing enzymes brings at B) lipase	out the hydroly C) maltase	sis of fats? D) zyma	ase
	5.	Vinyl acetylene combi A) polyacetylene	nes with HCL to form: B) benzene	C) chloroprene	D) divi	nyl acetylene
	6.	Formula of Epsom salt A) MgSO ₄ .7H ₂ O	is: B) MgSO ₄	C) MgCO3	D) Cal	Ig ₃ (SiO ₃) ₄
	7.	Which of the following A) Tollen's reagent	g reagent will react with B) Fehling reagent	both aldchydes C) Barford rea		gnard reagent
	8.	Which metal is used in A) iron	the thermite process be B) copper	cause of its acti C) aluminium	ivity: D) zinc	
	9.	Keeping in view the si A) Mg > Sr	ze of atom, which order B) Ba > Mg	is correct one C) Lu > Ce	D) CL>	·I
	10.	Ecosystem is smaller u A) atmosphere	nnit of: B) biosphere	C) lithosphere	D) hydi	rosphere
	11.	Group VI B of transit A) Zn, Cd, Hg	The state of the s	C) Cr, Mo, W	D) Mn,	Te, Re
	12.	Ammonium Nitrate Fe A) cotton	ertilizer is not used for v B) wheat	which crop? C) sugar cane	D) pad	dy rice
	13.	Which compound is m A) C ₂ H ₅ OH	nore soluble in water? B) C ₆ H ₅ OH	C) CH ₃ COCH ₃	D) n-H	exanol
	14.	Which halogen will re A) I ₂	act spontaneously with B) Br ₂	Au _(S) to produce C) Cl ₂	e Au ³⁺ ? D) F ₂	
	15.	The brown gas formed A) N_2O_5	l, when metal reduce HI B) N ₂ O ₃	NO ₃ to: C) NO ₂	D) N ₂ O)4
	16.	When CO ₂ is made to product formed is: A) propanoic acid	react with ethyl magnes B) ethanoic acid	ium Iodide, fol	lowed by acid b	
	17.		to reduce carboxylic gr B) H ₂ /Pt			

Guiranwala Board-2019 Group: II Paper: II Chemistry (New Scheme) (INTER PART-II) 419 Marks: 68 SUBJECTIVE Time: 2:40 Hours Note: Section I is compulsory. Attempt any THREE (3) questions from Section II. (SECTION - I) 2. Write short answers to any EIGHT questions. Define "Covalent Hydride" with one example. pakcity.org Oxides of non-metals show acidic behavior, give reason. ii. iii. Why 2% of gypsum is added in cement? Aluminium is not found in free state, give reason. iv. CO2 is gas at room temperature while SiO2 is a solid, give reason. ٧. What is "Borax"? vi. Write two reactions in which H₂SO₄ acts as oxidizing agent. vii. viii. Write two differences between Oxygen and Sulpher. Write two methods for the preparation of NO₂. ix. What are phosphatic fertilizers? X. xi. What do you mean by "Setting of Cement"? What is role of chlorofluoro carbons in "Destruction of Ozone"? xii. $(2 \times 8 = 16)$ 3. Write short answers to any EIGHT questions. Define the term "Tautomerism" with an example. ii. Give name and reaction of alkenes which is used to indicate the position of double bond. iii. How is ethyne converted into: a) Ethanal b) Benzene How is benzene converted into m-chloronitro-benzene? iv. v. How will you convert phenol into benzene? How is ethene converted into 1-butanol? vi. vii. Give the reaction which is more useful for the preparation of alkyl chlorides. viii. Give the structural formulae of following compounds: a) Glycerol b) Lactic acid ix. How is ethyl iodide prepared from diethyl ether What is "Peptide Linkage"? X. xi. How is amino acid prepared by strecker synthesis? xii. How is ethanol converted into ethanole acid? 4. Write short answers to any SIX questions. $(2\times 6=12)$ Why HF is weaker acid than HCl? i. ii. Justify that Cl2O7 is the anhydride of per-chloric acid. Complete & balance the following equations: i) $XeF_4 + NH_3 \Rightarrow$ Define "Paramagnetism & Diamagnetism". iv. v. Distinguish chemically between "Acetone" and "Ethyl alcohol". Convert methanol to ethanol. vi. vii. Cellulose is not digested by human intestinal track justify. viii. Point out difference between "Cellulosc" and "Starch". How radiations affect the activity of enzyme? (SECTION - II) 5. (a) State Mendeleev's periodic law and write down the improvements made in the 4 Mendeleev's table. (b) Write down eight points in which lithium differs from other elements of group IA. 4 6. (a) Explain the following with two examples each: 2+2 i) Ligand ii) Co-ordination number (b) What is smog? Explain the pollutants which are main cause of photochemical smog. 1+3 7. What is chain isomerism? Draw all the possible skeletal formulae of hexane. (a) 1+3 (b) Write two reactions for each to justify benzene as saturated and as unsaturated 2+2 compound. 8. (a) Write Kolbe's method of preparation of ethyne along with its mechanism. 4 (b) How does ethanol react with: 4 PCl₃ iii) Na CH₃COOH i) ii) SOCL 9. (a) How C₂H₅MgBr reacts with the following: iii) HCHO ii) CO_2 iv) CH₁COCH₂ Write one laboratory and one industrial method for preparation of acetaldehyde. Please visit for more data at: www.pakentytbre1000

Chemistry (New Scheme)

(INTER PART-II) 418 - (I)

Paper II

Time: 20 Minutes

OBJECTIVE

Marks: 1"

Code: 8481

vote:	fill t	thave four choices for eathat circle in front of that dies will result in zero mater and leave others blank.	questic rk in t	on number. Use marke	as m	an to fill the circles. (lutting	or filling two or an
	1.	Zinc oxide is an exam	ole of	₹	⊗ p	akcity.org 🎇	0	
•		(A) acidic oxide		basic oxide	((')	amphoteric oxide	7135	rentes!
	2.	Down's cell is used to			(4.)	amphotette oxide	(12)	neura:
	2.				100	andium undersum	7733	walton bit on a
	2	(A) sodium hydroxide		sodium metai	(0)	sodium carbonate	(0)	sodium pie ir no. iii
	3.	Bauxite is a mineral of		D _a	100	Ma	di.	• (
		(A) B		Be	(C)	Mg	(12)	A!
	4.	Oxidation of NO in air	•				0.00.02400430	12000 No. 101
	121	(A) N_2O_3		N ₂ O ₅		N_2O_4	(D)	N_2O
	5.	Which one of the follow						
		(A) HF	(B)	HCL	(C)	HIRI (199)	(0)	HI
	6.	Group VIB of transition	n elem	ients contains	. ^	10		
		(A) Zn, Cd, Hg	(B)	Fe, Ru, Os	CART.	G. MO. W	(D)	Mn. Ic. E.
	7.	The state of hybridizati	on of	carbon atom in metho		•		
		(A) SP	(B)	SP ²	(C)	SP3	(D)	dSP^2
	8.	Synthetic rubber is mad	le by p	olymerization of		200		
		(A) chloroform		acetylene	(C)	divinylacetylene	(D)	chloroprene
	9.	The carbon-carbon (C-0		VAIA		ATTION		**************************************
		(A) $1.34 \Lambda^0$		1.20 A°		1.39 A ^o	(D)	1.54 A
10	U.	Which one of the follow	10/0		10			
		(A) BF ₃		H ₂ O		H ₂ S	(D)	NIIs
l	1.	Which one of the follow			-			To the second se
					akc	zymase	(D)	maltase
12	2.	Cannizzaro's reaction is			1	· · ·	117)	7,7,4,7,1
		(A) acetaldehyde	•	propanol	(C)	propanone	(1))	benz aldeliyae
1.3	3	Which one of the follow		1.				Della dide il sea
•••	•	(A) acetic acid		carbonic acid		•		formle acc:
14	1	Which one of the follow					(17)	white at .
	٠,	(A) animal fat					7255	mallation a
15	;							cellalose
1.		Which one of the follow				The state of the s		
16		(A) N.P.K			((-)	N, Ca, P	(17)	i ,
16		The pH range of the acid			(0)	10 51	(1)	
15		(A) $7-6.5$		6.5 - 6.0				
17		The temperature in the n	on-ro	tating champer in the	incin	eration of industrial	and I	eazardous Waste
		process has a range.						

326-(I)-418-34500

(A) 500 °C to 900 °C (B) 950 °C to 1300 °C (C) 250 °C to 500 °C (D) 150 °C to 250 °C