Roll No

(To be filled in by the candidate)

MATHEMATICS

(Academic Sessions 2020 - 2022 to 2023 - 2025)

Q.PAPER - I (Objective Type)

224-1st Annual-(INTER PART – I)

Time Allowed: 30 Minutes

GROUP-I Maximum Marks: 20

PAPER CODE = 6195

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

	two or more circles will resul	t in zero mark in that quest		cook. Cutting or mining
1-1	Rank of the matrix $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$	is:		
	(A) 0	(B) 1 •	(C) 2	(D) 3
2	The fraction $\frac{x+1}{x^2+2}$ is	:		
	(A) Improper fraction	(B) Proper fraction	(C) Identity	(D) Mixed
3	The multiplicative invers	se of (1,0) is:		
	(A) (1,0)	(B) (0,1)	(C) $(-1,0)$	(D) (0,-1)
4	The roots of $2x^2 - 7x + 3$	=0, are:	(1/2)	
	(A) Equal	(B) Complex	(C) Irrational	(D) Rational
5	The value of $(-i)^9$ is:	W. C.		
	(A) -1	(B) 1 (b)	(C) i	(D) −i •
6	If A is a square matrix of	f order 3 and $ A =2$,	then $ 2A = :$	
	(A) 16 •	(B) 8	(C) 6	(D) 2
7	The number of elements	of the power set of A =	$= \{a, \{b, c\}\}$ are	:
	(A) 2	(B) 4 CATO	(C) 6	(D) 8
8	If $A \subseteq B$, then:	Accorda Newton's Vision Strangle Cay Mellon	32/	
	$(A) A \cup B = A$	(B) $A \cap B = B$	(C) $B \cup A = A$	(D) $A \cup B = B$
9	If ω is a cube root of un	nity, then value of $(1+a)$	$(\omega - \omega^2)^3$ is:	
	(A) 8ω	(B) $8\omega^2$	(C) −8 •	(D) 8
10	The converse of $\sim p \rightarrow 0$	q is:		
	(A) $p \rightarrow q$	(B) $p \rightarrow \sim q$	(C) $\sim q \rightarrow p$	(D) $q \rightarrow \sim p$
11	$\cos 2\theta =$:			
	(A) $1-\sin^2\theta$	(B) $1-2\sin\theta$	$(C) \bullet 1 - 2\sin^2\theta$	(D) $2\sin^2\theta - 1$
12	The G.M. between $\frac{1}{a}$ a	nd $\frac{1}{b}$ is :		
	(A) $\pm \sqrt{ab}$	(B) $\pm \frac{1}{ab}$	(C) $\pm \sqrt{\frac{1}{ab}}$	(D) ab

Vab

			(2)		@ P-	
1-13	If $\cos x = -\frac{\sqrt{3}}{2}$, then the	refere	nce angle is:			:
	(A) $\frac{\pi}{3}$	(B)	$\frac{\pi}{6}$	(C)	$-\frac{\pi}{3}$	(D) $-\frac{\pi}{6}$
14	If $\sin \theta < 0$ and $\cot \theta > 0$, ther	θ lies in quadran	t :		
	(A) IV	(B)	III •	(C)	II	(D) I
15	The value of $\sin^{-1}(\cos\frac{\pi}{6})$	-) is e	equal to:			
	(A) $\frac{\pi}{3}$	(B)	$\frac{\pi}{6}$	(C)	π	(D) $\frac{3\pi}{2}$
16	The relation between A ,	G, H	is:	1000	·	
	(A) $G^2 = AH \bullet$	(B)	$H^2 = AG$	(C)	$A^2 = HG$	(D) $A > G < H$
17	The number of terms in	the ex	cpansion of $(a+x)$	$)^n$ is	:	
	(A) n-1	(B)		(C)	n + 2	(D) n + 1
18	$\sqrt{\frac{s(o-c)}{ab}} = :$	Jan				
	(A) $\cos \frac{\alpha}{2}$	(B)	sin 2 Angeles Antonio Angeles	(C)	$\cos\frac{\gamma}{2}$	(D) $\sin \frac{\gamma}{2}$
19	A die is thrown, what is	the pr		dots:		
	$(A) \frac{1}{6} \bullet$	(B)	pakcity.org	(C)	$\frac{1}{2}$	(D) $\frac{2}{3}$
20	The period of $\cos \frac{x}{6}$ is	:				

Please visit for more Download PDF at: www.pakcity.org 24-224-I-(Objective Type)- 11875 (6195)

(C) 6π

(D) 12π

(B) 3π

(A) 2π

Koll No (To be filled in by the candidate) (Academic Sessions 2020 - 2022 to 2023 - 2025) **MATHEMATICS**

224-1st Annual-(INTER PART - I)

Time Allowed: 2.30 hours Maximum Marks: 80

PAPER – I (Essay Type)

GROUP-I SECTION - I

2. Write short answers to any EIGHT (8) questions :

16

- (i) Write the symmetric property and transitive property of equality of the real numbers.
- (ii) Show that $z\bar{z} = |z|^2 \ \forall z \in C$
- (iii) Find out real and imaginary parts of $(\sqrt{3}+i)^3$
- (iv) Find the modulus of $1-i\sqrt{3}$
- (v) Construct truth table for $(p \land \sim p) \rightarrow q$
- (vi) If a, b are elements of a group G, then show that $(ab)^{-1} = b^{-1}a^{-1}$
- (vii) If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b.
- (viii) If A and B are square matrices of the same order, then explain why in general $(A - B)^2 \neq A^2 - 2AB + B^2$.
- (ix) Define skew-hermitain matrix.
- (x) Evaluate $\omega^{28} + \omega^{29} + 1$
- (xi) When $x^4 + 2x^3 + kx^2 + 3$ is divided by x 2, the remainder is 1. Find the value of k.
- (xii) If α, β are the roots of $x^2 px p = 0$, prove that $(1+\alpha)(1+\beta) = 1-c$

3. Write short answers to any EIGHT (8) questions :

- (i) Define partial fractions. (ii) If $\frac{7x+25}{(x+3)(x+4)} = x+3 + \frac{B}{x+4}$, then find B.
- (iii) Find the number of terms in A.P if $a_1 = 3$; d = 7 and $a_n = 59$
- (iv) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P., show that common ratio is $\pm \sqrt{\frac{a}{c}}$
- (v) Find the sum of $\frac{9}{4} + \frac{3}{2} + 1 + \frac{2}{3} + \frac{-\infty}{\text{bakcity.org}}$
- (vi) If 5 is H.M. between 2 and b, then find b.
- (vii) Write $\frac{(n+1)(n)(n-1)}{3 \ 2 \ 1}$ in factorial form.
- (viii) Prove that ${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1}$
- (ix) Determine probability of getting 2 heads in two successive tosses of balanced coin.
- (x) Show that $8.10^n 2$ is divisible by 6 for n = 1 and n = 2
- (xi) Find the 6th term in the expansion of $\left(x^2 \frac{3}{2r}\right)^{10}$
- (xii) Using binomial theorem, find value of $\sqrt[3]{65}$ correct to three places of decimal.

4. Write short answers to any NINE (9) questions :

- (i) Verify $\tan 2\theta = \frac{2 \tan \theta}{1 \tan^2 \theta}$ for $\theta = 45^\circ$
- (ii) Prove the identity $\frac{1+\cos\theta}{1-\cos\theta} = (\cos ec\theta + \cot\theta)^2$
- (iii) If α , β and γ are the angles of triangle ABC then prove that $\tan(\alpha + \beta) \tan \gamma = 0$
- (iv) Express as product $\cos 6\theta + \cos 3\theta$
- (v) Prove that $1 + \tan \alpha \tan 2\alpha = \sec 2\alpha$
- (vi) Prove that period of cosine is 2π
- (vii) Find the period of $\cos ec 10x$
- (viii) Draw the graph of the function $y = \cos x$, $xt \left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$
- (ix) Write formula for $\cos \frac{\alpha}{2}$ and $\cos \frac{\gamma}{2}$
- (x) Measure of two sides of a triangle are in the ratio 3:2 and angle including these sides is 57°. Find the remaining two angles.
- (xi) Define circum centre.
- (xii) Without using calculator / table, show that $2\cos^{-1}\frac{4}{5} = \sin\frac{24}{5}$ (xiii) Solve the trigonometric equation $\cos ec^2\theta = \frac{4}{3}$ SECTION II : Attempt any THREE questions.

- 5. (a) Show that $\begin{vmatrix} a+\lambda & b & c \\ a & b+\lambda & c \\ a & b & c+\lambda \end{vmatrix} = \lambda^2 (a+b+c+\lambda)$ 5
- (b) If the roots of the equation $x^2 px + q = 0$ differ by unity, prove that $p^2 = 4q + 1$ 5
- 6. (a) Resolve $\frac{1}{(x-3)^2(x+1)}$ into partial fractions 5
 - (b) Find n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the A.M. between a and b 5
- 7. (a) Two dice are thrown. E_1 is the event that the sum of their dots is an odd numbers and E_2 is the event that 1 is the dot on the top of the first die. Show that $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$ 5
 - (b) If $y = \frac{1}{3} + \frac{1.3}{2!} \left(\frac{1}{3}\right)^2 + \frac{1.3.5}{3!} \left(\frac{1}{3}\right)^3 + ---$ prove that $y^2 + 2y 2 = 0$ 5
- 8. (a) Reduce $\sin^4 \theta$ to an expression involving only function of multiple of θ , raised to the first power.
 - (b) Prove that $\Delta = r^2 \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$ 5
- (a) Find the values of all the trigonometric functions of the angle -675° . 5
 - (b) Prove that $\sin^{-1}\frac{5}{12} + \sin^{-1}\frac{7}{25} = \cos^{-1}\frac{253}{325}$ 5

Roll No			(To be filled in by the	
	HEMATICS (A) ER – I (Objective Type)	cademic Sessions 2020		5) e Allowed:30 Minute
Q.I AI	LK-1 (Objective Type)	GROUP – II		simum Marks: 20
		PAPER CODE =		
Note:	Four possible answers A, B fill that circle in front of the			
	two or more circles will res			or book. Cutting or mining
1-1	If A is a matrix of ord	ler 2×3 , then order o	f A'A is:	
	(A) 3 × 3	(B) 2 × 3	(C) 3 × 2	(D) 2 × 2
2	The equation $x(x-1)$:	$= x^2 - x$ is :		
	(A) Conditional	(B) Identity	(C) Exponential	(D) Radical
3	The multiplicative inve	erse of -i is:		
	(A) (1,-1)	(B) $(0, -1)$	(C) (0,1)	(D) (1,0)
4	If ω is a cube root of	unity, then $(1+\omega+\omega^2)$) ⁸ = :	
	(A) 0 •	(B) 256	(C) 256	(D) $256\omega^2$
5	Which of the following	sets has closure prope	erty w.r.t. addition:	
	(A) { 1 }	(B) { 0 }	(c) {0,1}	(D) { 1, -1 }
6	If $ A = 9$, then $ A^t $	is:		
			(0)	(D) 0
	(A) 81	(B) 1 0 0	(C) =9	(D) 9 •
7	The converse of p	q is/:	30//	
	$(A) \sim p \rightarrow \sim q$	(B) $\sim q \rightarrow p$	(C) $q \rightarrow p$	(D) $p \rightarrow \sim q$
8	If $A = \{\}$, then the pow	er set of A is:		
	(A) φ	(B) {0}	(C) { }	(D) $\{\phi\}$
9	rc al+r o al	pakcity.or		
9	If $4^{1+x} = 2$, then $x = :$	parcity.or	9	_
	(A) 0	(B) -2	(C) $-\frac{1}{2}$	(D) $\frac{1}{2}$
10	If $A \cap B = A$, then:			Company of the Compan
10	**	(D)	(0)	(D) D 4 4
		(B) A ⊆ B •	(C) $A \cup B = A$	(D) $B \cup A = A$
11	$\sin\left(270^\circ + \theta\right) = :$			
	(A) $\sin \theta$	(B) $\cos \theta$	(C) − cos θ	(D) $-\sin\theta$
12	Which cannot be the ter	rm of a G P :		
	(A) 1	(B) -1	(C) 0 •	(D) i

1-13	If $\sin x = -\frac{\sqrt{3}}{2}$, then the	e reference	angle is:	
	$(A) -\frac{\pi}{6}$	(B) $\frac{\pi}{6}$	(C) $-\frac{\pi}{3}$	(D) $\frac{\pi}{3}$
14	Which angle is quadrar	ital angle	•	
	(A) 45°	(B) 60°	(C) 120°	(D) 270°
15	With usual notation, $\frac{a}{2}$	$\frac{bc}{R}$ = :		
	(A) r	(B) r ₁	(C) A	(D) r_2
16	H.M. between 3 and	7 is :		
	(A) 5	(B) $\sqrt{2}$	$\overline{1}$ (C) $\pm \sqrt{21}$	(D) $\frac{21}{5}$
17	The number of terms in	the expan	usion of $(a+x)^n$ is:	
	(A) n-1	(B) n	(C) n+2	(D) n + 1 ●
18	The period of $\cos 2x$ is			
	(A) π •	(B) 2π	DUCATION (C) 4π	(D) $\frac{\pi}{2}$
19	If $r = n$, then ${}^{n}C_{r} = :$		Accessed a Neithford's triangle Lass Mexicon Fiscas	
	(A) 0	(B) 1	pakcity.org (C) n	(D) n!
20	$\sin^{-1}(0) + \cos^{-1}(0) = :$			
	(A) 0	(B) $\frac{\pi}{2}$	$ (C) \frac{\pi}{3} $	(D) $\frac{\pi}{4}$

Please visit for more Download PDF at: www.pakcity.org 25-224-II-(Objective Type)- 11750 (6196)

pakcity.or (To be filled in by the candidate)

MATHEMATICS

(Academic Sessions 2020 - 2022 to 2023 - 2025) 224-1st Annual-(INTER PART - I)

PAPER – I (Essay Type)

GROUP - II

Time Allowed: 2.30 hours Maximum Marks: 80

SECTION-I

2. Write short answers to any EIGHT (8) questions :

16

- (i) Show that $z^2 \overline{z}^2$ is a real number.
- (ii) Find the modulus of $1-i\sqrt{3}$
- (iii) Simplify by justifying each step $\frac{\frac{1}{4} + \frac{1}{5}}{\frac{1}{1} \frac{1}{1}}$
- (iv) Check the closure property w.r.t. addition and multiplication for the set $\{0, -1\}$
- (v) Determine whether the statement $p \land \sim p$ is tautology or not.
- (vi) Define semi-group.

(vii) If
$$A = \begin{bmatrix} 1 \\ 1+i \\ i \end{bmatrix}$$
, find $A(\overline{A})^{t}$

(viii) Define reduced echelon form of a matrix, with example,

(ix) If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$
, verify that $(A^{-1})^t = (A^t)^t$
(x) Discuss nature of roots of $9x^2 - 12x + 4 = 0$

- (xi) Solve the equations $x^2 + y^2 = 5$, $2x^2 + 3y^2 = 6$
- (xii) Find the condition that one root of $x^2 + px + q = 0$ is square of other.

3. Write short answers to any EIGHT (8) questions :

16

- (i) Define proper rational fraction.
- (ii) For the identity $\frac{1}{(x-1)(2x-1)(3x-1)} = \frac{A}{x-1} + \frac{B}{2x-1} + \frac{C}{3x-1}$ calculate the value of A.
- (iii) Find the next two terms of 1, 3, 7, 15, 31, ----
- (iv) How many terms are there in the A.P. in which $a_1 = 11$, $a_n = 68$, d = 3
- (v) Find three A.Ms between $\sqrt{2}$ and $3\sqrt{2}$. (vi) Find the 12th term of 1 +i, 2i, -2 + 2i, ----
- (vii) Show that ${}^{16}C_{11} + {}^{16}C_{10} = {}^{17}C_{11}$
- (viii) Evaluate ${}^{12}C_3$
- (ix) What is sample space and events?
- (x) State principle of mathematical induction.
- (xi) Calculate (9.98)⁴ by means of binomial theorem.
- (xii) Prove that $n! > 2^n 1$ for n = 4,5

4. Write short answers to any NINE (9) questions :

18

- (i) What is length of an arc intercepted on a circle of radius 14 cm by the arms of a central angle 45°?
- (ii) Convert 54° 45' into radians.

(Turn Over)

5

5

5

5

5

- **4.** (iii) If α, β, γ are angles of triangle ABC then prove that $\cos\left(\frac{\alpha+\beta}{2}\right) = \sin\frac{\gamma}{2}$
 - (iv). Find the value of $\cos \frac{\pi}{12}$
 - (v) Express $\sin(x+30^\circ) + \sin(x-30^\circ)$ as a product.
 - (vi) Define periodic function and period of trigonometric function.
 - (vii) Find period of $\cos \frac{x}{6}$
 - (viii) Draw the graph of $y = \sin x$ from 0 to π .
 - (ix) State law of sines.
 - (x) If sides of triangle are 16, 20, 23, find its greatest angle.
 - (xi) Show that $r_1 = s \tan \frac{\alpha}{2}$
 - (xii) Find value of $\cos \left(\sin^{-1} \frac{1}{\sqrt{2}} \right)$
- (xiii) Show that $\tan \left(\sin^{-1} x\right) = \frac{x}{\sqrt{1-x^2}}$ SECTION – II

 Attempt any THREE questions.

 5. (a) Solve the system of equations by Cramer's rule: 2x + 2y + z = 3 3x - 2y - 2z = 1

$$2x + 2y + z = 3$$

$$5x + y - 3z = 2$$

- (b) If α, β roots of $x^2 3\alpha + 5 = 0$ form the equation whose roots are $\frac{1 \alpha}{1 + \alpha}$ and $\frac{1 \beta}{1 + \beta}$
- 6. (a) Resolve $\frac{x^4}{1-x^4}$ into partial fractions 5
 - (b) The sum of an infinite geo-metric series is 9 and the sum of the squares of its terms is $\frac{81}{5}$. Find the series.
- 7. (a) Find the values of n and r when ${}^{n-1}C_{r-1}$; ${}^{n}C_{r}$: ${}^{n+1}C_{r+1} = 3:6:11$ 5
 - (b) If x is so small that its cube and higher powers can be neglected,

then show that :
$$\sqrt{\frac{1-x}{1+x}} \approx 1-x+\frac{x^2}{2}$$

- 8. (a) Reduce $\cos^4 \theta$ to an expression involving only function of multiples of θ , raised to the first power.
 - (b) Prove that $r_3 = 4R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \sin \frac{\gamma}{2}$ 5
- 9. (a) Show that the area of a sector of a circular region of radius r is $\frac{1}{2}r^2\theta$, where θ is the circular measure of the central angle of the sector.
 - (b) Prove that $\sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$

Roll No	Lahore Board-2023 (To be filled in by the candidate)
MATH	IEMATICS (Academic Sessions 2019 – 2021 to 2022 – 2024) ER – I (Objective Type) 223-1 st Annual-(INTER PART – I) Time Allowed: 30 Minutes
Q.PAP	GROUP – I Maximum Marks : 20
	PAPER CODE = 6195 The choice which you think is correct.
Note:	Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling
	two or more circles will result in zero mark in that question.
1-1	Sum of cube roots of unity is:
	(A) 2i (B) -1 (C) 0 (D) 1
2	If ${}^{n}P_{2} = 30$ then $n = :$
	(A) 5 (B) 6 (C) 7 (D) 8
3	The modulus of complex number $1-i\sqrt{3}$ is:
	(A) $1+i\sqrt{3}$ (B) $-1+i\sqrt{3}$ (C) 2 (D) $\frac{1}{2}$
4	Arithmetic mean between $\sqrt{2}$ and $3\sqrt{2}$ is :
	(A) $2\sqrt{2}$ (B) $\sqrt{6}$ (C) $\frac{3}{\sqrt{2}}$ (D) $\frac{\sqrt{2}}{2}$
	(A) $2\sqrt{2}$ (B) $\sqrt{6}$ (C) $\frac{3}{\sqrt{2}}$ (D) $\frac{\sqrt{2}}{2}$
5	If a function $f: A \to B$ is such that Ran $f \not\subset B$ i.e. Ran $f \neq B$ then f is called:
	(A) Into function (B) Onto function
	(C) Injective function (D) Bijective function
6	Partial fractions of $\frac{x^2+1}{(x+1)(x-1)}$ are of the type:
	(A) $\frac{A}{A} + \frac{B}{A}$ (B) $1 - \frac{A}{A} - \frac{B}{A}$
	x+1 $x-1$ $x+1$ $x-1$
	(A) $\frac{A}{x+1} + \frac{B}{x-1}$ (B) $1 - \frac{A}{x+1} - \frac{B}{x-1}$ (C) $1 + \frac{A}{x+1} + \frac{B}{x-1}$ (D) $\frac{Ax+B}{x+1} + \frac{C}{x-1}$
7	Quadratic equation whose roots are 2 and 3:
	(A) $x^2 - 5x + 6 = 0$ (B) $x^2 + 5x + 6 = 0$ (C) $x^2 - 5x - 6 = 0$ (D) $x^2 + 5x - 6 = 0$
8	If A is a square matrix of order 3 then $ KA = :$
	(A) $K A $ (B) $K^{3} A $ (C) $K^{2} A $ (D) $ A $
9	7 th term of the sequence 2, 6, 11, 17, is :
	(A) 24 (B) 26 (C) 30 (D) 32
10	The trivial solution of homogeneous linear equation is:
	(A) $(0,0,1)$ (B) $(0,1,0)$ (C) $(1,0,0)$ (D) $(0,0,0)$
11	Domain of the function $y = \cot x$ is:
	(A) $-\infty < x < +\infty$ (B) $-\infty < x < +\infty$, $x \neq \frac{(2n+1)\pi}{2}$, $n \in \mathbb{Z}$
	(C) $-1 \le x \le 1$ (D) $-\infty < x < +\infty$, $x \ne n\pi$, $n \in \mathbb{Z}$

(2)

- If A and B are overlapping events then $P(A \cup B) = ---$:
 - (A) P(A) + P(B)

- (C) $P(A)+P(B)-P(A\cap B)$ (D) 1-P(B) pakcity.org
- The solutions of $\cos ec\theta = 2$ which lie in $[0, 2\pi]$:
 - (A) $\frac{4\pi}{3}$, $\frac{5\pi}{3}$ (B) $\frac{2\pi}{3}$, $\frac{4\pi}{3}$
- (C) $\frac{\pi}{4}$, $\frac{3\pi}{4}$ (D) $\frac{\pi}{6}$, $\frac{5\pi}{6}$

- $14 \left[\cos\left(\frac{\pi}{2} \beta\right) = ---$
 - (A) $-\sin \beta$ (B) $\sin \beta$
- (C) $\cos \beta$
- (D) $-\cos\beta$

- $| 15 | \cos^{-1}(-x) = :$
 - (A) $\cos^{-1} x$ (B) $-\cos^{-1} x$

- 2nd term in the expansion of $\left(\frac{a}{2} \frac{2}{a}\right)^6$ is:

 (A) $\frac{a^6}{64}$ (B) $\frac{15}{4}$ a^2 (C) -20If $\sin \theta = \frac{12}{13}$ and terminal arm is in quad – I then $\cos \theta = ---$:
- (B) $\frac{-5}{13}$ (C) $\frac{5}{13}$
- (D) $\frac{-13}{5}$

- In any triangle with usual notations $\sin \frac{\gamma}{2} = :$
 - (A) $\sqrt{\frac{(s-a)(s-b)}{ab}}$ (B) $\sqrt{\frac{(s-b)(s-c)}{bc}}$ (C) $\sqrt{\frac{(s-c)(s-a)}{ca}}$ (D) $\sqrt{\frac{s(s-c)}{ab}}$

- If n is odd in the expansion of $(a+x)^n$ then number of middle term are:
 - (A) 2

(B) 3

- (C) 4
- (D) 1

- 20 In law of cosine if $\beta = 90^{\circ}$ then it reduces to :
- (A) $b^2 + c^2 = a^2$ (B) $c^2 + a^2 = b^2$ (C) $a^2 + b^2 = c^2$ (D) $c^2 a^2 = b^2$

Lahore Board-2023 (To be filled in by the candidate) (Academic Sessions 2019 - 2021 to 2022 - 2024) MATHEMATICS 223-1st Annual-(INTER PART – I) Time Allowed: 2.30 hours PAPER – I (Essay Type) GROUP - I Maximum Marks: 80 SECTION - I 2. Write short answers to any EIGHT (8) questions : Repart pakeity.org 16 (i) Show that $z^2 + \overline{z}^2$ is a real number where $z \in C$ (ii) Find the multiplicative inverse of 1-2i(iii) Write the descriptive and tabular form of $\{x \mid x \in P \land x < 12\}$ (iv) Define disjunction. (v) If a, b are elements of a group G, solve ax = b(vi) Find x and y if $\begin{vmatrix} x+3 & 1 \\ -3 & 3y-4 \end{vmatrix} = \begin{vmatrix} y & 1 \\ -3 & 2x \end{vmatrix}$ (vii) Find the cofactors A_{12} and A_{22} if $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$ (viii) Without expansion show that $\begin{vmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 2 & -3 & 3 \end{vmatrix}$ (ix) Solve the equation $\begin{vmatrix} 4 \\ 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}$ (ix) Solve the equation $4^{1+x} + 4^{1-x} = 10$ (x) Show that the product of all the three cube roots of unity is unity. (xi) If α , β are the roots of $\alpha x^2 + bx + c = 0$, $\alpha \neq 0$, find the value of $\alpha^2 + \beta^2$ (xii) The sum of a positive number and its reciprocal is $\frac{26}{5}$. Find the number. 3. Write short answers to any EIGHT (8) questions : 16 (i) Resolve $\frac{7x+25}{(x+3)(x+4)}$ into partial fraction. (ii) If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in A.P., show that $b = \frac{2ac}{a+c}$ (iii) Sum the series (x-a) + (x+a) + (x+3a) + --- to n terms. (iv) Find the 5th term of G.P 3, 6, 12, ----(v) If 5 is harmonic mean between 2 and b, find b. (vi) Find the sum to n terms of the series whose nth term is $3n^2 + n + 1$ (vii) Find the value of n when ${}^{n}P_{4}$: ${}^{n-1}P_{3} = 9:1$ (viii) How many necklaces can be made from 6 beads of different colours? (ix) Find the value of n, when ${}^{n}C_{10} = \frac{12 \times 11}{2!}$ (x) Verify the statement $1+2+4+---+2^{n-1}=2^n-1$ for n=1,2(xi) Calculate by means of binomial theorem (0.97)³ upto three decimal places.

(Turn Over)

(xii) Expand $(1-x)^{1/2}$ upto three terms.

Please visit for more data at: www.pakcity.org

(2)

5

5

5

5

5

5

5

5

5

Write short answers to any NINE (9) questions:

- (i) Convert 21.256° to the D°M'S" form.
- (ii) Verify $\sin 2\theta = 2\sin \theta \cos \theta$, when $\theta = 45^{\circ}$
- (iii) Prove the identity $\cos \theta + \tan \theta \sin \theta = \sec \theta$
- (iv) Prove that $\sin(180^{\circ} + \alpha)\sin(90^{\circ} \alpha) = -\sin\alpha\cos\alpha$
- (v) Prove that $\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} \sin 11^{\circ}} = \tan 56^{\circ}$
- (vi) Find the values of cos105°
- (vii) Find the period of $\sin \frac{x}{5}$
- (viii) Find θ , if $\cos \theta = 0.9316$
 - (ix) Write any two laws of tangents.
 - (x) Find the value of R, if a = 13, b = 14, c = 15
 - (xi) Find the value of $\tan \left(\cos^{-1} \frac{\sqrt{3}}{2}\right)$
- (xii) Define trigonometric equation. Give one example.
- (xiii) Find the values of θ , satisfying the equation $2\sin^2\theta \sin\theta = 0$; $\theta \in [0, 2\pi]$

SECTION - II

Attempt any THREE questions.

- 5. (a) Prove that $\begin{vmatrix} b+c & a & a \\ b & c+a & b \end{vmatrix} = 4abc$
 - (b) Solve the equation $x^4 3x^3 + 4x^2 3x + 1 = 0$
- 6. (a) Resolve into partial fractions $\frac{5x^2 2x + 3}{(x+2)^3}$
 - (b) Find the value of n and r when $^{n-1}C_{r-1}: {}^{n}C_{r}: {}^{n+1}C_{r+1} = 3:6:11$
- 7. (a) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P., show that the common ratio is $\pm \sqrt{\frac{a}{c}}$
 - (b) Show that $\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + - - + \binom{n}{n-1} = 2^{n-1}$
- (a) Prove that $\frac{1}{\cos ec\theta \cot \theta} \frac{1}{\sin \theta} = \frac{1}{\sin \theta} \frac{1}{\cos ec\theta + \cot \theta}$ 5
 - (b) Reduce $\sin^4 \theta$ to an expression involving only function of multiples of θ , raised to first power.
- 9. (a) Solve the triangle using first law of tangents and then law of sines a = 36.21, b = 42.09, $\gamma = 40^{\circ}29'$
 - (b) Prove that $\sin^{-1}\frac{5}{13} + \sin^{-1}\frac{7}{25} = \cos^{-1}\frac{253}{325}$

Roll No		Board-2023		
MATH O PAP	IEMATICS FR – I (Objective T	(Academic Sessions 2	(INTER PART – I)	Time Allowed: 30 Minutes
Q.1711	Ent T(Objective I	GROUI	P – II	Maximum Marks: 20
Note:	fill that circle in fro	PAPER CODI is A, B, C and D to each que ont of that question with Ma will result in zero mark in the	estion are given. The clarker or Pen ink in the	hoice which you think is correct, answer-book. Cutting or filling
1-1		e inverse of (1,0) is		pakcity.org
	(A) 0	(B) 1	(C) (1,0)	(D) (0,1)
2	Which one of the	m is unary operation:		
	(A) Addition	(B) Multiplication	(C) Subtraction	n (D) Negation
3		matrix of order 3×3		
		(B) $K^2 A $		(D) $K^9 \mid A \mid$
4	A square matrix	$A = [a_{ij}]$ is called a sk	kew-symmetric if:	
	$(A) A^t = A^{}$	(B) $A^t = -A$	(C) $A^t = \pm A$	(D) $A^{-1} = A$
5	Roots of quadrat	c equation $x^2 - 7x + 10$	=0 are :	
	(A) 2,5	(B) $-2,5$	(C) 2 5	(D) $-2, -5$
6	Product of all thr	ee cube roots of unity is	s 4(3)	
	(A) <i>i</i>	(B) $-i$	(C) 1	(D) -1
7	Types of rational			
	(A) 1	(B) 2	(C) 3	(D) 4
8	A.M. between x	\Re and $x+5$ is:	No striet	
	(A) x+1		(C) $2x+2$	(D) 2
9	G.M. between 1	and 16 is :	pakcity.org	
	(A) -5	(B) 4	(C) 6	(D) 8
10	P(E) represents t event will be:	he probability of an eve	ent "E" and $0 \le P(I)$	E) ≤ 1 for $P(E) = 0$ the
	(A) Certain	(B) One	(C) Possible	(D) Impossible
11	The probability t	hat an event does not o	ccur, $P(\overline{E}) = :$	
	(A) $1-P(E)$	(B) $1+P(E)$	(C) $2-P(E)$	(D) $2+P(E)$
12	The total number	r of terms in the expans	ion of $(a+x)^n$ is:	
	(A) n+2	(B) n + 1	(C) n	(D) n-1
13	The statement n	$^2 > n+3$ hold for n = :		
	(A) 0	(B) 1	(C) 2	(D) 3

			(2)		
14	$\frac{2\pi}{3}$ radian in d	egree is : 🌉 p	akcity.org		
	(A) 75°	(B) 100°	(C) 110°	(D)	120°
15	$1-2\sin^2\alpha=:$				
	(A) $\sin 2\alpha$	(B) $\sin \frac{\alpha}{2}$	(C) cos 2α	(D)	$\cos \alpha$
16	The period of t	angent function is	:		
	(A) $\frac{\pi}{4}$		$(C) \frac{\pi}{3}$	(D)	π
17	$\sqrt{s(s-a)(s-b)}$	$\overline{(s-c)} = :$	CHES)		
	(A) r	(B) Δ	(C) As	(D)	r_1
18	$\frac{\Delta}{s}$ = :	BOY TO SEE			
	(A) r	(B) r ₁	(C) r ₂	(D)	<i>r</i> ₃
19	$\cos^{-1}\left(\frac{1}{2}\right) = :$ (A) $\frac{\pi}{3}$	410	Amaria A Amaria Amaria Amaria Amaria Amaria Amaria Amaria Amaria A A Amaria A Amaria A A Amaria A A A A Amaria A A A A A A A A A A A A A A A A A A A		
	(A) $\frac{\pi}{3}$	(B) $\frac{\pi}{4}$	$p(C) = \frac{\pi}{6} \cdot \text{org}$	(D)	$\frac{\pi}{2}$
20	Solution of the e	quation $\sin x = \frac{1}{2}$ in	$[0,2\pi]$ is:		
	(A) $\frac{\pi}{2}$	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$	(D)	$\frac{\pi}{3}$

25-223-II-(Objective Type)- 12500 (6192)

SECTION-I

2. Write short answers to any EIGHT (8) questions : Repart Parties

- (i) Show that $\forall z \in C$, $(z \overline{z})^2$ is a real number.
- (ii) Simplify $(a+bi)^{-2}$
- (iii) Write the power set of $\{+,-,\times,\div\}$
- (iv) Write the converse, inverse of $\sim p \rightarrow q$
- (v) Just, convert $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$ into logical form.

(vi) If
$$A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$$
 and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b

- (vii) Solve the equations
- (viii) Define cofactor of an element of matrix.
- (ix) Solve the equation $x^3 + x^2 + x + 1 = 0$ (x) If α , β are the roots of $x^2 px p c = 0$, prove that $(1+\alpha)(1+\beta) = 1-c$ (xi) Discuss the nature of roots $2x^2 5x + 1 = 0$ (xii) Give the statement of factor the

3. Write short answers to any EIGHT (8) questions :

- (i) Without finding constants, write $\frac{9x-7}{(x^2+1)(x+3)}$ into partial fraction form.
- (ii) If $a_{n-3} = 2n-5$, find nth term of A.P.
- (iii) Sum the series 3+5-7+9+11-13+15+17-19+---+3n terms.
- (iv) If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P, then show that common ratio is $\pm \sqrt{\frac{a}{c}}$
- (v) If 5 is the H.M. between 2 and b, find the value of b.
- (vi) Write formula for $\sum_{i=1}^{n} k$ and $\sum_{i=1}^{n} k^3$
- (vii) If ${}^{11}P_n = 11.10.9$, then find n
- (viii) How many signals can be given by 5 flags of different colours using 3 flags at a time?
- (ix) A die is thrown twice. What is the probability that sum of dots shown is either 3 or 11?
- (x) Using binomial theorem, expand $\left(3a \frac{x}{3a}\right)^4$
- (xi) Find middle term in the expansion of $\left(\frac{x}{2} + \frac{2}{x^2}\right)^{12}$
- (xii) Expand $(1-2x)^{\frac{1}{3}}$ upto first three terms.

(Turn Over)

(2)

4. Write short answers to any NINE (9) questions :

(i) Define angle in the standard position.

- (ii) If $\tan \theta = -\frac{1}{3}$ and the terminal arm of angle is in second quadrant then find $\sec \theta$
- (iii) Find $\sin \theta$ and $\cos \theta$ for $\theta = \frac{19\pi}{3}$
- (iv) If α , β , γ are angles of triangle ABC then prove $\sin(\alpha + \beta) = \sin \gamma$
- (v) Without calculator or table, find cos (75°)
- (vi) Prove that $\tan (45^{\circ} + A) \tan (45^{\circ} A) = 1$
- (vii) Define period of a trigonometric function.
- (viii) Solve the right triangle ABC in which $r = 90^{\circ}$, a = 3.28, b = 5.74
- (ix) By using the law of cosine , write the formula of $\cos\alpha$ and $\cos\beta$
- (x) Solve the triangle ABC if $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$ and $b = \sqrt{6}$
- (xi) Define the principal sin function.
- (xii) Solve the equation $\sin x = \frac{1}{2}$
- (xiii) Solve the equation $\sin x + \cos x = 0$ and find its general solution set.

SECTION - II

Note: Attempt any THREE questions

- 5. (a) If $A = \begin{bmatrix} i & 1+i \\ 1 & -i \end{bmatrix}$ show that $A (\overline{A})^t$ is skew-hermitian.
 - (b) When $x^4 + 2x^3 + 4x^2 + 3$ is divided by x 2 and remainder is 1, find the value of k.
- 6. (a) Resolve into partial fraction $\frac{1}{(x-1)^2(x+1)}$
 - (b) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ pakeity.org
- 7. (a) Find 'n' so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be H.M. between a and b
 - (b) Find (2n+1)th term from the end in expansion of $\left(x-\frac{1}{2x}\right)^{3n}$
- 8. (a) If $\tan \theta = \frac{1}{\sqrt{7}}$ and the terminal arm of the angle is not in the III quad., find the
 - value of $\frac{\cos ec^2\theta \sec^2\theta}{\cos ec^2\theta + \sec^2\theta}$
 - (b) Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$
- 9. (a) Solve the triangle ABC if a=7, b=3, $\gamma=38^{\circ}13'$
 - (b) Prove that $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} \tan^{-1} \frac{8}{19} = \frac{\pi}{4}$

5

MATHEMATICS

(Academic Sessions 2017 – 2019 to 2020 – 2022)

O.PAPER – I (Objective Type)

221-(INTER PART - I)

Time Allowed: 30 Minutes

Maximum Marks: 20

GROUP - I PAPER CODE = 6197

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

- If $\begin{vmatrix} k & 4 \\ 4 & k \end{vmatrix} = 0$, then value of k is : pakcity.org
- $(D) \pm 8$

(A) ± 16 (B) 0 (C) ± 4 Partial fraction of $\frac{1}{x^2-1}$ will be of the form:

- (A) $\frac{Ax+B}{x^2-1}$ (B) $\frac{A}{x+1} + \frac{B}{x-1}$ (C) $\frac{A}{x+1}$
- (D) $\frac{B}{x-1}$

- If H is H.M. between a and b then H = :

- (D) $\pm \sqrt{ab}$
- (A) $\frac{2ab}{a+b}$ (B) $\frac{a+b}{2ab}$ (C) $\frac{a+b}{2}$ (D) : When $p(x) = x^3 + 4x^2 2x + 5$ is divided by (x-1) then remainder is : (A) 10 (B) -10 (D)

- (D) -8

- (D) (0,0,1)
- The trivial solution of the homogeneous linear equation in three variables is :

 (A) (0,0,0) (B) (1,0,0) (C) (0,1,0) (D) (0,0)The property used in $(a+1)\frac{3}{4}=a+(1+\frac{3}{4})$ is :
- (A) Closure (B) Associative (C) Commutative (D) Additive
- The number of roots of polynomial equation $8x^6 19x^3 27 = 0$ are :

- (D) 8
- (A) 2 (B) 4 (C) 6 If $a_{n-3} = 2n-5$ then 7th term is = :
 - (A) 9
- (B) 15
- (C) 11
- (D) 13
- For an infinite geometric series of which |r| < 1 we have $S_{\infty} = :$ 9
 - (A) $\frac{a(1+r)}{1-r}$ (B) $\frac{a}{1+r}$ (C) $\frac{a}{2r}$
- (D) $\frac{a}{1-r}$

- The converse of $p \rightarrow q$ is: 10

- (A) $\sim p \rightarrow q$ (B) $p \rightarrow \sim q$ (C) $q \rightarrow p$ (D) $\sim p \rightarrow \sim q$ The middle term in expansion of $(a+x)^n$ when n is even:

- (A) $\left(\frac{n}{2}+1\right)$ th term (B) $\left(\frac{n}{2}-1\right)$ th term (C) $\left(\frac{n}{2}\right)$ th term (D) $\left(\frac{n+1}{2}\right)$ th term

1-12	If Δ is the area of a triangle ABC then $\Delta = :$					
	(A) $\frac{1}{2}bc\sin\beta$ (B) $\frac{1}{2}ab\sin\beta$	α (C) $\frac{1}{2}bc\sin\alpha$	(D) $ab \sin \alpha$			
13	$\frac{9\pi}{5}$ rad in degree measure is:					
	(A) 321° (B) 322°	(C) 323°	(D) 324°			
14	With usual notations, the value of	a+b+c is:				
	(A) s (B) 2s	(C) 3s	(D) $\frac{s}{2}$			
15	The factorial of a positive integer	n'is:				
	(A) $n! = n(n-1)!(n-2)!$ (B)	n!=n(n+2)!				
	(C) $n! = n(n-1)!$ (D)	n! = n(n-2)!				
16	The solution of $1 + \cos x = 0$ if $0 \le$	$x \le 2\pi$ is equal to:				
	(A) $\{0\}$ (B) $\{\frac{\pi}{2}\}$	(C) $\left\{\frac{\pi}{3}\right\}$	(D) {π}			
17	In anti-clockwise direction 4 rota	tion is equal to :				
	(A) 90° (B) 180°	(C) 270°	(D) 45°			
18	The period of $3\cos(\frac{x}{5})$ is:	Table Indian				
	(A) π (B) 10π	(C) $\frac{\pi}{10}$	(D) $\frac{\pi}{5}$			
19	$\operatorname{sec}\left[\cos^{-1}\left(\frac{1}{2}\right)\right] = :$ pakcity	v.org				
	(A) $\frac{1}{2}$ (B) 2	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{6}$			
20	$\cos 48^{\circ} + \cos 12^{\circ} = :$		_			
	(A) 2cos18° (B) 3cos1	8° (C) $\sqrt{3} \cos 18^{\circ}$	(D) $\sqrt{2} \cos 18^\circ$			

(Academic Sessions 2017 - 2019 to 2020 - 2022)

MATHEMATICS PAPER – I (Essay Type) 221-(INTER PART - I)

GROUP - I

Time Allowed: 2.30 hours

16

16

Maximum Marks: 80

_ (10 00 111100 111 0)

SECTION - I

Write short answers to any EIGHT (8) questions:

(i) Prove that $\frac{a}{b} = \frac{ka}{kb}$, $k \neq 0$ pakcity.org

- (ii) Simplify $(5, -4) \div (-3, -8)$ and write the answer as a complex number.
- (iii) Find the real and imaginary parts of $(\sqrt{3} + i)^3$
- (iv) If $B = \{1, 2, 3\}$, then find the power set of B, i.e., P(B)
- (v) Construct the truth table for the statement : \sim (p \rightarrow q) \leftrightarrow (p \wedge \sim q)
- (vi) For the set A = $\{1, 2, 3, 4\}$, find a relation in A which satisfy $\{(x, y) | y + x = 5\}$
- (vii) Find the matrix X, if 2X 3A = B and $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$
- (viii) Find A^{-1} if $A = \begin{bmatrix} 5 & 3 \\ 1 & 1 \end{bmatrix}$
- $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$ (ix) Without expansion, show that
 - (x) Prove that sum of cube roots of unity is zero $(\omega + \omega + \omega^2) = 0$
- (xi) Find the numerical value of k, when the polynomial $x^3 + kx^2 7x + 6$ has a remainder of -4 when divided by x + 2.
- (xii) Show that the roots of equation $x^2 + (mx + c)^2 = a^2$ will be equal if $c^2 = a^2(1 + m^2)$

3. Write short answers to any EIGHT (8) questions :

- (i) Resolve $\frac{4x^2}{(x^2+1)^2(x-1)}$ into partial fractions without finding the constants.
- (ii) Resolve $\frac{7x+25}{(x+3)(x+4)}$ into partial fractions without finding the constants.
- (iii) Write the first four terms of the sequence, $a_n = (-1)^n n^2$
- (iv) If $a_{n-3} = 2n 5$, find nth term of the sequence.
- (v) Insert two G.M's between 2 and 16.
- (vi) Sum the infinite geometric series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ----$
- (vii) Find the value of n, when ${}^{11}P_n = 11.10.9$
- (viii) Evaluate $^{12}C_3$
 - (ix) A die is rolled. What is the probability that the dots on the top are greater than 4?
 - (x) Check the truth of the statement $1 + 5 + 9 + \dots + (4n 3) = n(2n 1)$ for n = 1, 2
- (xi) Calculate by means of binomial theorem (2.02)⁴
- (xii) If x is so small that its square and higher powers can be neglected, then show that $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3}{2}x$

(Turn Over)

5

5

5

5

5

5

5

5

Lahore Board-2021

4. Write short answers to any NINE (9) questions :

(i) Convert 54°45' into radians.

- (ii) If $\cot \theta = \frac{15}{8}$ and the terminal arm of the angle is not in quadrant I, find the value of $\csc \theta$.
- (iii) Verify $2\sin 45^\circ + \frac{1}{2}\cos ec 45^\circ = \frac{3}{\sqrt{2}}$
- (iv) Prove that $\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta 1}{\cot \alpha + \cot \beta}$
- (v) Prove that $\tan(180^{\circ} + \theta) = \tan \theta$
- (vi) Express $2\sin 7\theta \sin 2\theta$ as sums or differences.
- (vii) Find the period of $\tan \frac{x}{7}$
- (viii) A vertical pole is 8 m high and the length of its shadow is 6m. What is the angle of elevation of the sun at that moment?
 - (ix) Find area of the triangle ABC if a = 200, b = 120, $\gamma = 150^{\circ}$
 - (x) Prove that $r r_1 r_2 r_3 = \Delta^2$
 - (xi) Find the value of $\sec\left(\sin^{-1}\left(-\frac{1}{2}\right)\right)$
- (xiii) Find the solution of $\cos ec\theta = 2$ which lies in the interval $[0, 2\pi]$ SECTION H : Attempt any THREE question

Note: Attempt any THREE questions

5. (a) Solve by Cramer's rule
$$x_1 + 2x_2 + 2x_3 = 6$$

 $x_1 - 2x_2 - x_3 = 1$

(b) If α , β are roots of equation $ax^2 + bx + c = 0$, form the equation whose roots are

$$\alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}$$
 pakcity.org

6. (a) Resolve $\frac{3x-11}{(x^2+1)(x+3)}$ into partial fraction.

- (b) If $S_n = n(2n-1)$, then find the series.
- 7. (a) Prove that ${}^{n-1}C_r + {}^{n-1}C_{r-1} = {}^nC_r$
 - (b) Use mathematical induction to prove $\binom{3}{3} + \binom{4}{3} + \binom{5}{3} + \cdots + \binom{n+2}{3} = \binom{n+3}{4}$ for every positive integers n.
- 8. (a) Two cities A and B lies on the equator, such that their longitudes are 45° E and 25° W respectively. Find the distance between the two cities, taking the radius of the earth as 6400 kms.
 - (b) Prove that $\frac{\sin\theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$
- 9. (a) Solve the triangle ABC, if a = 53, $\beta = 88^{\circ}36'$, $\gamma = 31^{\circ}54'$ 5
 - (b) Prove that $\tan^{-1}\frac{1}{11} + \tan^{-1}\frac{5}{6} = \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{2}$ 5

Roll No	₋ahore B	Soard-2021	(To be filled in by the candidate)
MATHEMATIC	S (Academic Sessions 2017	-2019 to 2020 - 2022)

Q.PAPER - I (Objective Type)

221-(INTER PART - I)

Time Allowed: 30 Minutes Maximum Marks: 20

GROUP - II PAPER CODE = 6194

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct,

Note :	fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling
1-1	two or more circles will result in zero mark in that question. $\tan 2\theta = :$
1-1	(A) $\frac{2\tan\theta}{1+\tan^2\theta}$ (B) $\frac{\tan\theta}{1-\tan^2\theta}$ (C) $\frac{2\tan\theta}{1-\tan^2\theta}$ (D) $\frac{1-\tan^2\theta}{1+\tan^2\theta}$
2	A die is rolled then n(s) is:
	(A) 36 (B) 6 (C) 1 (D) 9
3	$\sin^{-1} A + \sin^{-1} B$ equals :
	(A) $\cos^{-1}(AB - \sqrt{(1-A^2)(1-B^2)})$ (B) $\cos^{-1}(AB + \sqrt{(1-A^2)(1-B^2)})$
	(C) $\sin^{-1}(A\sqrt{1-B^2} + B\sqrt{1-A^2})$ (D) $\sin^{-1}(A\sqrt{1-B^2} - B\sqrt{1-A^2})$
4	With usual notation Leguals to :
	(A) r (B) θ (D) $2\pi r$
5	If $\cos 2x = 0$, then solution in I quadrant is
	(A) 30° (B) 60° (C) 45° (D) 15° The middle term in the expansion $(a+x)^n$, when n is even:
6	The middle term in the expansion $(a+x)^n$, when n is even:
	(A) $\left(\frac{n}{2}+1\right)$ th term (B) $\left(\frac{n}{2}-1\right)$ th term (C) $\left(\frac{n}{2}\right)$ th term (D) $\left(\frac{n+1}{2}\right)$ th term
7	For a triangle ABC with usual notation $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ equals :
	(A) $\tan \gamma$ (B) $\tan \frac{\gamma}{2}$ (C) $\cot \gamma$ (D) $\cot \frac{\gamma}{2}$
8	The range of $\sin x$ is:
	(A) $[-1,0]$ (B) $[-1,1]$ (C) $[0,2]$ (D) $[-2,2]$
9	An angle is said to be in standard position if its vertex is:
	(A) (0,0) (B) (0,1) (C) (1,1) (D) (1,0)
10	The circum radius 'R' is equal to:
	(A) $\frac{abc}{\Delta}$ (B) $\frac{4abc}{\Delta}$ (C) $\frac{\Delta}{s}$ (D) $\frac{abc}{4\Delta}$
11	If ω is the cube root of unity then $(1+\omega-\omega^2)^8 = :$ pakcity.org

(B) -256

(A) 256

(D)

 256ω

(C) -256ω

1-12	If $z = \cos \theta + i \sin \theta$ then z	is equal to:		
	(A) 0 (B)	1	(C) 2	(D) -1
13	No term of geometric serie	es is :		
	(A) $\frac{1}{2}$ (B)	$\frac{1}{3}$	(C) Zero	(D) 1
14	The inverse of a square ma	trix exists if A is	:	
	(A) Symmetric (B)	Non-singular	(C) Singular	(D) Rectangular
15	The arithmetic mean between	een $1-x+x^2$ and	$1 + x + x^2$ is :	
	(A) $x+1$ (B)	$x^2 + 1$	(C) x+(C)	(D) $\frac{x^2+1}{2}$
16	The roots of the equation	$ax^2 + bx + c = 0$	complex if:	
	(A) $b^2 - 4ac < 0$ (B)	$b^2-4ac = 0$	(C) $b^2 - 4ac > 0$	(D) Both B and C
17	The geometric mean between $\pm \sqrt{\frac{1}{ab}}$ (B)	en and $\frac{1}{b}$ is		
	(A) $\pm \sqrt{\frac{1}{ab}}$ (B)	$\pm \sqrt{ab}$ EDU	(C) $\frac{1}{ab}$	(D) ab
18	Number of ways in which a	a set can be descri	bed as :	
	(A) 1 (B)	2	(C) 3	(D) 4
19	The given form $(x-4)^2 = x$	$^2 - 8x + 16$ is calle	d:	
	(A) Transidental equation	n (B) Cubic eq	uation	
	(C) An equation	(D) An ident	ity	
20	A system of linear equation	ns is said to be inco	onsistent if the syste	m has :
	(A) Many solutions (B) Unique solution		
	(C) No solution (D) Two solutions of	only pakcity .	org

5

5

5

5

4. Write short answers to any NINE (9) questions :

- (i) Convert 75°6'30" into radians.
- (ii) Evaluate
- (iii) Prove that $\sec^2 A + \cos ec^2(A) = \sec^2(A)\cos ec^2(A)$ where $(A \neq \frac{n\pi}{2}, n \in z)$
- (iv) Prove that $\tan (180^\circ + \theta) = \tan \theta$
- (v) Prove that $\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta 1}{\cot \alpha + \cot \beta}$
- (vi) Prove that $\frac{\sin 2\alpha}{1 + \cos 2\alpha} = \tan \alpha$
- (vii) Find the period of $\tan \frac{x}{7}$
- (viii) In $\triangle ABC$ if $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$ and $b = \sqrt{6}$ then find 'c'.
- (ix) In \triangle ABC if a = 34, b = 20 and c = 42, find angle 'r'.
- (x) Show that $r = (s a) \tan(\frac{\alpha}{2})$
- (xi) Show that $\cos^{-1}(-x) = \pi \cos^{-1}(x)$
- (xii) Find the value of $\sec\left(\sin^{-1}\left(-\frac{1}{2}\right)\right)$
- (xiii) Find the solution of $\cos ec\theta = 2$ which he in $[0, 2\pi]$

SECTION - II

$$2x + 2y + z = 3$$

- 5. (a) Solve the system of equations by Cramer's rule 3x 2y 2z = 1

 - (b) Solve the system of equations 2x y = 4; $2x^2 4xy y^2 = 6$
- 6. (a) Resolve $\frac{x-1}{(x-2)(x+1)^3}$ into partial fraction. akcity.org 5
 - (b) Find four A.Ms between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$ 5
- 7. (a) Find the values of n and r when ${}^{n}C_{r} = 35$ and ${}^{n}P_{r} = 210$ 5
 - (b) Find the term involving x^4 in the expansion of $(3-2x)^7$ 5
- 8. (a) Prove that $\frac{1+\cos\theta}{1-\cos\theta} = (\cos ec\theta + \cot\theta)^2$ 5
 - (b) Prove that $\frac{\cos 3\theta}{\cos \theta} + \frac{\sin 3\theta}{\sin \theta} = 4\cos 2\theta$ 5
- 9. (a) Prove that $(r_1 + r_2) \tan(\frac{\gamma}{2}) = c$
 - (b) Prove that $\sin^{-1} \frac{5}{13} + \sin^{-1} \frac{7}{25} = \cos^{-1} \frac{253}{325}$

Roll No	Lahore	Board-2021	To be filled in by the candidate)	
37.50.00.00.00.00.00.00.00.00.00.00.00.00.	(Aca	demic Sessions 2017 - 2019	to 2020 – 2022)	
MATHEM	,	221-(INTER PART - I)	Time Allowed: 2.30 hou	rs
PAPER -	I (Essay Type)	GROUP – II	Maximum Marks: 80	
		SECTION - I	Superior of the same of	
2 Write	short answers to	any EIGHT (8) questions:	-	16

Write short answers to any EIGHT (8) question

(i) Separate into real and imaginary parts $\frac{2-7i}{4+5i}$

- (ii) Prove that for $\forall z \in c$ $z.\overline{z} = |z|^2$
- (iii) Find out real and imaginary parts of complex number $(\sqrt{3} + i)^3$
- (iv) If G be a group and $a, b \in G$, then show that $(ab)^{-1} = b^{-1}a^{-1}$
- (v) Give a table for addition of elements of the set of residue classes modulo 5.
- (vi) Show that $(p \land q) \rightarrow p$ is a tautology.

(vii) Find x and y if
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$$

(viii) Find the inverse of $\begin{bmatrix} -2 & 3 \\ -4 & 5 \end{bmatrix}$

- (ix) Without expansion verify that $\begin{vmatrix} bc & ca & ab \\ \frac{1}{a} & b & c \end{vmatrix} = 0$ (x) Convert $x^{\frac{1}{2}} x^{\frac{1}{4}} 6 = 0$ into quadratic equation.

 (xi) Evaluate $(-1 + \sqrt{3})^5 + (-1 \sqrt{-3})^5$

- (xii) Discuss the nature of the roots of $2x^2 5x + 1 = 0$
- 3. Write short answers to any EIGHT (8) questions :

- $\frac{1}{(1-ax)(1-bx)(1-cx)}$ into partial fraction without finding the values of constants A, B and C.
- (ii) Write $\frac{4x^2}{(x^2+1)^2(x-1)}$ into partial fraction without finding the values of unknown constants.
- (iii) If $a_{n-3} = 2n 5$, find nth term of the sequence.
- (iv) Find G.M. between 2i and 8i.
- (v) If the numbers $\frac{1}{k}$, $\frac{1}{2k+1}$, $\frac{1}{4k-1}$ are in H.P. find the value of k.
- (vi) Find A, G and H if a = 2i, b = 4i
- (vii) Find the value of n when ${}^{n}P_{2} = 30$
- (viii) Find the number of the diagonals of a 6-sided figure.
- (ix) A die is rolled. What is the probability that the dots on the top are greater than 4?
- (x) Calculate (9.98)⁴ by using binomial theorem.
- (xi) Expand $(4-3x)^{1/2}$ upto 4 terms by using binomial theorem.
- (xii) Evaluate $^{12}C_3$

toll No			(To be filled in by the			
	EMATICS (A ER I (Objective Type)		15 - 2017 to 2018 - 20: RT - I) Tin	20) ne Allowed :30 Minutes		
į.rarı	EK-1 (Objective 19pc)	GROUP -	· I Ma	ximum Marks: 20		
	PAPER CODE = 6195 lote: Four possible answers A, B, C and D to each question are given. The choice which you think is correct,					
lote:	fill that circle in front of t	hat question with Marke	er or Pen ink in the answ	ver-book. Cutting or filling		
	two or more circles will res	ult in zero mark in that	question.	akcity.org		
1-1	If $x-a$ is a factor of p	olynomial $f(x)$, then	$\mathbf{n} f(a)$ is:			
	(A) = 0	(B) < 0	(C) > 0	(D) ≠0		
2	If ${}^nC_5 = {}^nC_4$, then n is	s:				
	(A) 9	(B) 7	(C) 6	(D) 5		
3	The multiplicative inve	erse of $(1, -2) = :$				
	(A) $(\frac{1}{5}, \frac{-2}{5})$	(B) $(\frac{-1}{5}, \frac{-2}{5})$	(C) $(\frac{1}{5}, \frac{2}{5})$	(D) $(\frac{-1}{5}, \frac{2}{5})$		
4	9th term in the sequence	$ce \frac{1}{2}, \frac{1}{5}, \frac{1}{7},$	is:			
	25		The state of the s	, 1		
	(A) $\frac{1}{13}$	(B) $\frac{1}{15}$	(C) (D) (17	(D) $\frac{1}{19}$		
	The contrapositive of	-p → - q is ; (8)	753			
	$(A) p \to q$	(B) q → p	(C) $\sim q \rightarrow \sim p$	(D) $\sim q \rightarrow p$		
6	From the identity $5x+4=A(x-1)+B(x+2)$, then value of B = :					
	(A) -3	VAIN	(C) -2	(D) 2		
7	The sum of four 4 roo	ots of 16 is:				
	(A) 0	(B) 2	(C) 4	(D) 16		
8	$ \begin{bmatrix} x-3 & 1 \\ -5 & -4 \end{bmatrix} = \begin{bmatrix} 2 \\ -5 $	$\begin{bmatrix} 1 \\ -4 \end{bmatrix}$, then $x = : pa$	kcity.org			
	(A) 5	(B) -5		(D) 1		
9	The arithmetic mean b	etween $\sqrt{2}$ and $3\sqrt{2}$	is:			
	(A) 3√2	(B) 2√2	(C) 4√2	(D) $\sqrt{2}$		
10	$\mathbf{If} A = \begin{bmatrix} 1 & 2 & -2 \\ 0 & 0 & 5 \\ 6 & 7 & 3 \end{bmatrix}$, then $A_{33} = :$				
	(A) -1	(B) 1	(C) 3	(D) 0		
11	Period of $\cot \theta$ is :					
	(A) π	(B) 2π	(C) $\frac{\pi}{2}$	(D) $\frac{3\pi}{2}$		

1-12	Number of signals can be made with 4 flags when one flag is used at a time are:					
	(A) ${}^{4}C_{0}$ (B) ${}^{4}C_{1}$ (C) ${}^{4}C_{2}$ (D) ${}^{4}C_{3}$					
13	The equation $\sin^2 x - \sec x = \frac{3}{4}$ is called:					
	(A) Trigonometric equation (B) Linear equation					
	(C) Quadratic equation (D) Quantic equation					
14	$3\sin\alpha - 4\sin^3\alpha = :$					
	(A) $\sin \alpha$ (B) $\sin 2\alpha$ (C) $\sin 3\alpha$ (D) $\sin 4\alpha$					
15	Domain of the function $y = \sin^{-1} x$ is:					
	(A) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ (B) $-1 \le y \le 1$ (C) $-1 \le x \le 1$ (D) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$					
16	Francesco Mourolico devised the method of:					
	(A) Partial fraction (B) Induction (C) Logarithms (D) Binomial					
17	If $\ell = 35$ cm and $\theta = 1$ rad, then $r = :$					
	(A) 35° (B) 35 cm (C) 35 rad (D) 35 m					
18	In any $\triangle ABC$ with usual notations, $\frac{\Delta}{s-c} = :$					
	(A) r (B) r_1 pak (C) r_2 (D) r_3					
19	The general term in the expansion of $(a+x)^n$ is:					
	(A) $\binom{n}{a}a^{n-r}x^r$ (B) $\binom{n}{x}a^{n-r}x^r$ (C) $\binom{n}{r}a^{n-r}x^r$ (D) $\binom{n}{r}a^{n-r}x$					
20	If sides of a \triangle ABC are $a = 4584$, $b = 5140$ and $c = 3624$, then greatest angle will be:					
	(A) α (B) β (C) γ (D) a					

Ro	ll No	Lahore Board-2019 (To be filled in by the candidate)				
	(Academic Sessions 2015 – 2017 to 2018 – 2020) MATHEMATICS 219-(INTER PART – I) Time Allowed: 2.30 hours					
		Essay Type) GROUP - I Maximum Marks: 80				
		SECTION - I Repair of the section - I Repair				
2.		ort answers to any Etoti () questions .	6			
	(i)	If z_1 and z_2 are complex numbers then show that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$				
	(ii)	Find out real and imaginary parts of $(\sqrt{3} + i)^3$				
	(iii)	Factorize $a^2 + 4b^2$				
	(iv)	Define power set of a set and give an example.				
	(v)	Define a bijective function.				
	(vi)	Construct truth table and show that the statement $\sim (p \rightarrow q) \rightarrow p$ is a tautology or not.				
	(vii)	Find the matrix X if $X \begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$				
	(viii)	For the matrix $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$ find cofactor A_{12}				
	(ix)	Without expansion show that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & k \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$ When $x^4 + 2x^3 + 6x^2 + 3$ is divided by $(x - 2)$, the remainder is 1. Find the value of k.				
	101	Willest A Las Inc. D to the Act				
		If α , β are the roots of $\alpha x^2 + \beta x + c = 0$, $\alpha \neq 0$ then find the value of $\alpha^2 + \beta^2$				
	8 654	The sum of a positive number and its square is 380. Find the number.	• /			
3.	(i)	Define partial fraction.	16			
	(ii)	In the identity $7x + 25 = A(x+4) + B(x+3)$, calculate values of A and B.				
	(iii)	Resolve $\frac{1}{x^2-1}$ into partial fractions.				
	(iv)					
	(v)	Which term of the arithmetic sequence $5, 2, -1,$ is -85 .				
	, ,	Find three A.Ms between 3 and 11.				
		If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P, show that common ratio is $\pm \sqrt{\frac{a}{c}}$				
		Insert two G.Ms between 2 and 16.				
	(ix)	Find the value of n when ${}^{n}C_{10} = \frac{12 \times 11}{2!}$				
		Show that $\frac{n^3 + 2n}{3}$ represents an integer for $n = 2, 3$.				
	(xi)	Expand $\left(1-\frac{3}{2}x\right)^{-2}$ upto 4 terms.				
	(xii)	If x is so small that its square and higher power can be neglected, then				
		show that $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3}{2}x$				

(Turn Over)

4. Write short answers to any NINE (9) questions :

11

5

5

5

5

5

- (i) Find £, if $\theta = 65^{\circ}20'$, r = 18 mm
- (ii) Prove $\sin^2 \frac{\pi}{6} : \sin^2 \frac{\pi}{4} : \sin^2 \frac{\pi}{3} : \sin^2 \frac{\pi}{2} = 1:2:3:4$
- (iii) Prove $\cos^2 \theta \sin^2 \theta = \frac{1 \tan^2 \theta}{1 + \tan^2 \theta}$
- (iv) Prove that $\tan 56^\circ = \frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ \sin 11^\circ}$
- (v) Prove $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$
- (vi) Prove $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$
- (vii) Find the period of $\tan \frac{x}{7}$
- (viii) In $\triangle ABC$, $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$, $b = \sqrt{6}$, find c.
- (ix) If a = 200, b = 120, $\gamma = 150^{\circ}$, find the area of a triangle ABC
- (x) Prove that $r_1 r_2 r_3 = rs^2$
- (xi) Prove $\sin(2\cos^{-1}x) = 2x\sqrt{1-x^2}$

- (xiii) Find the solutions of $\sin x = -\frac{\sqrt{3}}{2}$ in $[0,2\pi]$ SECTION II : Attempt any THREE questions. 5. (a) Prove that all 2 × 2 non-singular matrices over the real field form a non-abelian group under multiplication.
 - (b) Find three, consecutive numbers in G.P whose sum is 26 and their product is 216.
- 6. (a) Find the inverse of the matrix $A = \begin{bmatrix} 2 & 5 & -1 \\ 3 & 4 & 2 \\ 1 & 2 & -2 \end{bmatrix}$ by using row operation.
 - (b) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
- 7. (a) Solve the system of equations:

$$12x^2 - 25xy + 12y^2 = 0$$

$$4x^2 + 7y^2 = 148$$

- (b) If $y = \frac{1}{3} + \frac{1.3}{2!} (\frac{1}{3})^2 + \frac{1.3.5}{3!} (\frac{1}{3})^3 + \dots$ then prove that $y^2 + 2y 2 = 0$ 5
- 8. (a) Prove that $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta \tan\theta$ where θ is not an odd multiple of $\frac{\pi}{2}$ 5
 - (b) If α , β , γ are the angles of a triangle ABC, then show that :

$$\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2} = \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$$

- 9. (a) The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. Prove that the greatest angle of the triangle is 120°.
 - (b) Prove that $\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{3}{5} \tan^{-1}\frac{8}{10} = \frac{\pi}{4}$ 5

oll No	Lahore Board-2019 (To be filled in by the candidate)	
MATHEMA PAPER - I ((Academic Sessions 2015 - 2017 to 2018 - 2020) Time Allowed: 2.30 hours 219-(INTER PART - 1) Maximum Marks: 80	S
	SECTION - I	16
2. Write sh	ort answers to any EIGH1 (8) questions:	
(i)	Prove the rule of addition $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$	
(ii)	Find the multiplicative inverse of $(\sqrt{2}, -\sqrt{5})$	
(iii)	Express the complex number $1+i\sqrt{3}$ in polar form.	
(iv)	Write the power set of $\{a, \{b, c\}\}\$	
(v)		
(vi)	Prove that the identity element e in a group G is unique.	
	If $A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find a and b	
(viii)	If $B = \begin{bmatrix} 5 & -2 & 5 \\ 3 & -1 & 4 \\ -2 & 1 & -2 \end{bmatrix}$. find cofactor B_{21}	

- (ix) If A is a skew-symmetric matrix, then show that A is a symmetric matrix
- (x) Solve $x^{-2} 10 = 3x^{-1}$. (xi) If α , β are the roots of $x^2 px p = 0$ then prove that $(1+\alpha)(1+\beta) = 1-c$ (xii) Discuss the nature of roots of the equation $x^2 5x + 6 = 0$

3. Write short answers to any EICHT (8) questions: (i) Define proper fraction

(ii) If
$$\frac{x^2 - 10x + 13}{(x - 1)(x^2 - 5x + 6)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}$$
, find value of A

(iii) If
$$\frac{x}{(x-a)(x-b)(x-c)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$$
, find value of B

- (iv) If the numbers $\frac{1}{k}$, $\frac{1}{2k+1}$ and $\frac{1}{4k-1}$ are in harmonic sequence, find k
- (v) Find sum of infinite geometric series $2 + 1 + 0.5 + \dots$
- (vi) Define geometric mean.
- (vii) If 5, 8 are two A.Ms between a and b, find a and b

(viii) If
$$\frac{1}{a}$$
, $\frac{1}{b}$ and $\frac{1}{c}$ are in A.P, show that $b = \frac{2ac}{a+c}$

- (ix) Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$
- (x) Expand $(1+x)^{-1}$ upto 3 terms.
- (xi) Evaluate ³√30 correct to three places of decimal.
- (xii) Check whether the statement $5^n 2^n$ is divisible by 3 for n 2, 3 is true or false.

(Turn Over)

16.

4. Write short answers to any NINE (9) questions :

18

5

5

5

5

5

5

- (i) Find r, when $\ell = 56 \, cm$, $\theta = 45^{\circ}$
- (ii) Find the values of all trigonometric functions for -15π
- (iii) Prove that $\frac{1-\sin\theta}{\cos\theta} = \frac{\cos\theta}{1+\sin\theta}$
- (iv) Express the difference $\cos 7\theta \cos \theta$ as product.
- (v) Prove $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$
- (vi) Find the value of cos105° without using calculator.
- (vii) Find the period of $3\sin\frac{2x}{6}$
- (viii) With usual notations prove that $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$
- (ix) Define in-circle of the triangle ABC.

- (xii) Solve the equation for $\theta \in [0, \pi]$ $\cot^2 \theta$ (xiii) Solve the equation for $\theta \in [0, \pi]$ (xiii) Solve the equation for $\theta \in [0, \pi]$ $2 \sin \theta + \cos^2 - 1 = 0$

SECTION - 170.

Note: Attempt any THREE questions.

- 5. (a) If G is a group under the operation "*" and $a,b \in G$, find the solutions of the equations : (i) $a \times x = b$ (ii) $x \times a = b$
 - (b) If 7^{th} and 10^{th} terms of an H.P are $\frac{1}{3}$ and $\frac{5}{21}$ respectively, find its 14^{th} term

6. (a) Show that
$$\begin{vmatrix} a+\ell & a & a \\ a & a+\ell & a \\ a & a & a+\ell \end{vmatrix} = \ell^2 (3a+1)$$
 pakeity.org

- (b) Prove that $^{n-1}C_r + ^{n-1}C_{r-1} = {}^{n}C_r$
- 7. (a) If α , β are the roots of $5x^2 x 2 = 0$ form the equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$ 5
 - (b) Use mathematical induction to prove that $n! > n^2$ for integral values of $n \ge 4$.
- 8. (a) A railway train is running on a circular track of radius 500 meters at the rate of 30 km per hour. Through what angle will it turn in 10 sec?
 - (b) Reduce $\sin^4 \theta$ to an expression involving only function of multiples of θ raised to the first power.
- 9. (a) Prove that $r_1r_2 + r_2r_3 + r_3r_1 = s^2$ 5
 - (b) Prove that $\tan^{-1} A + \tan^{-1} B = \tan^{-1} \frac{A + B}{1 AB}$ 5

25-219-II-(Essay Type)-43000

Roll No	Lahore Board-2019	(To be filled in by the candidate)
---------	-------------------	-------------------------------------

MATHEMATICS

(Academic Sessions 2015 - 2017 to 2018 - 2020)

Q.PAPER - I (Objective Type)

219-(INTER PART - I) GROUP - II

Time Allowed: 30 Minutes

Maximum Marks: 20

PAPER CODE = 6194

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

	two or more circles will res	ult in zero mark in that qu	uestion.	
1-1	$\cos\left(\frac{3\pi}{2}-\theta\right)$ is equal to	○ : ﷺ pakcity.o	rg 🐉	
	(A) $-\sin\theta$	(B) $\sin \theta$	(C) $\cos \theta$	(D) $-\cos\theta$
2	Probability of impossil	ole event is:		
	(A) $\frac{1}{2}$	(B) 1	(C) 0	(D) 2
3	2 tan ⁻¹ A equals :			
	$(A) \tan^{-1}\left(\frac{A}{1-A^2}\right)$			
	(C) $\tan^{-1}\left(\frac{2A}{1+A^2}\right)$			
4	Which angle is quadra	ntal angle:	~12	
	(A) 45°	(B) 60°	(c) 270°	(D) 120°
5	Solution of equation t	an $x = \frac{1}{\sqrt{2}}$ lies in the	quadrants :	
	(A) I and II	(BX) IT and III	(C) I and III	(D) I and IV
6	Middle terms in the	pansion of $(x+y)^{11}$	are: TON	
	(A) T_6, T_7	(B) T_5, T_6	(C) T_7, T_8	(D) T ₈ ,T ₉
7	If Δ is the area of a to	riangle ABC, then wit	h usual notation Δ	.=:
	(A) $\frac{1}{2}bc\sin\beta$	(B) $\frac{1}{2}ab\sin\alpha$ pak	(C) $\frac{1}{3}bc\sin\alpha$	(D) $\frac{1}{2}bc\sin\alpha$
8	Range of cotangent fur	nction is :		
	(A) N	(B) Z	(C) R	(D) C
9	Expansion of $(3-5x)^{\frac{1}{2}}$ is valid if:			
	(A) $ x < \frac{3}{5}$	3	(C) $ x < 5$	(D) $ x < 3$
10	With usual notation R	-:		
	(A) $\frac{b}{2\sin\gamma}$	(B) $\frac{a}{2\sin\alpha}$	(C) $\frac{c}{2\sin\alpha}$	(D) $\frac{a}{2\sin\beta}$
11	The sum of the four fo	urth roots of 81 is:		
	(A) 0	(B) 81	(C) -81	(D) 3

	(2)				
1-12	The property $\forall a, b \in \mathbb{R}$, $a = b \Rightarrow b = a$ is called:				
	(A) Commutative (B) Transitive (C) Symmetric (D) Reflexive				
13	The value of 4!. 0!. 1! is :				
	(A) 0 (B) 1 (C) 4 (D) 24				
14	A square matrix $A = [a_{ij}]$ in which $a_{ij} = 0$ for all $i > j$ is called:				
	(A) Upper triangular (B) Lower triangular				
	(C) Symmetric (D) Skew-symmetric				
15	$\sum_{k=1}^{n} (1)^{k} = :$ (A) $\frac{n(n-1)}{2}$ (B) $\frac{n}{2}$ (C) n (D) $\frac{n(n+1)}{2}$				
	K-I				
	(A) $\frac{n(n-1)}{2}$ (B) $\frac{n}{2}$ (C) $\frac{n(n+1)}{2}$				
16	If $b^2 - 4ac > 0$ but not a perfect square, then roots are:				
	(A) Equal (B) Complex (C) Rational (D) Irrational				
17	No term of geometric sequence can be:				
	(A) 0 (B) 1 (C) 2 (D) 3				
18	If A and B are two sets, then $A - B = :$				
	(A) $A \cup B^c$ (B) $A \cap B^c$ (C) $(A \cup B)^c$ (D) $(A \cap B)^c$				
19	Partial fractions of $\frac{1}{x^3-1}$ will be of the form:				
	(A) $\frac{A}{x+1} + \frac{Bx+C}{x^2+x+1}$ (B) $\frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$				
	(A) $\frac{A}{x+1} + \frac{Bx+C}{x^2+x+1}$ (B) $\frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$ (C) $\frac{A}{x-1} + \frac{Bx+C}{x^2-x+1}$ (D) $\frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$				
20	If $A = [a_{ij}]_{2\times 2}$, then $ kA = :$ pakcity.org (A) $ A $ (B) $k^2 A $ (C) $k A $ (D) $k A ^2$				
	(A) $ A $ (B) $k^2 A $ (C) $k A $ (D) $k A ^2$				

	HEMATICS (Academic Sessions 2014 - PER – I (Objective Type) 218-(INTER PART		2019) Fime Allowed: 30 Minutes		
	GROUP – I PAPER CODE = 0		Maximum Marks: 20		
Note:	Four possible answers A, B, C and D to each question fill that circle in front of that question with Marker of two or more circles will result in zero mark in that que	are given. The cho or Pen ink in the ar			
1-1	The set { 0, 1 } is closed under:	250000			
,	(A) Addition (B) Multiplication	(C) Division	(D) Subtraction		
2	If A and B are two sets, then $A - B = :$				
	(A) $A \cup B^c$ (B) $(A \cup B)^c$	(C) $A \cap B^c$	(D) $(A \cap B)^c$		
3	A square matrix A is skew symmetric if A^t	=:			
	(A) -A (B) A	(C) \overline{A}	(D) A'		
4	If order of a matrix A is $m \times n$, then order of	A' is :			
	(A) $m \times n$ (B) $m \times m$ ((C) $n \times m$	(D) n × n		
5	Sum of roots of quadratic equation $ax^2 + bx - bx$	+c=0 is:			
	(A) $\frac{a}{b}$ (B) $\frac{b}{a}$	$c_{\mathcal{D}} \frac{c}{c}$	(D) $-\frac{b}{}$		
		() a	a		
6	Product of all fourth roots of unity is				
	(A) -1 (B) 0	(C) 1	(D) i		
7	The fraction $\frac{3x^2+5}{x+1}$ is:	ATION Y			
	(A) Proper fraction (B) Polynomial				
	(C) Partial fraction (D) Improper fraction				
8	Geometric mean between - 2 and 8 is:	ty.org			
	(A) 4 (B) ±4 (e)	C) 8	(D) ±4i		
9	The 10th term of $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$, is:				
	(A) 30 (B) 28 (e	C) $\frac{1}{29}$	(D) $\frac{1}{32}$		
10	The value of $\frac{4!}{0!}$ is :				
	(A) 24 (B) 4 (C)	C) 0	(D) Infinity		
11	If A and B are mutually exclusive events, the	hen $P(A \cup B) =$	=:		
	(A) $P(A) \cup P(B)$ (B) $P(A) + P(B)$				

(D) P(A) - P(B)

(C) $P(A \cap B)$

(To be filled in by the candidate)

Lahore Board-2018

Roll No

Please visit for more data at: www.pakcity.org

(2)

1-12
$$4^n > 3^n + 4$$
 is true for integral values of $n = :$

- (A) 1
- (B) $n \le 1$

(C) 0

(D) $n \ge 2$

13

The 2nd term in expansion of $\left(1 - \frac{1}{3}x\right)^{-1}$ is:

- (A) $\frac{1}{2}x$
- (B) $-\frac{1}{3}x$

- (C) 3x
- (D) 2x

If $\sin \theta < 0$ and $\cot \theta > 0$, then θ lies in quadrant:

(A) 1

(B) 2

- (C) 3
- (D) 4

If α, β, γ are angles of triangle then $\tan(\alpha + \beta) + \tan \gamma = :$

- (A) 1
- (B) 0

- (C) 2(S)
- (D) -1

Period of $\cos\left(\frac{x}{2}\right) = :$

- (D) 4π

Radius of escribed circle opposite to vertex 'c' of the triangle is :

- (C) $\frac{\Delta}{s-c}$
- (D) $\frac{\Delta}{s-b}$

Please visit for more data at: www.pakdity.org

The value escribed circle $r_1 = :$

- (A) $\frac{\Delta}{s-a}$
- (B) $\frac{\Delta}{s-c}$

- (C) $\frac{\Delta}{}$
- (D) $\frac{\Delta}{a}$

The value of $\cos(\tan^{-1} 0) = :$

- (A) 1
- (B) 1

- (C) 0
- (D) ∞

If $\cos x = -\frac{1}{2}$, then reference angle is :

pakcity.org

- (A) $\frac{\pi}{6}$
- (B) $-\frac{\pi}{3}$

- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{2}$

(Academic Sessions 2014 - 2016 to 2017 - 2019)

MATHEMATICS

218-(INTER PART – I)

GROUP - I

Time Allowed: 2.30 hours

16

16

Maximum Marks: 80

SECTION - I

2. Write short answers to any EIGHT (8) questions : Repart pakeity.org

- (i) Simplify $(-1)^{-21}$
- (ii) Express the complex number $(1+i\sqrt{3})$ in polar form.
- (iii) Find the multiplicative inverse of (-4,7)
- (iv) Is there any set which has no proper subset? If so name that set,
- (v) Write the converse and contrapositive of $\sim q \rightarrow \sim p$
- (vi) For A = { 1, 2, 3, 4 }, find the relation in A for $R = \{(x, y) | x + y < 5 \}$, also write the range of R.
- (vii) If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$, $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b.
- (viii) Find the multiplicative inverse of the matrix $\begin{bmatrix} 2i & i \\ i & -i \end{bmatrix}$
- (ix) Show that $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ yz & zx & xy \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & z^2 \end{vmatrix}$
- (x) Solve the equation $x^4 6x^2 + 8 = 0$ (xi) Show that $x^3 y^3 = (x y)(x \omega y)(x \omega^2 y)$, ω is complex cube root of unity.
- (xii) If α , β are the roots of $3x^2 2x + 4 = 0$, then find the value of $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$

3. Write short answers to any EIGHT (8) questions :

- (i) Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into partial fractions.
- (ii) If $a_{n-2} = 3n 11$, find the nth term of the sequence
- (iii) If 5, 8 are two A.Ms between a and b, find a and b
- (iv) Which term of the A.P. 5, 2, -1, ----- is -85?
- (v) Insert two G.Ms between 1 and 8.
- (vi) If 5 is the harmonic mean between 2 and b, find b
- (vii) Define fundamental principle of counting.
- (viii) Find the number of the diagonals of a 6-sided figure.
- (ix) What is probability that a slip of numbers divisible by 4 are picked from the slips bearing number 1, 2, 3, ---- 10?
- (x) State the principle of mathematical induction.
- (xi) If x is so small that its square and higher powers can be neglected, then show that $\frac{1-x}{\sqrt{1+x}} = 1 - \frac{3}{2}x$
- (xii) Find the 6th term in the expansion of $\left(x^2 \frac{3}{2x}\right)^{1/2}$

Please visit for more data at: www.pakcity.org

5

5

5

4. Write short answers to any NINE (9) questions :

- (i) An arc subtends an angle of 70° at the center of a circle and its length is 132 m. Find the radius of the circle.
- (ii) Define coterminal angles.
- (iii) Verify $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4} = 2$
- (iv) If α, β, γ are angles of a triangle $\triangle ABC$, then prove that $\tan(\alpha + \beta) + \tan \gamma = 0$
- (v) Find the value of sin 105°, without calculator.
- (vi) Prove that $\cot \alpha \tan \alpha = 2 \cot 2\alpha$
- (vii) Write the domain of $y = \sin x$
- (viii) A vertical pole is 8m high and the length of its shadow is 6m. What is the angle of elevation of the sun at that moment?
 - (ix) Find α and β in the triangle \triangle ABC in which a=7, b=7, c=9
 - (x) Find the area of the triangle $\triangle ABC$ in which a = 200, b = 120, $\gamma = 150^{\circ}$
 - (xi) Evaluate without using calculator $tan^{-1} \left(\frac{1}{\sqrt{2}} \right)$
- (xii) Solve the equation $2\sin x 1 = 0$
- (xiii) Find the solution of the equation which lie in interval $[0,2\pi]$: $\sec x = -2$

SECTION - II

Note: Attempt any THREE questions.

- 5. (a) Consider the set $S = \{1, -1, i, -1\}$. Set up its multiplication table and show that the set S is an abelian group under multiplication.
 - (b) If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ then find A^{-1} by using adjoint of the matrix. 5
- 6. (a) Solve the system of equations: x + y = a + b; and $\frac{a}{x} + \frac{b}{v} = 2$ 5
 - 5 (b) Resolve $\frac{9x-7}{(x^2+1)(x+3)}$ into partial fractions.
- 7. (a) Find four numbers in arithmetic sequence (A.P.) whose sum is 32 and the sum of whose squares is 276.
 - (b) Use binomial series to show that $1 + \frac{1}{4} + \frac{1 \times 3}{4 \times 8} + \frac{1 \times 3 \times 5}{4 \times 8 \times 12} + --- = \sqrt{2}$ 5
- 8. (a) If $\csc\theta = \frac{m^2 + 1}{2m}$ and $m > 0 \left(0 < \theta < \frac{\pi}{2} \right)$, find the values of the all remaining trigonometric ratios.
 - (b) Prove that $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$ without using calculator. 5
- 5 (a) With usual notations, prove that $r_1 = \frac{\Delta}{s}$ 5
 - (b) Prove that $\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \sin^{-1}\frac{77}{85}$

(C) 1

Lahore Board-2018 (To be filled in by the candidate)

218-(INTER PART – I)

GROUP - II PAPER CODE = 6194Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct,

(Academic Sessions 2014 - 2016 to 2017 - 2019)

fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

· Time Allowed: 30 Minutes

Maximum Marks: 20

Roll No

MATHEMATIGS

O.PAPER - I (Objective Type)

1-12 Multiplicative inverse of complex number
$$-3-5i$$
 is:

(A) $\frac{3}{5i} + \frac{5}{5i}i$ (B) $\frac{-3}{5i} - \frac{5}{5i}i$ (C) $\frac{-3}{5i} + \frac{5}{5i}i$ (D) $\frac{-3}{5i} + \frac{5}{5i}i$

1-12

(B)
$$\frac{-3}{34} - \frac{5}{34}$$

(C)
$$\frac{-3}{34} + \frac{5}{34}i$$

(A)
$$\frac{3}{34} + \frac{5}{34}i$$
 (B) $\frac{-3}{34} - \frac{5}{34}i$ (C) $\frac{-3}{34} + \frac{5}{34}i$ (D) $\frac{-3}{\sqrt{34}} + \frac{5}{\sqrt{34}}i$

13 Simplify form of $\frac{10!}{7!}$ is equal to :

If matrix $\begin{bmatrix} x & 4 \\ 2 & 8 \end{bmatrix}$ is singular then x = :

$$(A)$$
 0

(B)
$$-1$$

15 Geometric mean between 4 and 16 are:

(B)
$$\pm 8$$

(C)
$$\frac{32}{56}$$

(A) 10 (B) ± 8 (C) $\frac{32}{5}$ (D) 64

Roots of the equation $x^2 - 7x + 10 = 0$ are:

(A) (2, -5) (B) (-2, 5) (C) (2, 5) (D) (-2, -5)

(A)
$$(2,-5)$$

(B)
$$(-2,5)$$

(D)
$$(-2, -5)$$

Formula for the sum of terms of R. (Arithmetic progression): (C) $s_n = \frac{a_1(1-r^n)}{1-r}$

(A)
$$a_n = a_1 + (n - 1)$$

$$(\mathbf{B}) \quad s_n = \frac{n}{2}(a_1 + a_n)$$

(C)
$$s_n = \frac{a_1(1-r^2)}{1-r}$$

Tabular form of $\{x \mid x \in E, 4 < x\}$ 181

$$(A) \{ \}$$

Partial fractions of $\frac{1}{(x^2+1)(x-1)}$ are of the form:

(A)
$$\frac{A}{x^2+1} + \frac{B}{x-1}$$

(A)
$$\frac{A}{x^2+1} + \frac{B}{x-1}$$
 (B) $\frac{A}{x+1} + \frac{B}{(x^2+1)} + \frac{C}{x-1}$

(C)
$$\frac{A}{x^2+1} + \frac{Bx+C}{x-1}$$

(C)
$$\frac{A}{x^2+1} + \frac{Bx+C}{x-1}$$
 (D) $\frac{Ax+B}{x^2+1} + \frac{C}{x-1}$

20 A matrix A is said to be symmetric if:

(A)
$$A^t = -A$$
 (B) $A^t = A$

(B)
$$A^t = A$$

(C)
$$(\overline{A})^t = A$$

(C)
$$(\overline{A})^t = A$$
 (D) $(\overline{A})^t = -A$

Ro	oll NoLahore Board-2018 (To be filled in by the candidate)	
	(Academic Sessions 2014 – 2016 to 2017 – 2019)	
	ATHEMATICS 218-(INTER PART – I) Time Allowed: 2.30 ho	urs
1 7	APER – I (Essay Type) GROUP – II Maximum Marks : 80	
•	SECTION - I Write short answers to any EIGHT (8) questions:	
Z.		16
	(i) Does the set { 1, -1 } close w.r.t. : (a) addition (b) multiplication	
	(ii) Find multiplicative inverse of the complex number (-4, 7)	
	(iii) If $z = 1 - i\sqrt{3}$, then find $ z $	
	(iv) Write inverse and contrapositive of $q \rightarrow p$	
	(v) If A = { a, b, c}, then write all subsets of A and find P(A)	
	(vi) Show that set of natural number is not a group w.r.t. addition.	
	(vii) Define diagonal matrix with an example.	
	(viii) If $A = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$, then find A^{-1}	
	6 7 8	
	(ix) Without expansion show that $\begin{vmatrix} 6 & 7 & 8 \\ 3 & 4 & 5 \\ 2 & 3 & 4 \end{vmatrix} = 0$	
	2 3 4	
	(x) Find four 4 th roots of unity.	
	(xi) If α , β are roots of $x^2 - px - p - c = 0$, show that $(1 - \alpha)(1 + \beta)$	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
_	(xii) Find quadratic equation whose roots are 20, 20, where ω is cube roots of unity.	
3.	Write short answers to any EIGHT (8) questions:	16
	(i) Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into partial fractions. (ii) Find the indicated term of the sequence 2, 6, 11, 17, $a_7 = ?$	
	(ii) Find the indicated term of the sequence 2, 6, 11, 17, $a_7 = ?$	
	(iii) Sum the series upto n-terms $\frac{1}{1-\sqrt{x}} + \frac{1}{1-x} + \frac{1}{1+\sqrt{x}}$	
	(iv) Insert two G.Ms between 1 and 8.	
	(v) Find the sum of the infinite geometric series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +$	
	(vi) Find the 12 th term of the harmonic sequence $\frac{1}{3}$, $\frac{2}{9}$, $\frac{1}{6}$,	

- (vii) Evaluate $\frac{15!}{15!(15-15)!}$
- (viii) Find the value of n, when $\frac{12 \times 11}{2!} = {}^{n}C_{10}$
 - (ix) There are 5 green and 3 red balls in a box, one ball is taken out, find the probability that the ball drawn is green.

- (x) Find the number of the diagonals of a 6-sided figure.
- (xi) Find the term involving x^4 in the expansion of $(3-2x)^7$.
- (xii) Using binomial theorem find the value of $(1.03)^{\frac{1}{3}}$ upto three decimal places.
- 4. Write short answers to any NINE (9) questions :
 - (i) Define angle in the standard position with figure.

 - (ii) Find x, if $\tan^2 45^\circ \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ \tan 60^\circ$ (iii) Prove that $\frac{1}{1 + \sin \theta} \frac{1}{1 \sin \theta} = 2 \sec^2 \theta$

- (iv) Find the value of sin 540° without using calculator.
 - (v) Prove that $\tan\left(\frac{\pi}{4} \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right) = 0$
 - (vi) Express $\sin(x+45^\circ)\sin(x-45^\circ)$ as sum or difference.
 - (vii) Find the period of $\cos \frac{x}{6}$
 - (viii) Find the area of triangle $\triangle ABC$, in which b = 37, c = 45 and $\alpha = 30^{\circ}50'$
 - (ix) Prove that $r r_1 r_2 r_3 = \Delta^2$ (Using usual notation)
 - (x) Prove that $(r_1 + r_2) \tan \frac{\gamma}{2} = c$ (Using usual notation)
 - (xi) Find domain and range of $y = \cos^{-1} x$
 - (xii) Solve the equation $\sin x = \frac{1}{2}$
 - (xiii) Find solutions of $\cot \theta = \frac{1}{\sqrt{3}}$ which lie in $[0, 2\pi]$

SECTION - II

Attempt any THREE questions.

- (a) Convert the following theorem to logical form and prove it by constructing truth table $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Solve the following system by reducing their augmented matrices to the echelon form: 5 x + 2y + z = 2

$$2x + y + 2z = -1$$
$$2x + 3y - z = 9$$

- 2x + 3y z = 9(a) If α, β are the roots of the equation $ax^2 + bx + c = 0$ then find the equation whose roots are $\frac{-1}{\alpha^3}$, $\frac{1}{\beta^3}$
- (b) Resolve $\frac{2x^4}{(x-3)(x+2)^2}$ into partial fraction. 5
- (a) For what value of n, $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the positive geometric mean (G.M.) between a and b
- (b) If x is so small that its square and higher powers can be neglected, then show that : 5

$$\frac{(1-x)^{\frac{1}{2}}(9-4x)^{\frac{1}{2}}}{\frac{1}{(8+3x)^{\frac{1}{3}}}} \approx \frac{3}{2} - \frac{61}{48}x.$$

- 8. (a) If $\csc\theta = \frac{m^2 + 1}{2m}$ and m > 0, $\left(0 < \theta < \frac{\pi}{2}\right)$, find the values of the remaining trigonometric ratios.
 - (b) Prove without using calculator that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{1.6}$
- (a) The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. Prove that the greatest angle of the triangle is 120°.
 - (b) Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$ pakcity.org

5

5

5

5

5