11th Class Chemistry Objective Paper Group 1 Gujranwala Board 2024

	•	of Candidate :ISTRY In	ntermediate Part-I , C	lass 11 th (1 st A 324-	IV) Paper: I	Group – I
Tir	ne:	20 Minutes	OBJECTIVE	Code: 6487		Marks: 17
No	fī	ll that circle in front of	or each objective type quest that question number. Use to mark in that question.	tion as A, B, C and D. The narker or pen to fill the c	he choice which you th ircles. Cutting or filling	ink is correct, g two or more
1.	1 -	Gooch Crucible is r (A) glass	made up of (B) porcelain	(C) rubber	(D) plastic	
	2 -	The pH of 10^{-3} moles (A) 3.0	es/dm ³ of an aquous solut (B) 2.7	ion of H_2SO_4 is (C) 2.0	(D) 1.5	
	3 -	Enzyme used for hy (A) invertase	vdrolysis of sucrose is (B) urease	(C) lipase	(D) zymase	
la.	4 -	The partial pressure (A) 159 torr	of Oxygen in lungs is (B) 116 torr	(C) 130 torr	(D) 140 torr	
	5 -	The voltage of Silve (A) 1.5 V	er Oxide battery is about (B) 2 V	(C) 2.5 V	(D) 3 V	
	6 -		energy of chemical reacti e (B) heat of sublimati		ture and pressure is of (D) internal energy	alled gy change
	7 -	Allotropy is the pro (A) compound	perty of (B) mixture	(C) element	(D) molecule	
	8 -	Bond angle of NF ₃ i (A) 102°	is (B) 104°	(C) 109.5°	(D) 120°	
	9 -	A solution of glucos (A) 1 dm ³	se is 10% w/v. The volum (B) 1.8 dm	ne in which its 1g mole (C) 200 cm ³	e is dissolved will be (D) 900 cm ³	
1	0 -	Decolourizing agent (A) P ₂ O ₅	t used in crystallization is (B) animal charcoal		(D) CC l ₄	
1	1 -	The number of isoto (A) 2	opes of Nickle are (B) 3	ATION (C) 5	(D) 7	
1	2 -	Number of molecule	es in 1dm ³ of water is clo	se to		
		$(A)\frac{6.02}{22.4} \times 10^{23}$	(B) $\frac{12.04}{22.4} \times 10^{23}$ pake	(C) $\frac{18}{22.4} \times 10^{23}$	(D) 55.5×6.02×	10 ²³
1	3 -	Splitting of spectral (A) Zeeman's effect	lines when atoms are sub	jected to strong electri		n effect
1	4 -	Bond order of O ₂ ac (A) 1	cording to MOT is (B) 2	(C) 3	(D) 4	
1	5 -	(n + l) value for 4p	orbital is			
		(A) 4	(B) 5	(C) 6	(D) 7	
1	6 -	Which of following (A) C ₂ H ₅ OH ●	will have Hydrogen bond (B) CCL4	ding in its molecules (C) I ₂	(D) NaCl	
1	7 -	The empirical formu(A) C ₆ H ₁₂ O ₆	ala of glucose C ₆ H ₁₂ O ₆ is (B) CHO	(C) CH ₂ O ●	(D) CH ₂ O ₂	
					217-(IV)-1 st A 32	4-33000

11th Class Chemistry Subjective Paper Group 1 Gujranwala Board 2024

CHEMISTRY

Intermediate Part-I, Class 11th (1stA 324)

Group - I

Time: 2:40 Hours

SUBJECTIVE

Marks: 68

Note: Section-I is compulsory. Attempt any THREE (3) questions from Section-II.

SECTION - I

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i Why atom cannot be visualized by ordinary microscope?
- ii Calculate number of gram atoms in 0.1 Kg of Na (At. wt of Na = 23 a.m.u)
- iii How can limiting reactant be identified?
- iv How can rate of filteration be enhanced?
- v What is chromatography? Write its uses.
- vi What is Rf value? Write its unit.
- vii In a graph of P Vs 1/V, what is the result of increase in temperature?
- viii Give two characteristics of plasma.
- ix Differentiate between diffusion and effusion.
- x What is pH of 10⁻⁴ M Ba(OH)₂ solution?
- xi What are conjugate acids and bases?
- xii Define law of mass action.

 $(2 \times 8 = 16)$

3. Write short answers to any EIGHT questions.

i - Why acetone and chloroform are miscible into each other? Show with the help of structures.

PERENTO LIG

- ii Why ice floats on the surface of water?
- iii Define symmetry. What are symmetry elements?
- iv Define unit cell. What are unit cell dimensions?
- v How positive rays are produced?
- vi Define Moseley law. Write down its two important points.
- vii What is Davisson and Germer experiment to verify the dual nature of matter?
- viii Write down two Moseley's conclusions.
 - ix Molal aqueous solutions are more dilute than molar solutions. Justify.
 - x Write down any two characteristics of ideal solutions.
- xi Define half-life period. Give mathematical formula of half-life period for second order and pakcity.org third order reaction.
- xii What is autocatalysis? Give one example.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i Write down factors influencing electron affinity.
- ii Cationic radius is less than its parent atom why?
- iii How electronegativity changes in a group?
- iv Bond distance is the compromise distance between two atoms. How?
- v What are exothermic reactions? Give example.
- vi Define enthalpy of combustion. Give example.
- vii State first law of thermodynamics.
- viii The Nickle Cadmium cell is called rechargeable cell. Give electrodic reactions.
- ix Impure Cu can be purified by electrolytic process. How?

SECTION - II

5.	(a)	Differentiate the following with examples. (i) Empirical and Molecular formula (ii) Mole and Avogadro's number	(2+2=4)
	(b)	Define Hydrogen Bonding and explain any three applications of it.	(4)
6.	(a)	One mole of methane is maintained at 300 K. Its volume is 250 cm ³ . Calculate the pressure exerted by the gas when the gas is ideal	(4)
	(b)	What is J.J. Thomson's experiment for determining $\frac{e}{m}$ value of electron?	(4)
7.	(a)	Explain the shapes of NH ₃ and H ₂ O molecules according to hybridization theory.	(4)
	(b)	The solubility product of Ag ₂ CrO ₄ is 2.6 x 10 ⁻² at 25°C. Calculate the solubility of the compound.	(4)
8.	(a)	Define 1 st law of thermodynamics. Explain it in detail. Also prove that $\Delta E = q_v$	(4)
	(b)	Write electrode reactions for following batteries (i) Alkaline Battery (ii) Silver Oxide Battery	(4)
9.	(a)	Derive a relationship: $M_2 = \frac{K_f}{\Delta T_f} \cdot \frac{1000 \text{ W}_2}{W_1}$	(4)
	(b)	What is half-life period? Prove that $\begin{bmatrix} t_{\frac{1}{2}} \end{bmatrix}_{n}^{\infty} \frac{1}{a^{n-1}}$	(4)
		217-1 st A 324-3300 pakcity.org	0

11th Class Che	emistry Objective Pape	er Group 2 Gujranwa	ala Board 2	024				
.oll No. of Candidate:	.oll No. of Candidate:							
CHEMISTRY	Intermediate Part-I, Cl	ass 11 th (1 st A 324- IV)	Paper : I	Group – II				
Time: 20 Minutes	OBJECTIVE	Code: 6488		Marks: 17				
fill that circle in from	ces for each objective type questi nt of that question number. Use m in zero mark in that question.							
1. 1 - The compound	which can undergo sublimation	on is						
(A) KMnO ₄	(B) CaCO ₃	(C) NH4Cl	(D) Na ₂ CO ₂	3				
2 - For which syste	em does the equilibrium consta	ent (Kc) has units of (conce	entration) ⁻¹ ?					
(A) $N_2 + 3H_2$		(B) $H_2 + I_2 \rightleftharpoons 2HI$,					
(C) 2NO ₂	≥ N ₂ O ₄	(D) 2HF \rightleftharpoons H ₂ +	F_2					
3 - The unit of the	rate constant is the same as tha	at of the rate of reaction in						
(A) first order r	eaction	(B) second order react	tion					
(C) third order:	reaction	(D) zero order reaction	n 🛑					
4 - At room temper	rature, the rate of diffusion of l	N ₂ and CO is same, because	ie					
(A) both are dia	atomic gases	(B) both are non-polar	r gases					
(C) both have n	•	(D) both have same m		×				
	$K_2Cr_2O_7 + 14HCl \rightarrow 2KCl + 2$	$2CrCl_3 + 3Cl_2 + 7H_2O$ the	oxidation state	of Cr				
changes from	(0)		(m)					
(A) $+1$ to $+7$	(B) +6 to +3		(D) $+2$ to $+3$					
	$1 \text{ NaOH} + \text{HCl} \rightarrow \text{NaCl} + \text{H}_2$	^ / 1 / /						
(A) heat of reac		(B) heat of neutralizat	ion 🛡					
(C) heat of form 7 - Which of the fo		(D) heat of combustion	n					
(A) Glass	llowing is not a pseudo solid?	}	(D) plastics	3				
. ,	(B) rubber		(D) plastics					
(A) HI	llowing compounds has the hig (B) HBr	(C) HCl	(D) HF					
	llowing solutions has the highe							
(A) 5.85% solut	tion of NaCl	(B) 18.0% solution of	$C_6H_{12}O_6$					
(C) 6.0% solution		(D) all have the same l	T 0					
10 - Solvent extracti be separated is	on method is a particularly use	ful technique for separation	n when the pro	duct to				
(A) volatile or the	AUGU OF A	(B) volatile or thermal	•					
	e or thermally unstable	(D) non-volatile or the	ermally stable					
	er of covalent bonds in 4.5 g of		m> a a 4	.23 _				
(A) 6.02×10^{23}	(B) 6.02×10^{22} (C)		(D) 3.01 x 10)				
	f a gas from ideal behaviour is							
(A) -10° C and 5		(B) -10°C and 2.0 atm (D) 0°C and 2.0 atm						
(C) 100°C and 2	atm is complete, the entering elect							
(A) 7f	(B) 7s	(C) 7p	(D) 7d					
14 - The geometry of	V	(C) /p	(D) /u					
(A) linear	(B) trigonal planar	(C) tetrahedral	(D) trigonal j	ovramidal 🛑				
15 - The velocity of		(-)	(-)					
	on its wavelength	(B) depends on its way	elength					
(C) equal to square	are of its amplitude	(D) depends on its sou	rce					
16 - In order to keep	the boiling point of water at 1	10°C, the external pressure	should be					
(A) between 200	torr and 760 torr	(B) between 760 torr a	nd 1200 torr 🛑					
(C) 765 torr		(D) below 765 torr						
	ber of molecules are present in			· ^				
(A) $3.6 \text{ g of H}_2\text{C}$	(B) $4.8 \text{ g of } C_2H_5OH$	(C) 2.8 g of CO	(D) $5.4 \text{ g of } 1$	N2O5				

11th Class Chemistry Subjective Paper Group 2 Gujranwala Board 2024

CHEMISTRY

Intermediate Part-I, Class 11th (1stA 324)

Paper: I

-Group - II

Time: 2:40 Hours

SUBJECTIVE

pakcity.org

Marks: 68

Note: Section-I is compulsory. Attempt any THREE (3) questions from Section-II.

SECTION - I

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i Differentiate between experimental yield and theoretical yield.
- ii Differentiate between atom and molecule.
- iii Mg atom is twice heavier than Carbon atom. Justify it.
- iv Write four features of a solvent used in crystallization.
- v What is crystallization? Give its basic principle.
- vi How coloured impurities are removed from a crystal?
- vii Why liquids are less common in universe than gases and solids?
- viii How Dalton's law is helpful in respiration?
 - ix Derive Charle's law from Kinetic equation of gas.
 - x Write relationship between Kc and Kp.
- xi What is ionic product constant of water? How do temperature affect it?
- xii State law of Mass action.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i Iodine dissolves readily in tetrachloromethane. Give reason.
- ii Define polarizability. Give its significance
- iii Define unit cell. Name crystallographic elements.
- iv Boiling needs constant supply of heat. Explain with reason.
- v State any two properties of positive rays.
- vi What is line spectrum? Give any one example.
- vii State Moseley's Law.
- viii State Hund's Rule. Give an example.
 - ix Define Catalysis. Give two examples.
 - x What is specific rate constant? Explain
 - xi Aqueous solution of CH₃COONa is basic in nature. Give reason.
- xii Define molality. Give its units.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i Why does lone-pair occupy more space than bonding pair?
- ii Radius of Cation is smaller than parent atom. Justify.
- iii How bond length is affected by change in hybridization state?
- iv Define electronegativity.
- v Define the term standard enthalpy of neutralization.
- vi What is state function? Give one example.
- vii Discuss endothermic reaction with example.
- viii Lead accumulator is chargeable battery. Justify.
 - ix Calculate oxidation number of Phosphorous in Na₃PO₄.

(Turn Over)

pakcity.org

SECTION - II

5.	(a)	What are limiting reactants? How are they identified? Give an example. (2+1+	1 =4)
	(b)	What are ionic solids? Give their three properties.	(4)
6.	(a)	250 cm ³ of Hydrogen gas is cooled from 127°C to -27°C by maintaining the pressure constant. Calculate the new volume of gas at low temperature.	(4)
	(b)	Write down measurement of $\frac{e}{m}$ by J.J. Thomson with diagram.	(4)
7.	(a)	Explain formation of Oxygen molecule according to Molecular Orbital Theory. Also draw diagram and calculate bond order.	(4)
	(b)	What is the percentage ionization of acetic acid in solution in which 0.1 mol of it has been dissolved per dm ³ of the solution?	(4)
8.	(a)	State 1 st Law of Thermodynamics and prove $\Delta E = q_v$	(4)
	(b)	Define electrochemical series. Discuss calculation of the voltage of cell by giving one example.	(4)
9.	(a)	Define the following terms: (i) Hydration (iii) Hydrates (iii) Mole fraction (iv) parts per million (ppm)	(4)
	(b)	Discuss four factors that affect the rate of reactions.	(4)
		218-1 st A 324-33000	

Roll N	o. of Candidate:		thst . and .vv.	Daniel Cuon I
CHEM	ISTRY I	ntermediate Part-I , Clas	ss 11 th (1 st A 323- IV)	
	20 Minutes	OBJECTIVE	Code: 6487	Marks: 17
fi	Il that circle in front of	or each objective type question that question number. Use man ro mark in that question.	n as A, B, C and D. The cheker or pen to fill the cifcles	oice which you think is correct, s. Cutting or filling two or more pakcity.org
	(A) STP	of CO ₂ is maximum at (B) 127°C and 1 atm	(C) 0° C' and 2 atm	(D) 273°C and 2 atm
2 -	Molarity of pure w (A) 1	(B) 18	(C) 55.5	(D) 6
3 -	(C) remains same	e reaction proceeds as the reaction proceeds	(B) decreases as the r (D) may increase or d	eaction proceeds ecrease as reaction proceeds
	(A) 700 torr	(B) 765 torr	(C) 800 torr	(D) 900 torr
	(A) oxidation pote (C) redox potential		(B) reduction potenti (D) emf of the cell	al
6 -	(A) MgO	nversion of SO ₂ /into SO ₃ in (B) Al ₂ \emptyset_3	contact process is	(D) V ₂ O ₅
7 -	(A) $n=2, \ell=1$	alues for 2P orbital are (B) n=1, l=2	(C) $n=1$, $\ell=0$	(D) $n=2, \ell=0$
8 -	The change in heat (A) enthalpy chang (C) bond energy	energy of a chemical reaction	on at constant temperatur (B) heat of sublimation (D) internal energy constants	on
9 -		of Fluorine in OF ₂ is (B) -2	(C) +2	(D) +1
10 -	Gooch crucible is n (A) porcelain	nade up of (B) silver	(C) iron	(D) glass
11 -	Mass of one mole of (A) 1.008 mg	of electrons is (B) 0.55 mg	(C) 0.184 mg	(D) 1.673 mg
12 -	The partial pressure (A) 116 torr	e of Oxygen in air is (B) 159 torr	(C) 180 torr	(D) 190 torr
13 -	(A) 0.4184J	(B) 41.84J	(C) 4.184J	(D) 418.4J
14 -	(A) 3.0	es/dm ³ of an aquous solution (B) 2.7	n of H_2SO_4 is (C) 2.0	(D) 1.5
15 -	The number of bond (A) one Sigma and (C) Three Sigma of		(B) One Sigma and T (D) Two Sigma one I	
16 -	Ionic solids are cha (A) low melting po	racterized by pints	(B) good conductivity	y in solid state
17 -	(C) high vapour provided Nickel has isotopes		(D) solubility in pola	r solvents (D) 5
	(A) 2	(B) 3	(C) 4	
				217-(IV)-1 st A 323-36000

Intermediate Part-I, Class 11th (1stA 323)

SUBJECTIVE

Group - I Paper: I

 $(2 \times 8 = 16)$

Marks: 68

Note: Section-I is compulsory. Attempt any THREE (3) questions from Section-II.

SECTION-I

2. Write short answers to any EIGHT questions.

- i Calculate the moles of Cl atoms in 0.822 g of C₂H₄Cl₂.
- ii What is the difference between gram atom and gram ion?
- iii No individual neon atom has a mass of 20.18 amu. Why?
- iv How does the respiration process involve Dalton's law of partial pressures?
- v Give the quantitative definition of Charles's law.
- vi Where is plasma found?

CHEMISTRY

Time: 2:40 Hours

- What is Moseley's law? Give its significance.
- Write down the electronic configuration of 29Cu and 19K.
- The velocities of electrons in higher orbits are less than those in lower orbits of hydrogen atom. Give the reason.
- x Define standard enthalpy of combustion. Give an example.
- xi What is meant by state function? Give two examples.
- xii Define exothermic reaction. Give an example.

3. Write short answers to any EIGHT questions.

i - Define water of crystallization. Give example.

 $(2 \times 8 = 16)$

- ii How do you justify that the boiling point of one molal urea solution is 100.52°C but the boiling point of two molal urea solution is less than 104004°C?
- iii Give two statements of Raoults law,
- iv Differentiate between fast step and the rate determining step.
- v What are enzymes? Give an example.
- vi The reaction happens due to collisions among the molecules but all the collisions are not fruitful. Justify it.
- vii How does a Gooch crucible increases the rate of filtration?
- viii Give the main characteristics of the solvent used for crystallization.
 - ix What is ether extraction?
 - x Define polymorphism. Give example.
 - xi Hydrogen bonding is present in chloroform and agetone. Justify it.
- xii How liquid crystals can act as temperature sensors?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i Atomic radius decreases from left to right in a period, justify.
- ii Define electron affinity, give one example.
- iii How the criteria of electronegativity helps us to understand the nature of bond?
- iv What is buffer capacity?
- v Value of pKa and pKb are related to strength of acid and bases. Justify it.
- vi Define solubility product with an example.
- vii Differentiate between electrolytic and galvanic cell.
- viii What is electrolysis? Give an example.
 - ix How anodized aluminium is prepared in an electrolytic cell?

	JI No	o, of Candidate :	Gujranwala E	Board	1-2023		
			nediate Part-I, Class	11 th ((1 st A 323- III)	Paper : I	Group – II
Tir	ne: 2	0 Minutes	OBJECTIVE C	Code: 6	486		Marks: 17
	te: Yo	ou have four choices for each that circle in front of that questions will, result in zero ma	uestion number. Use mark	as A, B, ter or pe	C and D. The choice to fill the circles. C	utting or filli 5	think is correct ng two or more
1.		In zero order reaction, the (A) temperature of reaction (C) concentration of proof The pH of 10 ⁻³ mol dm ⁻³	tion ducts	(B) (D)	concentration of r) none of these	eactants	
		(A) 3.0	(B) 2.7	(C)	2.0	(D) 1.5	5
	3 -	If a strip of Cu metal is p (A) Cu will be deposited (C) Cu and Fe both diss	i	(B)	Fe is precipitated no reaction takes		
	4 -	Calori is equal to (A) 0.4184 J	(B) 41.84 J	(C)	4.184 J	(D) 41	8.4 Ј
	5 -	The oxidation No. of Nit (A) +3	(B) -3	` '	- 5	(D) +5	
	6 -	The change in heat energy (A) enthalpy change (C) bond energy	gy of a chemical reaction	(B)	stant temperature a heat of sublimation internal energy ch	n	is called
	7 -	An aqueous solution of e (A) equal to that of wat (C) more than that of wa	er ater	ve vapo	ur pressure equal to that of et less than that of w	hanol	
	8 -	(A) high pressure of CO (C) low pressure of O ₂	2	(B)	is due to low pressure of C high pressure of C		
	9 -	The value of pH of pure (A) 14	water at 25°C is	(C)	1×10 ⁻¹⁴	(D) 1×	1014
	10 -	Pressure remaining cons	tant, at which temperatu	re the v	olume of a gas will	become tw	ice of what it
		is at 0°C	(B) 200°C	(C)	546 K	(D) 27	3 K
	11	(A) 546° C Which of the following s				• • • • • • • • • • • • • • • • • • • •	
	11 -	(A) O_2^{2+}	(B) N_2^{2-}		В	(D) F ₂	
	12 -		ystallization the hot satu y to get large size crysta	rated so	blution	,,,	
		(C) is evaporated to get(D) is mixed with immis	the crystals of the produsible to get the pure crys	ct tals of	the product		
	13 -	When 6 d orbital is comp (A) 7 f	(B) 7 p	(C)	7 s	(D) 7 d	Ľ
	14 -	27 g of Al will react how (A) 8 g of Oxygen	(B) 16 g of Oxygen		12O ₃ 32 g of Oxygen	(D) 24	g of Oxygen
		Diamond is a bad conduction (A) it has a tight structure (B) there are no free electric (C) it has a heigh densite (D) is transparent to light	re ctrons present in the cry y nt	stal of o	liamond to conduct	electricity	
		The mass of one mole of (A) 1.008 mg	electron is (B) 0.55 mg	(C)	0.184 mg	(D) 1.6	573 mg
	17 -	Liquid Hydrocarbon is (A) Methane	(B) Pentane	(C)	Hexane	(D) Pro	opane

		of Candidate:	ermediat	te Part-I . Cla	ass 11 th	(1	l st A 323- III)	Paper	r:I	Group - II
				OBJECTIVE	Code			•		Marks: 17
) Minutes						ce which	h voi	
Note:	fill	n have four choices for that circle in front of the cles will result in zero	nat question	number. Use m	on as A, arker or	pen	to fill the circles.	Cutting	or fill	ling two or more
1. 1		In zero order reaction (A) temperature of a (C) concentration of	reaction	is independent	(B)	concentration of none of these	8	nts	
2	-	The pH of 10^{-3} mol of (A) 3.0	lm ⁻³ of an (B) 2				4 is 2.0	(1	D) 1	5
3		If a strip of Cu metal (A) Cu will be depo (C) Cu and Fe both	sited	in a solution of	(B)	Fe is precipitate no reaction take			
4		Calori is equal to (A) 0.4184 J		11.84 J		(C)	4.184 J	(D) 4	118.4 J
5		The oxidation No. of (A) +3	(B) -	-3		(C)			(D) -	
6		The change in heat e (A) enthalpy change (C) bond energy	e			(B) (D)	internal energy	tion		re is called
		An aqueous solution (A) equal to that of (C) more than that of	water of water		RET	(B) (R)	dequal to that of less than that of	ethanol water	1	
8	-	Feeling uncomfortal (A) high pressure of (C) low pressure of	ole breathing CO ₂	(08)11		(\mathbf{D})	is due to low pressure of high pressure o			
1052	-	The value of pH of p	oure water	3)~			1×10 ⁻¹⁴			1×10 ¹⁴
10	-		110				olume of a gas w			twice of what it
		(A) 546° C Which of the follow	(B)	200° C						
11	-		ing specie (B)	N ²⁻	Ciccuoi	(C)	B	,	(D)	F ₂
		(A) O ₂ ²⁺ During the process		_	coturate				(-)	-
		(A) is cooled very s(B) is cooled at a m(C) is evaporated to(D) is mixed with i	slowly to go noderate ra get the cr mmisible t	get large size or te to get medic systals of the protoget the pure	ystals am size roduct crystals	crys of t	itals			
		When 6 d orbital is (A) 7 f	(B)	7 p		(C)	7 s		(D)	7 d
		27 g of Al will react (A) 8 g of Oxygen	(B)	16 g of Oxyge	n produc	(C)	32 g of Oxyger	1	(D)	24 g of Oxygen
		Diamond is a bad co (A) it has a tight st (B) there are no fre (C) it has a heigh d (D) is transparent t	ructure e electrons lensity o light	s present in the	crystal	of	liamond to cond	uct elec	trici	ty
		The mass of one me (A) 1.008 mg	(B)	tron is 0.55 mg		(C)	0.184 mg		(D)	1.673 mg
1′	7 -	Liquid Hydrocarbon (A) Methane		Pentane		(C)	Hexane			Propane
							:	218-(III	I)-1 st	A 323-35000

Intermediate Part-I, Class 11th (1st A 323-I)

Paper: I

Group - II

Time: 2:40 Hours

CHEMISTRY.

SUBJECTIVE

Marks: 68

Note: Section-I is compulsory. Attempt any THREE (3) questions from Section-II. 🎎

SECTION-I

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i What is the significance of John Dalton's work about atom?
- ii Define molar volume, give an example.
- iii How many moles are present in 18 g of H2O?
- iv What is effect of pressure and heat on the behaviour of gases?
- v Give the S.I units of R.
- vi State Avogadro's law and give an example.
- vii Define frequency, give its relationship with wavelength.
- viii Differentiate between continuous and line spectrum.
 - ix How neutron was discovered?
 - x Distinguish between Exothermic and Endothermic reactions.
 - xi Show how change in internal energy is related to q.?
- xii What do you know about standard enthalpy of neutralization?

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i Define molarity and molar solution.
- ii What are discontinuous solubility curves
- iii Define Hydrates with one example.
- iv What is meant by activation of a catalyst?
- v Draw lock and key model of enzyme catalysis.
- vi How light affects rate of reaction?
- vii What is sintered glass crucible? What is its advantage?
- viii How fluted filter paper can be prepared?
- ix Write down any two uses of chromatography.
- x Define dipole-dipole forces. Give one example. pakeity or
- xi Define hydrogen bonding. Give one example.
- xii What is meant by Anisotropy? Give one example.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- Define bond order and what is bond order of O_2^{2+}
- ii Why MOT is superior to UBT?
- iii Differentiate between polar and nonpolar covalent bonds with examples.
- iv How ammonia is synthesized by Haber's process? Also give the optimum conditions for reaction.
- v Give the two applications of the solubility product.
- vi The change of temperature disturbs both the equilibrium position and the equilibrium constant of a reaction. Explain with reason.
- vii What is fuelcell and where it is used?
- viii Write down two applications of electrochemical series.
- ix What is SHE? Give its potential value.

SECTION - II

No	te: A	Attempt any THREE (3) questions.	
5.		Explain combustion analysis with diagram and write formulas for percentage of (2+1+1 Carbon, Hydrogen and Oxygen.	=4) &-
	(b)	Calculate the mass of 1 dm ³ of NH ₃ gas at 30°C and 1000 mm Hg pressure, considering that NH ₃ is behaving ideally.	(4)
6.	(a)	What are London forces? Explain factors affecting London forces.	(4)
	(b)	State first law of thermodynamics. Also prove that $\Delta E = q_v$	(4)
7.	(a)	Describe Millikan's Oil Drop Method for the measurement of charge on an electron.	(4)
	(b)	The solubility product of Ca(OH) ₂ is 6.5×10 ⁻⁶ . Calculate the solubility of Ca(OH) ₂ .	(4)
8.	(a)	Define atomic orbital hybridization. Explain SP ² hybridization by giving example of BF ₃ .	(4)
	St. 02	Define electrochemical series and give any three applications of it.	(4)
9.	(a)	Discuss in detail any two examples of solutions of partially miscible liquid.	(4)
		Differentiate between homogeneous catalysis and heterogeneous catalysis with one example in each.	(4)

218-1stA 323-35000

Gujranwala Board-2022 Roll No. of Candidate: (Intermediate Part-I, Class 11th) 322 - (III) CHEMISTRY Paper I (Group - 1) Time: 20 Minutes OBJECTIVE ---- Code: 6485 Marks: 17 Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. pakcity.org 1 - An aqueous solution of ethanol in water may have vapour pressure 1. (B) equal to that of ethanol (A) equal to that of water (C) more than that of water (D) less than that of water 2 - The unit of the rate constant is the same as that of the rate of reaction in _____ (D) third (B) second (C) zero (A) first 3 - Amorphous solids ____ (A) have sharp melting points (B) undergo clean cleavage when cut with knife (C) have perfect arrangement of atoms Please visit for more data at: www.pakcity.org (D) can possess small regions of orderly arrangement of atoms In endothermic reactions, the heat content of the (B) reactants is more than that of products (A) products is more than that of reactants (C) surroundings increases (D) reactants and products is equal 5 - When 6d orbital is completed, the entering electron goes into (D) 7d (A) 7f (B) 7s 6 - Orbitals having same energy are called degenerate orbitals (D) d-orbitals (A) hybrid orbitals (B) valence orbitals 7 - Solvent extraction is controlled by (C) law of mass action (D) Graham's law (B) Newton's law (A) distribution law 8 - The mass of one mole of electrons is (A) 1.008 mg (B) 0.55 mg O (C) 0.184 mg (D) 1.673 mg 9 - VSEPR theory was developed by (B) Sidgwick and Nylholm (A) Sidgwick and Powell (D) Nylholm and Gillespie (C) Powell and Gillespie 10 - If the salt bridge is not used between two half cells, then the voltage (B) decreases slowly (C) does not change (D) drops to zero (A) decreases rapidly 11 - An excess of aqueous silver nitrate is added to aqueous barium chloride and precipitate is removed by filtration. What are main ions in the filtrate? (B) Ag⁺ and Ba⁺² and NO₃ (A) Ag+ and NO3 only (D) Ba+2 and NO3 and Cl (C) Ba+2 and NO3 only 12 - A limiting reactant is the one which _____. (A) is taken in lesser quantity in gm as compared to other reactants (B) is taken in lesser quantity in volume as compared to the other reactants (C) gives the maximum amount of the product which is required (D) gives the minimum amount of the product under consideration is not used as drying agent in a desiccator. 13 -(D) phosphorus pentoxide (C) silica gel (B) CaCl₂ (A) water BF₃ shows _____ hybridization. (D) sp^3d (A) sp² (C) sp (B) sp³

Equal masses of methane and oxygen are mixed in an empty container at 25° C. The fraction of total pressure exerted by oxygen is _____ The deviation of a gas from ideal behaviour is maximum at ___ (A) -10°C and 5.0 atm (B) -10°C and 2.0 atm (C) 100°C and 2.0 atm (D) 0°C and 2.0 atm is a pseudo solid. (C) NaCl (D) sugar (B) glass

(Intermediate Part-I, Class 11th) 322

Paper I

(Group - I)

SUBJECTIVE Time: 2:40 Hours

Marks: 68

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

 $(2 \times 8 = 16)$

2. Write short answers to any EIGHT questions.

- i What is molecular ion? Write down formulas of any two of these ions.
- ii Differentiate between empirical and molecular formula.
- iii Mg (Magnesium) atom is twice heavier than C (Carbon) atom. Justify.
- iv How crystals are dried in vacuum desiccator?
- v What is Rf value? Why does it has no units?
- vi What is partition chromatography?
- vii Convert -40 °C into Fahrenheit scale.
- viii Define absolute zero temperature.
- ix "Water vapours do not behave ideally at 273 K". Explain it. 3137 10 17 E
- x What is Le-chatelier's principle?
- xi Define solubility product.

CHEMISTRY

xii - Prove that $Ka = \frac{[H_3 O^+][A^-]}{[HA]}$

$(2 \times 8 = 16)$

3. Write short answers to any EIGHT questions.

- i Boiling needs a constant supply of heat Give reason.
- ii The vapour pressures of solids are far less than those of liquids. Why?
- iii Define symmetry. Give its elements.
- iv What are ionic solids? Give two examples.
- v Whichever gas is used in the discharge tube, the nature of cathode rays remains the same. Why?
- vi What is the origin of line spectrum?
- vii State Pauli's exclusion principle.
- viii Write down names of two spectral series alongwith their regions.
 - ix The concentration in terms of molality is independent of temperature but molarity depends upon temperature . Why?
 - x Define hydrolysis. Give an example.
 - xi What is activated complex?
 - xii What is half-life period? Give an example.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i Write Lewis structures of i) CCl₄
- ii Why Noble gases don't form chemical bonds?
- iii O2 shows paramagnetic behavior; why?
- iv Why CH4 does not form co-ordinate covalent bond but H2O can form?
- v Is it true that non spontaneous process never happens in the universe?
- vi What does the symbol ΔH_n^0 denote? Define this quantity.
- vii Burning of candle is spontaneous process; brief it.
- viii What is difference between primary and secondary cell?
 - ix SHE acts as cathode when connected with zinc; why?

(SECTION - II)

O No	te: Attempt any	/ THREE (3)	questions	from	Section II	
------	-----------------	-------------	-----------	------	------------	--

{ 5.	(a)) Define yield. How theoretical and practical yield can be calculated?	(1+3)
2	(b)	Define quantum numbers. Explain azimuthal quantum number in detail.	(1+3)
÷ 6.	(a)	Calculate the density of CH ₄ (g) at 0°C and 1 atm pressure. What happens to the density if the pressure is increased to 2 atm at 0°C?	(4)
מו. י	(b)	Explain the construction of lead accumulator. Give its discharging process.	(4)
57.	(a)	Draw the molecular orbital diagram for O2 and explain its paramagnetic behaviour.	(2+2)
ט ט	(b)	How the enthalpy of a reaction can be measured by using glass calorimeter?	(3+1)
8.	(a)	What are London forces? Write down factors affecting them.	(1+3)
5	(b)	Calculate the pH of a buffer solution in which 0.11 molar CH ₃ COONa and	(1+1+1+
10		0.09 molar acetic acid solution are present. K _a for CH ₃ COOH is 1.85 x 10 ⁻⁵ .	
9.	(a)	Differentiate between	(2+2)

(a) Differentiate between

(2+2)

- i) Ideal and non-ideal solutions.
- ii) Hydration and hydrolysis
- (b) Define catalysis. Explain its types with suitable examples.

Please visit for more data at: www.pakcity.org

D.	all No	o. of Candidate : Gujranwala Boa	rd-2022		
		HSTRY (Intermediate Part-I, Class	ss 11 th) 322 - (IV)	Paper I	(Group - II)
Γir	ne: 2	20 Minutes OBJECTIVE	Code: 6488		Marks: 17
	te: Yo fill ci	ou have four choices for each objective type question as ill that circle in front of that question number. Use marker ircles will result in zero mark in that question. Attempt aper and leave others blank.	A, B, C and D. The choice or pen to fill the circles.	Cutting or fi	lling two or more
L.	1 -	The pH of 10 ⁻³ mol.dm ⁻³ of an aqueous solution of	$f H_2SO_4$ is		
		(A) 1.5 (B) 2.0	(C) 3.0	(D) 2.7	
	2 -	substance is used as decolourizing agent in	crystallization process		
		(A) silica gel (B) animal charcoal	(C) CaCl ₂	(D) H_2	SO ₄
	3 -	Bohr model of atom is contradicted by			
		(A) planks quantum theory	(B) dual nature of ma	atter	
		(C) Heisenberg's uncertainty principle	(D) all of these		
	4 -	When water freezes at O°C its density decreases due	e to		
		(A) cubic structure of ice	(B) Lehanges bond ler	ngth	
		(C) empty spaces present in structure of ice	(D) changes bond an	gles	
	5 -	The largest number of molecules are present in	 ·		
-		(A) 3.6 g of H_2O (B) 4.8 g of C_2H_5OH	(C) 2.8 goof CO	(D) 5.4	4 g of N ₂ O ₅
	6 -	An aqueous solution of ethanol in water may have va	pour pressure	. •	
		(A) equal to that of water	By more than that o	f water	
		(C) equal to that of ethanol	(D) less than that of	water	
	7 -	is a pseudo solid.			
		(A) glass (B) CaF ₂	(C) NaCl	(D) H	Cl
	8 -	Orbitals having same energy are called	30/1		
	Ť	(A) degenerate orbitals (B) S and P orbitals	(C) molecular orbita	ıls (D) va	lence orbitals
	9 -	In Sp ³ hybrid orbital "S" character is			
		(A) 25% (B) 50% Number of molecules in one dph ³ of water is close to	(C) 75%	(D) 10	0%
	10 -	Number of molecules in one dph3 of water is close to	To looking		
	- 1	(A) $\frac{6.02}{22.4} \times 10^{23}$ (B) $\frac{12.04}{22.4} \times 10^{23}$	(C) $\frac{18}{10^{23}}$ x10 ²³	(D) 5	$5.6 \times 6.02 \times 10^{23}$
		(A) $\frac{1}{22.4}$ x10 (B) $\frac{1}{22.4}$ x10	22.4	(-)	
	11 -	Solvent extraction is an equilibrium process and is c	ontrolled by		
		(A) law of mass action (B) amount of solvent use	d (C) distribution law	(D) at	nount of solute
	12 -	If the rate equation of a reaction 2 A+B pro	ducts is, rate $= K [A]^{-2}$	[B] and A	is present
		in large excess then order of reaction is			
			(C) 3	(D) 4	
	13 -	The state of the s			
	10	(A) one σ and one π (B) one σ and two π	(C) three sigma only	(D) to	wo σ and one π
	14 -	How many subatomic particles are thought to exist			
		(A) 3 (B) 20	(C) 50	(D) 1	00
	15 -	Stronger the oxidizing agent greater is the	•		
	10	(A) redox potential (B) E.M.F. of cell	(C) oxidation potent	al (D) re	duction potential
	16 -	The moler volume of CO is maximum at			
	10.	(A) STP (B) 127°C and 1 atm	(C) O°C and 2 atm	(D)	273° C and 2 atm
	17.	For the reaction NaOH + HCl \longrightarrow NaCl+H ₂ O			
	17-	(A) heat of reaction (B) heat of formation	(C) heat of neutraliz	ation (D) h	eat of combustion
		Lear Hearth County (1) Hear of formation	(-)	. ,	

216-(IV)-322 -31000

CHEMISTRY

(Intermediate Part-I, Class 11th) 322

SUBJECTIVE

Marks: 68

Paper I

Time: 2:40 Hours

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

(SECTION - I)

 $(2 \times 8 = 16)$

(Group - II)

2. Write short answers to any EIGHT questions.

- i What is mass spectrum?
- ii One mole of H₂SO₄ should completely react with two moles of NaOH. How does Avogadro's number help to explain it?
- iii Define limiting reactant. Give an example.
- iv Write down the names of any four major steps involved in grystallization.
- v What is ether extraction?
- vi What is paper chromatography? Name its two types.
- What is mean square velocity?
- Where is plasma found? viii
 - ix Derive Charle's law from kinetic molecular theory of gases.
 - x What is common ion effect? Give an example.
 - xi Write down the Henderson's equation to determine the pH of a buffer solution.
- xii Define solubility product. Give an example.

Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i Ionic crystals are highly brittle. Justify it.
- ii Cleavage of the crystals is itself anisotropic behaviour. Justify it.
- iii Diamond is hard and an electrical insulator. Justify it,
- iv Boiling needs a constant supply of heat. Justify it.
- v How the Cu can be converted into Zn
- vi What is Zeeman effect?
- vii Define Moseley's law and give its relationship/equation.
- viii Define Pauli's exclusion principle.
 - ix Define parts per million (PPM) and give Its expression.
 - x Define critical solution temperature and give an example.
 - xi What is catalytic poisoning? Give an example.
- xii Define catalysis and give two examples of catalysed reactions.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i Why the molecules of BF3 are triangular planar?
- ii Define covalent radius. Give one example.
- iii Define shielding effect. How it varies across the period?
- iv Define coordinate covalent bond. Give one example.
- v Differentiate between endothermic and exothermic reaction.
- vi What is lattice energy? Give one example.
- vii Enthalpy of neutralization of a strong acid and a base is always -57.5 K cal mole-1. Why?
- viii Calculate the oxidation number of chromium in the following compounds:
 - a) CrO₃
- b) Cr₂O₃
- ix Define oxidation state. Give example.

(Turn Over)

Please visit for more data at: www.pakcity.or

(SECTION - II)

Note: Attempt any THREE (3) questions from Section II..

5. (a) Explain the concept of limiting reactant with a suitable example, 1+1+2 (4) Also write down steps to identify a limiting reactant. (b) Define quantum numbers and explain in detail azimuthal quantum number. 1+3 (4) 6. (a) 250 cm³ of the sample of hydrogen effuses four times as rapidly as 250 cm³ (4)of an unknown gas. Calculate the molar mass of unknown gas. (b) Discuss any two industrial importance of electrolytic process. (4)7. (a) Explain the geometry of NH₃ using hybridization. 3+1 (4) (b) State and explain Hess's law of constant heat summation with an example. 1+3(4)(4)8. (a) Brief about structure of ice. (b) Calculate the pH of buffer solution in which 0.11 M CH₃COONa and (4)0.09 M CH₃COOH solutions are present while ka for CH₃COOH is 1.85×10⁻⁵. 9. (a) What is solubility curve? Discuss its types with examples. (4)(b) What in catalysis? Give any three characteristics of catalyst with examples. (4)

216-322-31000

pakcity.org

Roll No. of Candidate:

CHEMISTRY

(INTERMEDIATE PART-I) 321 - (III) Paper - I

Time: 20 Minutes

OBJECTIVE ---- Code: 6485

Marks: 17

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank.

1. 1 - 18 g glucose is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to

- (C) 5.1

(D) 6

2 - The unit of the rate constant is the same as that of the rate of reaction in

(A) first order reaction (B) second order reaction (C) third order reaction (D) zero order reaction

- 3 The crystal system of sulphur is
 - (A) cubic
- (B) hexagonal
- (C) triclinic

4 - An excess of aqueous silver nitrate is added to aqueous barium chloride and precipitate is removed by filtration. What are the main ions in the filtrate?

(A) Ag and NO₃ only

- (C) Ag and Ba and NO
- (B) Ba²⁺ and NO₃ only (D) Ba²⁺ and NO₃ and $C\ell^-$

5 - Which of the hydrogen halide has the highest percentage of ionic character?

- (A) HCl
- (B) HBr

(D) HF

6 - The value of quantum number is n = 1, 2, 3, 4, 5, for

- (A) principal quantum number
- (B) azimuthal quantum number
- (C) magnetic quantum number
- (D) spin quantum number

7 - Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is

8 - Number of isotopes of oxygen is
(A) two

- (B) three
- (D) five

9 - The type of hybridization in NH3 is

- (A) SP
- (B) SP²
- (C) SP3
- (D) dSP²

Stronger the oxidizing agent, greater is the

- (A) oxidation potential (B) reduction potential (C) redox potential
- (D) E.M.F. of cell

11 - Law of mass action states that the rate at which the reaction proceeds is directly proportional to the product of the active masses of

- (A) reactants
- (B) products
- (C) concentration
- (D) equilibrium

12 - A limiting reactant is the one which

- (A) is taken in lesser quantity in grams as compared to other reactants
- (B) is taken in lesser quantity in volume as compared to the other reactants
- (C) gives the maximum amount of the product which is required
- (D) gives the minimum amount of the product under consideration

13 - The comparative rates at which the solutes move in paper chromatography depend on

(A) the size of paper

- (B) R_f values of solutes
- (C) temperature of the experiment
- (D) size of the chromatographic tank used

14 - One calorie is equivalent to

- (A) 0.4184 J
- (B) 4.184 J
- (C) 41.84J
- (D) 418.4 J

15 - Oxygen molecule is heavier than hydrogen by

(A) 1 time

- (B) 8 times
- (C) 16 times
- (D) 32 times

16 - Acetone and chloroform are soluble in each other due to

- (A) intermoleçular hydrogen bonding
- (B) ion-dipole interaction

(C) instantaneous dipole

- (D) all of these
- (A) the nature of electrode
- (B) the nature of the discharge tube
- (C) the nature of the residual gas

17 - The nature of the positive rays depends on

(D) all of these

CHEMISTRY (INTERMEDIATE PART-I) 321 Paper - I Group - I

Time: 2:40 Hours <u>SUBJECTIVE</u> Marks: 68

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

(SECTION - I)

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

pakcity.org

i - Differentiate between theoretical yield and experimental yield.

ii - Define mole with two examples.

iii - Law of conservation of mass has to be obeyed during stoichiometric calculations. Justify it.

iv - Iodine dissolves readily in CCl4. Why?

v - What is chromatography and Rf value?

vi - Calculate S.I. unit of R.

vii - Derive Boyle's law from kinetic molecular theory of gases.

viii - Write down any two characteristics of plasma.

ix - State Charles's law. Write down its mathematical form.

x - Relative lowering of vapour pressure is independent of temperature. Justify this statement.

xi - Define hydration energy of ions.

xii - What are continuous solubility curves? Give one example.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

i - What is role of hydrogen bonding in paints, dyes and textile materials?

ii - What do you mean by liquid crystal? Write down any two uses of it.

iii - Define the property of solids allotropy and give two examples.

iv - The crystals showing isomorphism mostly have the same atomic ratios; explain.

v - How neutron was discovered by Chadwick? Also write down reaction.

vi - Write down postulates of Bohr's atomic model.

vii - How azimuthal quantum number (1) gives information about types of subshells?

viii - Explain the concept of atomic spectrum.

ix - Write down optimum conditions of temperature and pressure in the manufacture of ammonia by Haber's process.

x - Define pH and pOH of solutions.

xi - What do you understand by rate determining step? Give a suitable example.

xii - How does Arrhenius equation help us to calculate the energy of activation of a reaction?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i Define ionization potential of element. How ionization potential vary across the period?
- ii Anionic radius is greater than that of its parent atomic radius. Why?
- iii Draw the structure of NH3 with reference to VSEPR Theory.
- iv How do electronegativity values charge in a group?
- v Define enthalpy of solution with an example.
- vi State first law of thermodynamics. Give its mathematical expression.
- vii Calculate the oxidation numbers of elements underlined:
 - (a) Na_2CO_3 (b) K_2MnO_4
- viii Give function of salt bridge.
 - ix Why SHE acts as cathode when connected with Zn electrode but SHE acts as anode when connected with Cu? Justify.

(SECTION - II)

5.	(a)	When limestone (CaCO ₃) is roasted then quicklime (CaO) is formed according to the	(4)
		following equation. The actual yield of (CaO) is 2.5 kg, when 4.5 kg of limestone is	
		heated. What is the percentage yield of this reaction?	
		$CaCO_{3(S)} \xrightarrow{\Delta} CaO_{(S)} + CO_{2(g)}$	
	(b)	Discuss the role of Hydrogen Bonding in Biological Compounds.	(4)
6.	(a)	Write fundamental postulates of kinetic molecular theory of gases.	(4)
	97.079	Discuss four postulates of Bohr's model of atom.	(4)
7.	(a)	What is Sp ³ hybridization? Explain the structure of methane.	(4)
	(b)	Explain measurement of enthalpy by a glass calorimeter.	(4)
8.	(a)	Calculate the pH of 1.0 mole dm ⁻³ of NH ₄ OH, which is 1% dissociated.	(4)
	(b)	Explain half life method for determination of order of reaction.	(4)
9.	(a)	Freezing points of solutions are depressed when non-volatile solutes are present	(4)
		in volatile solvents. Justify it. Plot a graph to elaborate your answer.	
	(b)	Discuss measurement of electrode potential by standard hydrogen electrode (S.H.E)	(4)

Roll No. of Candidate : CHEMISTRY	(INTERMEDIATE	PART	-I) 321 - (III)	Paper - I	Group-II	
Time: 20 Minutes	OBJECTIVE	🤇	Code: 6486		Marks: 17	
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank.						
1. 1 - An excess of aqueous silver removed by filtration. When the second secon	ver nitrate is added to aquat are the main ions in	tha feltam	into'	(3)	6	
(A) Ag^{+} and NO_{3}^{-} only		(B) A	Ag and Ba an		akcity.org 🖁	
(C) Ba^{2+} and NO_3^- only			Ba ²⁺ and NO ₃ ar			
2 - Pressure remaining const. what it is at 0°C						
(A) 546 °C 3 - The number of bonds in r	(B) 200 °C hitrogen molecule is	(C) 5	546 K	(D) 273 l	•	
(A) one σ and one π			one σ and two			
(C) three sigma only			two σ and one	π		
4 - When water freezes at 0°			empty spaces pr	essent in the str	ucture of ice	
(A) cubic structure of ic(C) change of bond length			change of bond		acture of rec	
5 - Isotopes differ in	guis	(2)	(10)			
(A) properties which de	pend upon mass	1	000			
(B) arrangement of elect	rons in orbitals	1000				
(C) chemical properties (D) the extent to which the	and may be affected in	dectrom) agnetic field			
6 - 18 g glucose is dissolved	in 90 g of water. The t	elative l	owering of vapo	our pressure is	equal to	
1	-905	(0)	1			
(A) $\frac{1}{5}$	(B) 5.1	(C)	51	(D) 6		
7 - The nature of the positive	rays depend on				-00	
(A) the nature of electro	de la companya de la		the nature of the all of these	e discharge tube	,	
(C) the nature of the res		(D)	an or these			
(A) independent of its v	vavelength		depends on its v			
(C) equal to square of i	ts amplitude	(D)	depends on its	source		
 9 - One calorie is equivalent 	to	(0)	4 104 1	(D) 418.4	1	
(A) 0.4184 J		a (C)	4.184 J	(D) 416.4	J	
10 - Acetone and chloroform	are soluble in each other	(B) i	on – dipole inte	raction		
(A) intermolecular hydr(C) instantaneous dipole	e		all of these			
11 - Solvent extraction is an e	quilibrium process and i	it is cont	rolled by			
(A) law of mass action		(B) t	the amount of so			
(C) distribution law		(D) t	the amount of so	olute		
12 - In zero order reaction, the(A) temperature of reac	tion	(B) (concentration of	reactants		
(C) concentration of pro	ducts	(D)	none of these			
13 - Which of the following s	pecies has unpaired elec	trons in	antibonding mo	lecular orbitals	?	
(A) O_2^{2+}	(B) N_2^{-2}	(C)		(D) F ₂		
14 - 27 g of Al react comple	tely with how much ma	ss of O ₂	to produce Al2	O ₃		
(A) 8 g of pxygen	(B) 16 g of oxygen	(C)	32 g of oxygen	(D) 24 g	of oxygen	
15 - The cathodic reaction in	electrolysis of dil. H ₂ SO	4 with P	t electrodes is			
(A) reduction		(B)	oxidation neither oxidation	n nor reduction		
(C) both oxidation and a 16 - The molar volume of CO	cuuciion a is maximum at	(D)	neither Oxidatio	an nor reduction	k 🌣	
(A) STP	(B) 127 °C and 1 atm	(C)	0°C and 2 atm	(D) 273	°C and 2 atm	
17 - The pH of 10 ⁻³ mol dm ⁻³	of an aqueous solution	of H ₂ SC	O ₄ is	(-, -,-	nor andresson (tol. 1899) STATE	
(A) 3.0	(B) 2.7	(C)	2.0	(D) 1.5		

218-(III)-321-37000

HEMISTRY

(INTERMEDIATE PART-I) 321

Paper - I Group - II

me: 2:40 Hours

SUBJECTIVE

Marks: 68

ote: Section I is compulsory. Attempt any THREE (3) questions from Section II.

(SECTION - I)

Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i What is gram formula? Give example.
- ii Define stoichiometry, write down its two laws.
- iii How limiting reactant is identified?
- iv What is distribution law?
- v What is mobile phase and stationary phase?
- vi What is physical meaning of value of R?
- What is Avogadro's law? Give example. vii -
- Where plasma is found?
 - How pressure of dry gas is calculated?
 - Define solubility curve, give its types.
 - IN DIRE xi - Give two differences between ideal and non-ideal solutions.
- xii What is fractional crystallization?

Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i Explain cleavage plane is anisotropic property.
- Amorphous solids like glass are also called super cooled liquids. Explain.
- iii Define isomorphism by giving one example
- iv Explain why HF is weak acid than HIS
- v Define Zeeman effect and stark effect.
- vi State Heisenberg's uncertainty principle, write down its mathematical form.
- What is spin quantum number? Give its significance.
- viii What is difference between orbit and orbital?
 - Write down equilibrium constant expression for the reaction:

$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

- Calculate pH of 0.001 M HCl solution.
- Explain the radioactive decay is 1st order reaction.
- xii Justify the statement "the unit of rate constant of a second order reaction is dm³ mole⁻¹ s⁻¹ but the unit of rate of reaction is mole dm⁻³ s⁻¹."

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i Name the four factors affecting ionization energies.
- ii Why ionization energy decreases down the group inspite of the increase in proton number?
- iii Why second ionization energy is higher than first ionization energy?
- iv Define electron affinity with an example.
- v Define first law of thermodynamics.
- vi Define heat and work.
- vii Calculate oxidation state of chromium in dichromate ion.
- viii What is the use of salt bridge in voltaic cell?
- ix Why voltaic cell is a reversible cell?

(SECTION - II)

	(a)	Calculate the gram atoms (moles) in pakcity.org	(4)
		(i) 0.1 g of sodium (ii) 0.1 kg of silicon	
	(b)	Explain the following properties of crystalline solids. Give two examples in each case:	(4)
		(i) Isomorphism (ii) Transition Temperature	
	(a)	Derive an equation to find out the partial pressure of a gas knowing the individual moles	(4)
		of component gases and the total pressure of the mixture.	
	(b)	Give the postulates of Bohr's atomic model. Which postulate tells us that orbits are	(4)
		stationary and energy is quantized?	
	(a)	Define electron affinity. Name the factors affecting on it. How does it vary in the	(4)
		periodic table.	
	(b)	State first law of thermodynamics. Write down its mathematical expression.	(4)
		Prove that $\Delta H = q_p$	
	(a)	What is the percentage ionization of acetic acid in a solution in which 0.1 mol of it	(4)
	550 550	has been dissolved per dm ³ of the solution. ($Ka = 1.85 \times 10^{-5}$)	
	(b)	Explain half life method and large excess method to find the order of reaction.	(4)
•	(a)	Freezing points of solutions are depressed when non-volatile solutes are present in	(4)
		volatile solvents. Justify it. Plot a graph to elaborate your answer.	
	(b)	Write down the various rules for assigning exidation number	(4)

218-321-37000

Roll N	o. of	Candidate:				
Chemi Time:	20 M	inutes	TERMEDIATE PART OBJECTIVE Code: 6487		y.org Marks: 17	
Note:	You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, interest that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave other blank.					
1.	1.	In zero order reaction the A) temperature of reaction C) concentration of processing the concentration of the c	on	B) concentration of rea D) none of these	ctants	
	2.	Calorie is equivalent to A) 0.4184 J	: B) 41.84 J	C) 4.184 J	D) 418.4 J	
	3.	Stronger the oxidizing a A) oxidation potential	B) reduction potential	C) redox potential	D) E.M.F of cell	
)	4.	Which of the halogen h	B) HBr	C) HF	D) III	
	5.	A) 1 dm ³	B) 1.8 dm ³	C) 200 cm	le is dissolved will be: D) 900 cm ³	
	6.	In order to raise the boi A) between 760 torr and C) 765 torr	d 1200 torr	D) any value of pressur	na 700 ton	
	7.	Which of the following A) NII ₃	B) CHCl,	€)H ₂ O	D) BF ₃	
	8.	If absolute temperature of a gas will: A) remain unchanged	of a gas is doubled and B) increase four times	X -0.	D) be doubled	
	9.	The pH of 10 ⁻³ mol.dn A) 3.0	of aqueous solution B) 2.7	of H ₂ SO ₄ is: C) 2.0	D) 1.5	
	10.	The volume of a gas wi A) 546 °C	B) 200 °C	t it is at 0°C: C) 546 K	D) 273 K	
		Bohr's model of atom in A) Plancks quantum the C) Heisenberg's uncertainty	ory inty principle	B) dual nature of matte D) all of the above	r	
	12.	Solvent extraction is an A) law of mass action C) distribution law	equilibrium process ar	nd it is controlled by: B) the amount of solver D) the amount of solute		
	13.	The nature of positive r A) nature of electrode C) nature f discharge tub		B) nature of residual ga D) all of the above	s	
	14.	27 gms of Al will read A) 8.0 g of oxygen			produce Al ₂ O ₃ D) 24.0 g of oxygen	
	15.	The molarity of pure H	2O is: B) 18	C) 55.5	D) 6	
	16.	The mass of one mole o A) 1.008 mg	f electrons is: B) 0.55 mg	C) 0.184 mg	D) 1.673 mg	
	17.	When water freezes at A) cubic structure of ice C) empty spaces present		ses due to: B) change of bond leng D) changes of bond ang		

Chemistry (New Scheme)

(INTERMEDIATE PART-I) 319

Group: I

Paper: I Marks: 68

Time: 2:40 Hours

SUBJECTIVE

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

(SECTION - I)

pakcity.org

 $(2 \times 8 = 16)$

2. Write short answers to any EIGHT questions.

- i. Why most of the elements have fractional atomic mass?
- ii. Differentiate between "Molecular Formula" and "Empirical Formula".
- iii. Why 80 g of glucose and 342 g of suscrose have same number of molecules but different number of atoms?
- iv. Write down four properties of best solvent choosen for crystallization.
- v. Differentiate between adsorption and partition chromatography.
- vi. Define critical temperature and critical pressure.
- vii. Calculate the S.I units of 'R'.
- viii. Define plasma. How it is formed?
- ix. Why gases show Non-Ideal behavior at low temperature and high pressure?
- x. Write two differences between Ideal and Non-Ideal solutions.
- xi. Define Heat of solution. Give example.
- xii. Why aqueous solution of CH3COONa is basic?

 $(2\times8=16)$

3. Write short answers to any EIGHT questions.

- i. Define vapour pressure. Name the factors which affect vapour pressure.
- ii. What are dipole-dipole forces. Name the properties which are affected by these forces.
- iii. Define Anisotropy and Allotropy.
- iv. Boiling point of water is high as compared to boiling point of other. Why?
- v. State Moseley's Law. Give its two importances.
- vi. Justify that the distance gaps between different orbits go on increasing from the lower to the higher orbits.
- vii Why are positive rays called canal rays?
- viii. Draw shapes of 'S' and 'P' orbitals.
- ix. Define common ion effect giving an example.
- x. State law of Mass Action.
- xi. Define order of reaction. Give an example of pseudo first order reaction.
- xii. Write two properties of enzyme catalysis.

Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- Define octet rule. Give two examples.
- ii. Atomic Radii increase in group and decrease in period, explain it.
- iii. Cationic radius is smaller than parent atom, give reason.
- iv. How electronegativity is used to find nature of chemical bond.
- v. Define exothermic reaction. Give two examples.
- vi. Define Spontaneous process. Give two examples.
- vii. Find oxidation number of "Mn in KMnO4"
- viii. Explain electrolysis of fused PbCl₂.
- ix. Write the function of salt bridge in Galvanic cell.

			saji ariwala Boar	4 2010	
Roll N	lo. of	Candidate:	······································	221	YY Domanu I
	20 M	linutes	ERMEDIATE PART OBJECTIVE Code: 6488		Marks: 17
Note:	You!	have four choices for each ob circle in front of that question will result in zero mark in t	jective type question as A, I	B, C and D. The choice whi pen to fill the circles. Cutt my questions as given in ob	ch you think is correct, fill ing or filling two or more jective type question paper
	and le				of 🌉 pakcity.org
1.	1.	it is dissolved will be: A) 1 dm ³	B) 1.8 dm ³	C) 200 cm ³	D) 900 cm ³
	2.	The molar volume of (A) S.T.P	B) 127 °C and 1 atm	C) 0 °C and 2 atm	D) 273 °C and 2 atm
	3.	Splitting of spectral lin A) zee-man effect	B) stark effect	subjected to strong electric effect	ctric field is called: D) Compton effect
	4.	Molarity of pure water A) 1.0	B) 18.0	C) 55.5	D) 6.0
	5.	Orbitals having same e A) hybrid orbitals	B) valence orbitals	C) degenerate orbitals	D) d-orbitals
	6.	The volume occupied by A) 2.24 dm ³	B) 22.4 dm	P is: C) 1.12 dm	D) 112 cm ³
	7.	Calorie is equivalent to A) 0.418 J	B) 41.84 J	6)4.184 J	D) 418.4 J
	8.	Solvent extraction is an A) law of mass action C) amount of solvent us	sed Police	B) distribution law D) the amount of solu	tc
	9.	The mass of one mole A) 1.008 mg	B) 0.55 mg	C) 0.184 mg	D) 1.673 mg
	10.	In zero order reaction A) temperature of react C) concentration of pro	ion ducts	B) concentration of re D) none of these	eactants
	11.	Which of the following A) CaF ₂	B) glass	C) NaCl	D) all of these
	12.	Stronger the oxidizing A) oxidation potential	B) reduction potential	C) redox potential	D) E.M.F of cell
	13.		g species has unpaired		
		A) O_2^{2+}	B) N_2^{2-}	C) B ₂	D) F ₂
	14.	Pressure remaining cobecome twice of what	nstant, at which tempo it is at 0°C:		
	r.	A) 546 °C	B) 200 °C	C) 546 K	D) 273 K
	15.	A) low melting points C) good conductivity is	n solid state	B) high vapour press D) solubility in pola	
	16.	Which of the followin	g molecules has zero on B) CIICL3	C) H ₂ O	D) BF ₃
	17.	The pH of 10 ⁻³ mole. A) 3.0	dm ⁻³ of an aqueous so B) 2.7	olution of H ₂ SO ₄ is: C) 2.0	D) 1.5

Gujranwala Board-2019 pakcity.org

_

5.	(a)	Write a note on Limiting reactant. Explain it giving at least two examples.	4
	(b)	Write four important properties of Metallic solids.	4
6.	(a)	250 cm ³ of hydrogen is cooled from 127 °C to -27 °C by maintaining the pressure constant. Calculate the new volume of gas at low temperature.	4
	(b)	Write down any four properties of positive rays.	4
7.	(a)	Explain postulates of molecular orbital theory.	4
	(b)	Derive the relationship between ΔH and ΔE , where H stands for enthalpy and E stands for internal energy. Which are two conditions when ΔH and ΔE becomes equal.	4
8.	(a)	Ca (OII) ₂ is a sparingly soluble compound. Its solubility product is 6.5×10^{-6} . Calculate the solubility of Ca(OH) ₂ .	4
	(b)	Describe any four physical methods for the determination of the rate of a chemical reaction.	4
9.	(a)	Give graphical explanation for Elevation of boiling point of a solution.	4
	(b)	Explain four Industrial applications of Electrolysis.	4

219-319-33000

CHEMISTRY			(New	Scheme)

(INTER PART - I) 318 - (II)

Paper - I

(D) drops to zero

Time: 20 Minutes

17 - If salt bridge is not used between two half cells then the voltage.

(A) decreases rapidly (B) decreases slowly (C) does not change

OBJECTIVE

Marks: 17

Code: 6483 Gujranwala Board-2018

NOTE: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank.

	- 1	paper and leave others blank.							
1.	1 -	Hydrolysis of tertiary butyl b	romide is						
		(Λ) zero order reaction		est order reaction					
	_	(C) pseudo first order reacti			Acres 1990 Pro				
	2 -	The molal boiling point cons			g point to				
		(A) molarity	(B) mo						
	3 -	(C) mole fraction of solvent The solubility product of Age	(D) mc	ole traction of solute	and a carrier and a second				
	J -	um concentration							
D		of Ag ⁺ ions in solution is							
ō		(A) $2.0 \times 10^{-10} \text{ mol dm}^{-3}$	(B) 1.4						
Ē		(C) 1.0 x 10 ⁻¹⁰ mol dm ⁻³	(D) 4.0	x 10 ⁻²⁰ mol dm ⁻³					
8	4 -	For the reaction NaOH + HC	$l \longrightarrow NaCl + 1$	H ₂ O the change in en	thalpy is called				
pa		(A) heat of neutralization	(B) hea	at of reaction					
Š	_	(C) heat of formation	(D) he	at of combustion					
≷	5 -	Which of the hydrogen halide	es has the highest p						
>		(A) HCL (E	B) HBr	(E) HF	(D) HI				
क	6 -	The velocity of photon	216	7100					
äta		(A) is independent of wavel	ength (B) der	ends upon its wavele	ength				
ö		(C) equals to square of its amplitude (D) depends on its source							
9	7 -	Which of the following is pse	eudo solid						
20		(A) CaF_2 (B)	glass	(C) NaCl	(D) KBr				
Ë	8 -	of Ag ⁺ ions in solution is (A) 2.0 x 10 ⁻¹⁰ mol dm ⁻³ (B) 1.41 x 10 ⁻⁵ mol dm ⁻³ (C) 1.0 x 10 ⁻¹⁰ mol dm ⁻³ (D) 4.0 x 10 ⁻²⁰ mol dm ⁻³ 4 - For the reaction NaOH + HCl NaCl + H ₂ O the change in enthalpy is called (A) heat of neutralization (B) heat of reaction (C) heat of formation (D) heat of combustion 5 - Which of the hydrogen halides has the highest percentage of ionic character? (A) HCl (B) HBr (C) equals to square of its amplitude (A) CaF ₂ (B) glass (C) NaCl (D) 8 - The comparative rates at which the solutes move in paper chromatography depend (A) size of paper (C) temperature of experiment (D) size of chromatographic tank used 9 - The number of moles of CO ₂ which contain 8.0g of oxygen. (A) 0.25 (B) 0.50 (C) 1.0 (D) 10 - The largest number of molecules are present in (A) 4.8g of C ₂ H ₅ OH (B) 2.8g of CO (C) 5.4g of N ₂ O ₅ (D) 3							
4		(A) size of paper (B) R _f value of solute							
S		(C) temperature of experime	nt (D) size		ank used				
>	10 -	The number of moles of CO ₂	which contain 8.0g		(D) 150				
386		The largest number of molecu	les are present in	(C) 1.0	(D) 1.50				
<u>6</u>	10	(A) $4.8g$ of C_2H_5 OH (B)	2.8g of CO	(C) 5.49 of N ₂ O ₆	(D) $3.6g \text{ of } H_2O$				
Ф	11 -	The molar volume of CO ₂ is 1	naximum at	(0) 0.18 01.12 03	(5) 5.08 01 1120				
				(C) 127°C and 1a	tm (D) 273°C and 2atr				
	12 -	The boiling point of water at		(c) 127 C una la	(D) 2/3 C and 2 an				
		and the second s	98°C	(C) 100°C	(D) 89°C				
	13 -	Splitting of spectral lines who			48-00 TO 10				
	10			(C) photoelectric					
	14 -	Which of the following molec			(B) Shark Chieble				
			CHCl ₃	(C) H ₂ O	(D) CS ₂				
	15 -	Optimum temperature for syn			(-)2				
			390°C	(C) 400°C	(D) 410°C				
	16 -	18g glucose is dissolved in 90		` '	our pressure is				
		1			control of the contro				
		(A) $\frac{1}{5}$ (B)	5.1	(C) $\frac{1}{51}$	(D) 6				

CHEMISTRY (New Scheme)

(INTER PART - I) 318

Paper - I

Time: 2:40 Hours

SUBJECTIVE

pakcity.org

Marks: 68

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

(SECTION - I)

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i One mole of H₂SO₄ should completely react with two moles of NaOH. How does Avogadro's number help to explain it?
- ii How does one mole of H₂O contain 2 moles of bonds, 3 moles of atoms, 10 moles of electrons and 20 moles of total fundamental particles?
- iii How N2 and CO have same number of electrons, protons and neutrons?
- iv Write four characteristics of an ideal solvent used in solvent extraction.
- v Differentiate between partition chromatography and adsorption chromatography.
- Why are H2 and He ideal at room temperature but SO2 and Cl2 non-ideal at room temperature?
- wii Why is the plot of PV verses P a straight line at const and with a fixed number of moles of ideal gas?

 Why do water vapours not behave ideally at 273 K?

 What effect will be observed when we change pressure that the property of the vii - Why is the plot of PV verses P a straight line at constant temperature
 - - ix What effect will be observed when we change pressure, on the production of

$$N_2(g) + 3H_2(g)$$
 2NH₃(g)

$$2SO_2(g) + O_2(g) = 2SO_3(g)$$

- x What will be the nature of solution having pH equal to 12?
- xii Write the relationship of pH and pOH with pKw.

Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i Graphite is good conductor of electricity but diamond is bad conductor of electricity. Give reason.
- ii Define symmetry and habit of crystal.
- iii Define lattice energy. Give an example.
- iv Explain electron gas theory for metallic bond.
- v Why does lone pair of electrons occupy more space as compared to bond pair?
- vi Why does Helium not exist in the form of He₂?
- vii Electronegativity difference between the bonded atoms is an index to the polar nature of covalent bond, justify.
- viii Why is MOT superior to VBT?
 - ix What is non-spontaneous process? Give two examples.
 - x Why is it necessary to mention the physical states of reactants in a thermochemical reactions?
 - xi Differentiate between ideal and non-ideal solutions.
- xii Define colligative properties. Why are they so called?

- 2 - Gujranwala Board-2018

 $(2 \times 6 = 12)$

4. Write short answers to any SIX questions.

- i Why is it necessary to decrease the pressure in the discharge tube to get the cathode rays?
- ii What is atomic emission spectrum?
- iii Write down the importance of Moseley's law.
- iv Distribute electrons in the orbitals of
 - a) .Cu
- b) Çş
- v Write down the difference between ionization and electrolysis.
- vi Impure Cu can be purified by electrolytic process. Give reasons.
- ovii Differentiate between electrolytic cell and voltaic cell.
- Nate of chemical reaction is an ever changing parameter under the given conditions.

 Justify the statement.
 - ix The sum of the co-efficients of a balanced chemical equation is not necessarily important to give the order of reaction. Give reasons in support of your answer.

(SECTION -JIX)

- if 3.12 g of 'M' reacts with exactly 2.88 g of sulphar. What are the names of metal 'M' and the compound M₂S₃?
 - (b) Define evaporation. Explain any three factors affecting evaporation rate. (1+3)
- (a) State Graham's law of diffusion. Give its experimental verification.
- (b) Derive an expression to calculate the radius of revolving electron in nth orbit by Bohr's model of atom.
- 7. (a) Define electron affinity. Give its trend in the periodic table. Also mention abnormal behaviour of electron affinity in different groups.
 - (b) Define enthalpy. Prove $q_p = \Delta H$. (4)
- 8. (a) How can you predict the followings with the help of equilibrium constant (K_C)

 of reversible reaction:

 (4)
 - i) Direction of a reaction ii) Extent of a reaction
 - (b) i) Give explanation of electrolysis of fused sodium chloride. (4)
 - ii) Explain electrolytic method for the production of caustic soda on industrial scale.
- (a) The boiling point of a solution containing 0.2g of a substance 'A' in 20.0 g of ether (molar mass = 74) is 0.17 K higher than that of pure ether. Calculate the molar mass of 'A'. Molal boiling point constant of ether is 2.16 K.
 - (b) Name various factors affecting rate of reactions. Explain any one. (4)

Please visit for more data at: www