

ANGLE IN A SEGMENT OF A CIRCLE

THEOREM 1

The measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major arc.

Given: \widehat{AC} is an arc of a circle with centre O

Whereas ∠AOC is the central angle and ∠ABC is circum angle.

To Prove: $m\angle AOC = 2m \angle ABC$

Construction: Join B with O and produce it to meet the circle at D.

Write angles $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$ and $\angle 6$ as shown in the figure.

Proof:

Statements	Reasons
As $m \angle 1 = m \angle 3$ (i)	Angles opposite to equal sides in \(\Delta OAB \)
and $m \angle 2 = m \angle 4$ (ii)	Angles opposite to equal sides in $\triangle OBC$.
Now $m \angle 5 = m \angle 1 + m \angle 3 \dots$ (iii)	External angle is the sum of internal opposite
Similarly $m \angle 6 = m \angle 2 + \angle 4 \dots (iv)$	angles.
	Using (i) and (iii)
and $m \angle 6 = m \angle 4 + m \angle 4 = 2m \angle 4 \dots (vi)$	Using (ii) and (iv)
Then from figure	
\Rightarrow m\(25 + m\(26 = 2m\(23\) + 2m\(24\)	Adding (v) and (vi)
\Rightarrow m $\angle AOC = 2(m\angle 3 + m\angle 4) = 2 m \angle ABC$	Feathers 1970
	Committee Commit

Example:

The radius of a circle is $\sqrt{2}$ cm. A chord 2 cm in length divides the circle into two segments.

Prove that the angle of larger segment is 45°.

Given: In a circle with centre O and radius $m\overline{OA} = m\overline{OB} = \sqrt{2}$ cm.

The length of chord $\overline{AB} = 2$ cm divides the circle into two segments with ACB as larger one.

To Prove: m\(ACB = 45\)

Construction: Join O with A and O with B.

Proof:

Statements	Reasons
In ΔOAB	
$(m\overline{OA})^2 + (m\overline{OB})^2 = (\sqrt{2})^2 + (\sqrt{2})^2$	$m\overline{OA} = m\overline{OB} = \sqrt{2} \text{ cm}$
= 2 + 2 = 4	Given: $m\overline{AB} = 2cm$
$= (2)^2 = (m\overline{AB})^2$	Which being a central angle standing on an arc AB.
∴ \triangle AOB is right angled triangle with m \angle AOB = 90°	By theorem 1
Then $m\angle ACB = \frac{1}{2} m\angle AOB$	Circum angle is half of the central angle.
$=\frac{1}{2}(90^{\circ})=45^{\circ}$	

THEOREM

Any two angles in the same segment of a circle are equal.

Given: ∠ACB and ∠ADB are the circum angles in the same segment of a circle with centre O.

To Prove: m\(ACB = m\(ADB \)

Construction: Join O with A and O with B.

So that ∠AOB is the central angle.

Proof:

Statements	Reasons
Standing on the same arc AB of a circle.	
∠AOB is the central angle whereas	Construction
∠ACB and ∠ADB are circum angles	Given
∴ m∠AOB = 2m∠ACB(i)	By theorem 1
and $m\angle AOB = 2m\angle ADB$ (ii)	By theorem 1
⇒ 2m∠ACB = 2m∠ADB	Using (i) and (ii)
Hence, $m\angle ACB = m\angle ADB$	

THEOREM 3

The angle,

- In a semi-circle is a right angle,
- In a segment greater than a semi circle is less than a right angle,
- In a segment less than a semi-circle is greater than a right angle.

Given: AB is the chord corresponding to an arc ADB

Whereas $\angle AOB$ is a central angle and $\angle ACB$ is a circum angle of a circle with centre O.

To Prove:

In fig (I) If sector ACB is a semi circle then $m\angle ACB = 1\angle m$

In fig (II) If sector ACB is greater than a semi circle then mZACB <1 Zrt

In fig (III) If sector ACB is less than a semi circle then m/ACB > 1 /rt.

Proof:

UUI.		
Statem	ents	Reasons
In each figure, AB is the chord	of a circle with centre O.	Given
∠AOB is the central angle star	ding on an arc ADB.	
Whereas ZACB is the circum	angle EDUCATION	Given
Such that $m\angle AOB = 2m\angle ACI$	B(i)	
Now in fig (I) $m\angle AOB = 180^{\circ}$	Thompse Law Motors E-mu	By theorem 1
∴ m∠AOB = 2∠rt	···· pakcity:o(ii)	A straight angle
\Rightarrow m \angle ACB = 1 \angle rt		
In fig (II) m∠AOB <180°		Using (i) and (ii)
∴ m∠AOB <2∠rt	(iii)	
⇒ m∠ACB < 1 ∠rt		
In fig (III) m∠AOB> 180°		Using (i) and (iii)
\therefore m \angle AOB > 2 \angle rt	(iv)	
\Rightarrow m $\angle ACB>1\angle rt$		
		Using (i) and (iv)

Corollary 1:

The angles subtended by an arc at the circumference of a circle are equal.

Corollary 2:

The angles in the same segment of a circle are congruent.

Please visit for more data at: www.pakcity.org

THEOREM 4

The opposite angles of any quadrilateral inscribed in a circle are supplementary.

Given: ABCD is a quadrilateral inscribed in a circle with centre O.

To Prove:
$$\begin{cases} m\angle A + m\angle C = 2\angle rts \\ m\angle B + m\angle D = 2\angle rts \end{cases}$$

Construction: Draw \overline{OA} and \overline{OC} .

Write $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$ and

∠6 as shown in the figure.

Proof:

Statements	Reasons
Standing on the same arc ADC, ∠2 is a central angle.	Arc ADC of the circle with centre O.
Whereas ∠B is the circum angle	
$\therefore \qquad m\angle B = \frac{1}{2} \ (m\angle 2) \qquad \qquad \dots \dots \dots (i)$	By theorem 1
Standing on the same arc ABC, ∠4 is a central angle	Arc ABC of the circle with centre O.
whereas ∠D is the circum angle.	
$\therefore m\angle D = \frac{1}{2} \ (m\angle 4) \qquad (ii)$	By theorem 1
$\Rightarrow m \angle B + m \angle D = \frac{1}{2} m \angle 2 + \frac{1}{2} m \angle 4$ EDUCATION	Adding (i) and (ii)
$= \frac{1}{2} (m \angle 2 + m \angle 4) = \frac{1}{2} \text{ (Total central angle)}$	
i.e., $m\angle B + m\angle D = \frac{1}{2} (4\angle rt) = 2\angle rt$	
Similarly $m\angle A + m\angle C = 2\angle rt$	

- Corollary 1: In equal circles or in the same circle if two minor arcs are equal then angles inscribed by their corresponding major arcs are also equal.
- Corollary 2: In equal circles or in the same circle, two equal arcs subtend equal angles at the circumference and vice versa.

Example 1: Two equal circles intersect in A and B. Through B, a straight line is drawn to meet the circumferences at P and Q respectively. Prove that $m\overline{AP} = m\overline{AQ}$.

Given: Two equal circles cut each other at points A and B. A straight line PBQ drawn through B meets the circles at P and Q respectively.

To Prove: $m\overline{AP} = m\overline{AQ}$

Construction: Join the points A and B. Also draw \overline{AP} and \overline{AQ} .

Write $\angle 1$ and $\angle 2$ as shown in the figure.

Proof

Statements	Reasons
∴ $mA\overline{C}B = mA\overline{D}B$ ∴ $m \angle 1 = m \angle 2$ So $m\overline{AQ} = m\overline{AP}$ or $m\overline{AP} = m\overline{AQ}$	Arcs about the common chord AB. Corresponding angles made by opposite arcs. Sides opposite to equal angles in ΔAPQ.

Example 2: ABCD is a quadrilateral circumscribed about a circle.

Show that $m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$

Given: ABCD is a quadrilateral circumscribed about a circle with centre O.

So that each side becomes tangent to the circle.

To Prove: $m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$

Construction: Drawn $\overline{OE} \perp \overline{AB}$, $\overline{OF} \perp \overline{BC}$

 $\overline{OG} \perp \overline{CD}$ and $\overline{OH} \perp \overline{DA}$

Proof

Statements	Reasons
$m\overline{CG} = m\overline{FC}$ and $m\overline{GD} = m\overline{DH}$ (ii)	Since tangents drawn from a point to the circle are equal in length.
$(m\overline{AE} + m\overline{EB}) + (m\overline{CG} + m\overline{GD}) = (m\overline{BF} + m\overline{FC}) + (m\overline{DH} + m\overline{HA})$ or $m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$	Adding (i) and (ii).

EXERCISE 12.1

Q.1 Prove that in a given cyclic quadrilateral, sum of opposite angles is two right angles and conversely.

Given:

A circle with centre "O"

ABCD is a cyclic quadrilateral

To Prove:

 $m \angle B + m \angle D = 180^{\circ}$

 $m\angle BCD + m\angle DAB = 180^{\circ}$

Construction: Join O with A and C

Proof:

Proof:			В
	Statements		Reasons
n	$n \angle l = 2m \angle D(i)$		∠1, ∠2 are central angles and ∠D, ∠B are
n	$a \angle 2 = 2m \angle B(ii)$		circum angles in Arcs
m∠:	$1 + m \angle 2 = 2m \angle D + 2m \angle B$		Adding (i) and (ii)
m∠	$1 + m \angle 2 = 2(m \angle D + m \angle B)$		
or 2(m∠l	$D+m\angle B) = m\angle 1 + m\angle 2$		By symmetric property
2(m∠l	$D + m \angle B) = 360^{\circ}$		Sum of all central angles is 360°
m∠D·	$+ m \angle B = \frac{360^{\circ}}{2}$		Dividing by 2
m∠D·	$+ m \angle B = 180^{\circ}$	R	
Similarly m2	$2BCD + m\angle DAB = 180^{\circ}$	150	

Given: ABCD is a parallelogram inscribed in the circle with centre "O"

$$m\overline{AB} = m\overline{DC}$$
 and $\overline{AB} \parallel \overline{DC}$

$$mAD = mBC$$
 and $AD \parallel BC$

To Prove: ABCD is a rectangle Construction: Join A with C

Proof:

pakeity.org

Q.3AOB and COD are two intersecting chords of a circle. Show that A'AOD and BOC are equiangular.

Given: In a circle AOB and COD are two intersecting chords at point O.

To Prove: ΔAOD and ΔBOC are equiangular

Construction: Join A with C and D. Join B with C and D.

Proof:

Statements	Reasons
$m \angle l \equiv m \angle 2(i)$	Vertical angles
\overline{AC} is chord and angles $\angle 3$, $\angle 4$ are in the same segment.	
$\angle 3 \cong \angle 4(ii)$	
Now \overline{BD} is chord and angles $\angle 5$, $\angle 6$ are in the same	
segments	
Therefore $\angle 5 \cong \angle 6$ (iii)	
Thus, ΔAOD and ΔBOC are equiangular	From (i), (ii) and (iii)

Q.4 AD and BC are two parallel chords of a circle prove that arc AB \cong are CD and $arc AC \cong arc BD$.

Given: A circle with centre "O". Two chords AD and BC are such that AD II BC.

To Prove: arc $AB \equiv \text{arc } CD \text{ and arc } AC \cong \text{arc } BD$

mAC = mBD

arc AC ≅ arc BD

Construction: Join A to B and C. Join D to B and C. AC and BD intersect each other at point E. some angles are named as $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5, \angle 6$.

or

roof:	MODI	
	Statements	Reasons
	$m \angle l = m \angle 3$ \cdots \cdots \cdots	Angles inscribed by an arc in the same segment
	$m\angle 2 = m\angle 4$ (ii)	are equal.
	$m \angle l = m \angle 4$ (iii)	Alternate angles are congruent (AD BC)
	$m \angle 3 = m \angle 4$ (iv)	
	$m \angle l = m \angle 2$ (v) _{pak}	From (i) and (iii)
In	$\Delta AEB \leftrightarrow \Delta DEC$	From (ii) and (iii)
	$\overline{AE} \cong \overline{ED}$ $m \angle 5 = m \angle 6$	Side opposite to equal angles (v) vertical angles
	$\overline{BE} \cong \overline{EC}$	Sides opposite to equal angles (iv)
	$\Delta AED \cong \Delta DEC$	$S.A.S \cong S.A.S$
	$\overline{AB} \cong \overline{CD}$	Corresponding sides of congruent.
Thus	arc $AB \cong arc CD$ (Hence Proved)	Arcs corresponding to congruent chords are
	$\widehat{mBC} \cong \widehat{mCB}$	congruent.
	$\widehat{mBA} + \widehat{mAC} = \widehat{mCD} + \widehat{mDB}$	Self congruent
	paAB + mAC = paAB + mBD	
	$\widehat{mAC} = \widehat{mBD}$	\therefore arc $\overrightarrow{AB} \cong$ arc \overrightarrow{CD} proved

(Hence proved)

MISCELLANEOUS EXERCISE - 12

Q. 1 Multiple Choice Questions

Four possible answers are given for the following questions.

- A circle passes through the vertices of a right angled ΔABC with mAC = 3cm and mBC = 4cm, $m \angle C = 90^{\circ}$, Radius of the circle is:
 - (a) 1.5 cm
- 2.0 cm (b)
- 3.5 cm (d)
- In the adjacent circular figure, central and inscribed angles stand on the same are AB.

- (b) $m \angle 1 = 2m \angle 2$
- $m\angle 2 = 3m\angle 1$
- $m\angle 2 = 2m\angle 1$

- (c) 75° , $37\frac{1^{\circ}}{1}$
- (d) $75^{\circ}, 75^{\circ}$

- Given that O is the centre of the circle the angle marked y will be.

- In the figure, O is the centre of the curete 6. and ABN is a straight line. The obtuse angle AOC = x is.
 - 32° (a)
 - 64° (b)
 - 96° (c)

- the centre of the In the figure, circle, then the angle x is

220°

- The figure, O is the centre of the circle then angle x is.

 - 30° (b)
 - 45° (c)

 60°

- In the figure, O is the centre of the circle then the angle x is

 - 30°
 - 45°

- In the figure, O is the centre of the circle 10. then the angle x is.
 - 50° (a)
 - 75°
 - 125°

ANSWER KEY

1.	c	2.	d	3.	a	4.	c	5.	b
6.	d	7.	·b	8.	b	9.	d	10	e