

CHORDS AND ARCS

THEOREM 1

If two arcs of a circle (or of congruent circles) are congruent then the corresponding chords are equal.

Given: ABCD and A'B'C'D' are two congruent circles with centres O and O'respectively. So that

$$\widehat{mADC} = \widehat{mA'D'C'}$$

To Prove: $m\overline{AC} = m\overline{A'C'}$

Construction: Join O with A and C, and join O' with A' and C'.

So that we can form Δ^s OAC and O'A'C'.

Proof:

Statements	Reasons
In two equal circles ABCD and A'B'C'D'	Given
with centres O and O' respectively.	DUCATION
$\widehat{mADC} = \widehat{mA'D'C'}$	Given
$\therefore m \angle AOC = m \angle A'O'C'$	Central angles subtended by equal arcs of
	the equal circles.
Now in $\triangle AOC \longleftrightarrow \triangle A'O'C'$	
$m\overline{OA} = m\overline{O'A'}$	Radii of equal circles
$m\angle AOC = m\angle A'O'C'$	Already Proved
$m\overline{OC} = m\overline{O'C'}$	Radii of equal circles
$\Delta AOC \cong \Delta A'O'C'$	S.A.S postulate
and in particular $mAC = mA'C'$	corresponding sides of congruent triangles.
Similarly we can prove the theorem in the	
same circle.	

THEOREM 2

Converse of Theorem 1

If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi-circular) are congruent. OR

In equal circles or in the same circle, if two chords are equal, they cut off equal arcs.

Given: ABCD and A'B'C'D' are two congruent circles with centres O and O' respectively.

So that chord $m\overline{AC} = m\overline{A'C'}$.

To Prove: $\widehat{mADC} = \widehat{mA'D'C'}$

Construction: Join O with A and C, and join O'with A and C'.

Proof:

	Statements	Reasons			
In	$\triangle AOC \leftrightarrow \triangle A'O'C'$				
	$m\overline{OA} = m\overline{O'A'}$	Radii of equal circles			
	$m\overline{OC} = m\overline{O'C'}$	Radii of equal circles			
	$m\overline{AC} = m\overline{A'C'}$	Given			
•••	$\Delta AOC \cong \Delta A'O'C'$	$S.S.S \cong S.S.S.$			
	$m\angle AOC = m\angle A'O'C'$ pakci	Corresponding angles of congruent triangles.			
Henc	Hence $\widehat{mADC} = \widehat{mA'D'C'}$ Arcs corresponding to equal central an				

Example 1: A point P on the circumference is equidistant from the radii \overline{OA} and \overline{OB} .

Prove that $\widehat{mAP} = \widehat{mBP}$.

Given: \overline{AB} is the chord of a circle with centre O. Point P on the circumference of the circle is equidistant from the radii \overline{OA} and \overline{OB} .

So that
$$mPR = mPS$$
.

To Prove: $m\widehat{AP} = m\widehat{BP}$

Construction: Join O with P. Write Z1 and Z2 as shown in the figure.

Proof:

	Statements	Reasons			
In	∠rt ∆OPR and ∠rt ∆OPS				
	$m\overrightarrow{OP} = m\overrightarrow{OP}$	Common			
	$m\overline{PR} = m\overline{PS}$	Point P is equidistance from radii			
		(Given)			
**	$\Delta OPR \cong \Delta OPS$	$(In \angle rt\Delta^s H.S \cong H.S)$			
So	$m \angle 1 = m \angle 2$	Central angles of a circle			
	Chord $AP \cong Chord BP$				
Henc	$e \ \widehat{mAP} = \widehat{mBP}$	Arcs corresponding to equal chords in a			
		circle.			

THEOREM 3

Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).

Given: ABC and A'B'C' are two congruent circles with centres O and O' respectively. So that $\overline{mAC} = \overline{mA'C'}$.

To Prove: $\angle AOC \cong \angle A'O'C'$

Construction: Let if possible $m\angle AOC \neq m\angle A'O'C'$ then consider $\angle AOC \cong \angle A'O'D'$

Proof:

Statements	Reasons
$\angle AOC \cong \angle A'O'D'$ $\therefore \widehat{AC} \cong \widehat{A'D'}$ (i)	Construction Arcs subtended by equal Central angles in congruent circles
But $\overline{AC} = \overline{A'D'}$	Using Theorem 1 Given Using (ii) and (iii)
Hence $m\angle A'O'C' = m\angle A'O'D'(iv)$ But $m\angle AOC = m\angle \angle A'O'D'(v)$	Construction
\Rightarrow m\(AOC = m\(A'O'C' \)	Using (iv) and (v)

Please visit for more data at: www.pakcity.org

Corollary 1: In congruent circles or in the same circle, if central angles are equal then corresponding sectors are equal.

Corollary 2: In congruent circles or in the same circle, unequal arcs will subtend unequal central angles.

Example 1: The internal bisector of a central angle in a circle bisects an arc on which it stands.

Given:

In a circle with centre O. \overline{OP} is an internal bisector of central angle AOB.

To Prove:

$$\widehat{AP} \cong \widehat{BP}$$

Construction:

Draw \overline{AP} and \overline{BP} , then write $\angle 1$ and $\angle 2$ as shown in the figure.

Proof:

Example 2: In a circle if any pair of diameters are \bot to each other then the lines joining its ends in order, form a square.

Given:

AC and BD are two perpendicular diameters of a circle with centre O.

So ABCD is a quadrilateral.

To Prove:

ABCD is a square

Construction:

Write $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$ and $\angle 6$ as shown in the figure.

Please visit for more data at: www.pakcity.org

Proof:

Statements	Reasons
\overline{AC} and \overline{BD} are two \bot diameters of a circle with centre O.	Given
$\therefore m \angle 1 = m \angle 2 = m \angle 3 = m \angle 4 = 90^{\circ}$ $\Rightarrow \qquad \qquad \therefore m \widehat{AB} = m \widehat{BC} = m \widehat{CD} = m \widehat{DA}$ $\Rightarrow m \overline{AB} = m \overline{BC} = m \overline{CD} = m \overline{DA} \qquad (i)$	Pair of diameters are \bot to each other. Arcs opposite to the equal central angles in a circle. Chords corresponding to equal
$ \implies mAB = mBC = mCD = mDA \qquad(1) $ $ Moreover m\angle A = m\angle 5 + m\angle 6 $	arcs.
$m\angle A = 45^{\circ} + 45^{\circ} = 90^{\circ}$ (ii) Similarly,	Using (i), (ii) and (iii).
$m\angle B = m\angle C = m\angle D = 90^{\circ}$ (iii)	
Hence ABCD is a square	

THEOREM 4

If the angles subtended by two chords of a circle for congruent circles) at the centre (corresponding centres) are equal, the chords are equal.

Given: ABCD and A'B'C'D' are two congruent circles with centres O and O' respectively. \overline{AC} and $\overline{A'C'}$ are chords of circles ABCD and A'B'C'D' respectively and $m\angle AOC = m\angle A'O'C'$.

To Prove: mAC = mA'C'

Proof:

Statements	Reasons
In $\triangle OAC \leftrightarrow \triangle O'A'C'$	
$m\overline{OA} = m\overline{O'A'}$ $m\angle AOC = m\angle A'O'C'$	Radii of congruent circles
	Given
	Radii of congruent circles
$\therefore \Delta OAC \cong \Delta O'A'C' S.A.S$	postulate
	Corresponding sides of congruent traingles
Hence $m\overline{AC} = m\overline{A'C'}$	

DXDRCISE 11.1

Q.1 In a circle two equal diameters \overline{AB} and \overline{CD} intersect each other. Prove that $m\overline{AD} = m\overline{BC}$.

Given: A circle with centre "O". Two diameters

 \overline{AB} and \overline{BC} , intersecting at point O.

To Prove:

mAD = mBC

Construction:

Join A to D and C to B

Q.2. In a circle prove that the arcs between two parallel and equal chords are equal.

Given: A circle with centre O. Two chords AB and CD Such that

 $\overline{AB} \parallel \overline{CD}$ and $m\overline{AB} = m\overline{CD}$

To Prove: $\widehat{mAC} = \widehat{mBD}$

Construction: Join A to D and B to C. Such that AD and CD intersect each other at central point O.

pakeity.org

Q.3. Give a geometric proof that a pair of bisecting chords are the diameters of a circle.

Given: A circle and two chords AB and CD bisecting each other at point O. i.e.

$$m\overline{AO} = m\overline{OB}$$
 and $m\overline{CO} = m\overline{OD}$

To Prove: Chords AB and CD are diameters.

Proof:

Statements	Reasons		
$m\overline{AB} = m\overline{CD}$ (i)	Two chords can bisect each other only when they are equal (given)		
\therefore O is the mid point of \overline{AB} and \overline{CD}	Given		
$m\overline{AO} = m\overline{BO} = \frac{1}{2}m\overline{AB}$ (ii)			
$m\overline{DO} = m\overline{CO} = \frac{1}{2}m\overline{CD}$ (iii)			
$m\overline{AO} = m\overline{BO} = m\overline{CO} = m\overline{DO}$ (iv)	From (i), (ii) and (iii)		
The points of circle A, B, C and D are			
equidistant form the fixed point "O".	From (iv)		
This fixed pint O is the centre of the circle	Bydefinition		
having the points A, B, C and D.			
As chords AB and CD pass through the centre			
"O" therefore chords AB and CD are diameters.			

Q.4. If C is the midpoint of an arc ACB in a circle with centre O. Show that line segment OC bisects the chord AB.

Given: A circle with centre "O" ACB is an arc with C as its midpoint and mAC = mCB. Center "O" is joined with C such that OC meets AB at M.

To Prove: mAM = mBM

Construction: Join center "O" with A and B to make central angle AOB.

Reaconc				
Reasons				
Construction				
C is the midpoint of \widehat{ACB} (Given)				
Common Proved Radii of the same Circle S.A.S ≅ S.A.S Corresponding sides of congruent triangles.				

MISCELLANEOUS EXERCISE - 11

Q.1 Multiple Choice Questions Four possible answers arc given for the following questions.

- 1. A 4 cm long chord subtends central angle of 60°. The radial segment of this, circle
 - (a) l
- (b) 2
- (c) 3
- (d) 4
- 2. If an arc of a circle subtends a central angle of 60°, then the corresponding chord of the arc will make the central angle of:
 - (a) 20°
- (b) 40°
- (c) 60°
- (d) 80°
- 3. The semi circumference and the diameter of a circle both subtend a central angle of
 - (a) 90°
- (b) 180°
- (c) 270°
- (d) 360°
- 4. The arcs opposite to incongruent central angles of a circle arc always:
 - (a) Congruent
- (b) incongruent
- (c) parallel
- (d) perpendicular
- 5. If a chord of a circle subtends a central angle of 60°, then the length of the chord and the radial segment are:
 - (a) congruent
- (b) incongruent
- (c) parallel
- (d) perpendicular

- 6. The length of a chord and the radial segment of a circle are congruent, the central angle made by the chord will be:
 - (a) 30°
- (b) 45°
- (c) 60°
- (d) 75°
- 7. Out of two congruent arcs of a circle, if one arc makes a central angle of 30° then the other arc will subtend the central angle of:
 - (a) 15°
- (b) 30°
- (c) 45°
- (d) 60°
- 8. The chord length of a circle subtending a central angle of 180° is always:
 - (a) less than radial segment
 - (b) equal to the radial segment
 - (c) double of the radial segment
 - (d) none of these
- 9. A pair of chords of a circle subtending two congruent central angles is:
 - (a) congruent
- (b) incongruent
- (c) over lapping (d) parallel
- 10. An arc subtends a central angle of 40°
 - then the corresponding chord subtended a central angle of:
 - (a) 20°
- (b) 40°
- (c) 60°
- (d) 80°

ANSWER KEY

1.	d	2.	C	3.	b	4.	b	5.	a
6.	С	7.	b	8.	С	9.	a	10.	b