

11<sup>th</sup> Class

### CHEMISTRY

www.pakcity.org





Q 1: The diameter of atoms are of the order:

(A) 2 m

**B** 0.2 nm

 $\odot$  0.2 m

① 0.2 um

Q 2: 1a.m.u is equal to:

(A)  $1.661 \times 10^{-27} \text{kg}$  (B)  $1.661 \times 10^{-24} \text{ g}$ 

©  $1.661 \times 10^{-21}$ mg

©  $10^{-21}$ mg- $10^{-19}$ mg

All of these

Q 3: Masses of atoms ranges from:

All of these

Q 4: Nickel has isotopes:

(A) 3

(B) 5

© 9

(D) 11

Q 5: Total No. of naturally occurring isotopes is:

(A)  $10^{-27} - 10^{-25} \text{ kg}$  (B)  $10^{-24} \text{g} - 10^{-22} \text{g}$ 

A 240

(B) 40

© 280

① 154

Q 6: 27g of Al will react completely with how much mass of O<sub>2</sub> to produce Al<sub>2</sub>O<sub>7</sub>

(A) 8g

В 16 g

© 32g

① 24g

Q 7: In combustion analysis H<sub>2</sub>O vapors are absorbed by:

(A) Mg ( $ClO_2$ )<sub>2</sub> (B) Mg ( $ClO_3$ )<sub>2</sub>

(ClO<sub>4</sub>)<sub>2</sub>

50% KOH

Q 8: The number of CO<sub>2</sub> which contains 8.0 g Oxygen:

 $\bigcirc$  0.25

® 0.50

© 0.75

D 1.0

Q 9: Largest number of molecules is in:

(A) 3.6g of  $H_2O$ 

34.8g of C<sub>2</sub>H<sub>5</sub>OH

© 2.8g of CO

①  $5.8g { of } N_2O_5$ 

Q10: Tin has isotopes:

 $\bigcirc$  7

(B) 9

© 11

© 5

Q11: How many isotopes are present in Palladium?

 $\bigcirc$  4

ⓒ 6

① 7

Q12: Volume occupied by 1.4 g of N<sub>2</sub> at S.T.P is:

 $\triangle$  22.4 dm<sup>3</sup>

<sup>B</sup> 22.44 dm<sup>3</sup>

©  $1.12 \text{ dm}^3$ 

D 112.0 Cm<sup>3</sup>

Q13: One mole of SO<sub>2</sub> contains:

 $6.02 \times 10^{23}$  atoms of oxygen

 $18.1 \times 10^{23}$  molecules of  $SO_2$ 

 $6.02 \times 10^{23}$  atoms of Sulphur

4 g atoms of SO<sub>2</sub>

Q14: Molecular Formula = n (empirical formula). Value of n for Sugar is:

(A) (D

0.5

Q15: 1a.m.u is equal to:

(A)  $1.661 \times 10^{-27} \text{kg}$  (B)  $1.661 \times 10^{-24} \text{ug}$ 

©  $1.661 \times 10^{-21}$ ng

All of these

| www.pakcity.org |  | 11 <sup>th</sup> Class: Chemistry |  |  |  |
|-----------------|--|-----------------------------------|--|--|--|
|                 |  |                                   |  |  |  |
|                 |  |                                   |  |  |  |

#### **ANSWERS:**

| 1 | В                | 9  | A   |
|---|------------------|----|-----|
| 2 | ( <u>a</u> )     | 10 | ©   |
| 3 | $\triangleright$ | 11 | (C) |
| 4 | В                | 12 | ©   |
| 5 | (O)              | 13 | 0   |
| 6 | (D)              | 14 | В   |
| 7 | (6)              | 15 | A   |
| 8 | A                |    |     |

|    | Short Questions                                                                                                                               |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | What are isotopes? Why they have same chemical but different physical properties?                                                             |
| 2  | What is Avogadro's number? Give equation to relate the Avogadro's number and mass of an element.                                              |
| 3  | How N, and CO have same number of electrons, protons and neutrons?                                                                            |
| 4  | Mg atom is twice heavier than that of carbon atom, comment                                                                                    |
| 5  | No individual atom of neon in the sample has a mass of 20.18 a.m.u. Give reason.                                                              |
| 6  | Atomic masses are in fractions. Justify.                                                                                                      |
| 7  | Write down the limitations of a chemical reaction.                                                                                            |
| 8  | Define isotopes. Why they have same chemical properties but different physical properties?                                                    |
| 9  | Define mass spectrum. Which type of information we can get from it?                                                                           |
| 10 | What are monoisotopic elements? Give name and symbol of such an element.                                                                      |
| 11 | Define limiting reactant. Amount of product is controlled by limiting reactant. Why?                                                          |
| 12 | How limiting reactant is identified? Discuss Steps to determine Limiting Reactant.                                                            |
| 13 | Law of conservation of mass has to be obeyed during stoichiometric calculations. Justify it.                                                  |
| 14 | Write down assumptions of stoichiometry.                                                                                                      |
| 15 | Many chemical reactions take place in our surrounding involves limiting reactants justify.                                                    |
| 16 | Actual yield is usually less than the theoretical yield. Give reasons. OR Why theoretical yield is greater than actual yield?                 |
| 17 | How the efficiency of a chemical reaction is determined? OR Why we calculate percentage yield?                                                |
| 18 | How many molecules of water are there is 10g of ice?                                                                                          |
| 19 | Why 23 g of Na and 238 g of uranium have equal number of atoms in them?                                                                       |
| 20 | One mole of H <sub>2</sub> SO <sub>4</sub> should completely react with two moles of NaOH. How does Avogadro's Number help us too explain it? |
|    | Long Questions                                                                                                                                |
|    | What is a Mass Spectrometer? How it is used to determine the percentage abundance and                                                         |

What is a Mass Spectrometer? How it is used to determine the percentage abundance and atomic masses of elements.

Define combustion analysis. How percentage composition of each element in an organic compound is determined?

Please visit for more data at: www.pakcity.org

www.pakcity.org

11<sup>th</sup> Class: Chemistry

At high pressure, the gas molecules move only in one direction.

Please visit for more data at: www.pakcity.org

www.pakcity.org

**Class: Chemistry** 

| 7              | W                                                                                                                                                                                                                                                                                                                           | ww.pakcity      | y.org           |                               | 11             | th Class: Chemistry            |       |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------------------------|----------------|--------------------------------|-------|--|--|--|--|
| 12             | <ul> <li>B At high pressure, the collisions between the gas molecules are increased manifolds.</li> <li>© At high pressure, the volume of the gas becomes insignificant.</li> <li>D At high pressure, the intermolecular attractions become significant.</li> <li>2: Plasma are found everywhere from the sun to</li> </ul> |                 |                 |                               |                |                                |       |  |  |  |  |
|                | <ul><li>A Atoms</li><li>B Molecules</li><li>Electrons</li><li>Quarks</li></ul>                                                                                                                                                                                                                                              |                 |                 |                               |                |                                |       |  |  |  |  |
| 2 13           | 3: Deviation of gas from ideal behavior is maximum at:                                                                                                                                                                                                                                                                      |                 |                 |                               |                |                                |       |  |  |  |  |
|                | (A) -10°C and 5 atm (B) -10°C and 2 atm                                                                                                                                                                                                                                                                                     |                 |                 |                               |                |                                |       |  |  |  |  |
|                | © 400 °C                                                                                                                                                                                                                                                                                                                    | and 2 atm       |                 | (D) (                         | O°C and 2 atn  | n                              |       |  |  |  |  |
| 14             | 4: A real gas obeying van der Waal's equation will resemble an ideal gas if:                                                                                                                                                                                                                                                |                 |                 |                               |                |                                |       |  |  |  |  |
|                | A Both 'a'                                                                                                                                                                                                                                                                                                                  | ' and 'b' are l | large           | B                             | Both 'a' and ' | b' are small                   |       |  |  |  |  |
|                | © a' is sm                                                                                                                                                                                                                                                                                                                  | all and 'b' is  | large           | D '                           | a' is large an | d 'b' is small                 |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             |                 |                 |                               |                |                                |       |  |  |  |  |
|                | Answers:                                                                                                                                                                                                                                                                                                                    |                 |                 |                               |                |                                |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             | 1               | (C)             | 8                             | (B)            |                                |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             | 2               | (c)             | 9                             | (B)            |                                |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             | 3               | (A)             | 10                            | (A)            |                                |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             | 4               | (D)             | 11                            | (D)            |                                |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             | 5               | (c)             | 12                            | (D)            |                                |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             | 6               | (c)             | 13                            | (A)            |                                |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             | 7               | (A)             | 14                            | (B)            |                                |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             |                 |                 |                               |                |                                |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             |                 |                 | ort Ques                      |                |                                |       |  |  |  |  |
| 1              |                                                                                                                                                                                                                                                                                                                             |                 | essure. Give it |                               |                |                                |       |  |  |  |  |
| 2              | What is the                                                                                                                                                                                                                                                                                                                 | Quantitativ     | e definition o  | f Charles's L                 | aw OR          |                                |       |  |  |  |  |
| 2              |                                                                                                                                                                                                                                                                                                                             | 171             | ctor 1/273 in   |                               |                |                                |       |  |  |  |  |
| 3              |                                                                                                                                                                                                                                                                                                                             | 1/4/2           | gases. Give t   |                               |                | ive its value. OR              |       |  |  |  |  |
| 4              |                                                                                                                                                                                                                                                                                                                             |                 |                 |                               |                | approaching it?                |       |  |  |  |  |
| 5              |                                                                                                                                                                                                                                                                                                                             |                 | as becomes t    |                               |                |                                |       |  |  |  |  |
| 6              | Convert                                                                                                                                                                                                                                                                                                                     | (i) 37          | °C into °F      | TIGHTIN TO                    | (ii) -40°C ii  | nto °F                         |       |  |  |  |  |
| 7              | Derive exp                                                                                                                                                                                                                                                                                                                  | ression of de   | ensity of gas v | vith the help                 | of general g   | as equation. OR                |       |  |  |  |  |
|                | Prove that                                                                                                                                                                                                                                                                                                                  | d=PM/RT.        |                 |                               |                |                                |       |  |  |  |  |
| and the second |                                                                                                                                                                                                                                                                                                                             |                 | R' gas constan  |                               |                |                                |       |  |  |  |  |
| 9              |                                                                                                                                                                                                                                                                                                                             |                 |                 |                               |                | osphere and volume in d        | m.    |  |  |  |  |
| 10             |                                                                                                                                                                                                                                                                                                                             | (50)            | rtial pressure  |                               |                |                                |       |  |  |  |  |
| 11             | Apply Dalte                                                                                                                                                                                                                                                                                                                 | oplication of n | Daiton's law    | or partial pr<br>ce to determ | essure UI      | R<br>al pressure of a dry gas? |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             |                 | ke oxygen mi    |                               |                |                                |       |  |  |  |  |
| 12             |                                                                                                                                                                                                                                                                                                                             |                 | sed in diver's  |                               |                |                                |       |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                             |                 | ortable at hig  |                               |                |                                | - 6   |  |  |  |  |
| 13             | Differentia                                                                                                                                                                                                                                                                                                                 | te between d    | liffusion and   | effusion.                     |                | pakcity.                       | org 🛞 |  |  |  |  |
| 14             | S0 <sub>2</sub> is comp                                                                                                                                                                                                                                                                                                     | paratively no   | n-ideal at 27   | 3K but beha                   | ve ideally at  | 327°C. Give reason.            | •     |  |  |  |  |
| 15             | Hydrogen a                                                                                                                                                                                                                                                                                                                  | and Helium a    | re ideal at ro  | om tempera                    | ature, but SO  | 2 and Cl2 are non-Ideal.       |       |  |  |  |  |
| 16             | Define the Joule-Thomson effect.                                                                                                                                                                                                                                                                                            |                 |                 |                               |                |                                |       |  |  |  |  |

Please visit for more data at: www.pakcity.org

www.pakcity.org

- Q 7: Vapour pressure of a substance does not depend upon:
  - Temperature

Intermolecular forces

Surface Area

Physical state of substance

- Q8: Amorphous solids:
  - Have sharp melting points
- (B) Undergo clean cleavage when cut with knife
- Have perfect arrangement of atom
- © Can possess small portions of orderly arrangement
- Q9: Glass may begin to crystallize by a process called:
  - Super cooling
- Sublimation
- Crystallization
- Annealing

- Q10: Allotropy is the property of:
  - Compound
- Element
- Atom
- Mixture
- Q11: The branch of science which deals with structure of crystals is called:
- Anisotropy B Isomorphy © Crystallography D Stoichiometry
- Q12: In an orthorhombic crystal, the unit cell dimensions are:

  - (A)  $a = b \neq c$   $\alpha = \beta = \gamma = 90^{\circ}$  (B)  $a \neq b \neq c$   $\alpha = \beta = \gamma = 90^{\circ}$  (C)  $a \neq b \neq c$   $\alpha = \beta \neq \gamma = 90^{\circ}$  (D)  $a \neq b \neq c$   $\alpha = \beta = \gamma \neq 90^{\circ}$

Q13: The example of hexagonal structure is:

Q14: The no. of Cl ions per unit cell of NaCl:

- Sulphur
- (B) NaCl
- Graphite

14

Diamond

17

- Q15: There are ...... Bravis lattices:

10

- (D) 8

- Q16: The molecules of CO<sub>2</sub>:
  - lonic crystals

- Q17: The number of carbon atoms in 22.0 g of CO2 are:
  - $\bigcirc$  3.01 × 10<sup>23</sup>
- (B)  $6.02 \times 10^{23}$
- ©  $3.01 \times 10^{22}$
- $6.02 \times 10^{22}$

#### Answers:

| D        | 10                         | В                                                                                                                            |
|----------|----------------------------|------------------------------------------------------------------------------------------------------------------------------|
| В        | 11                         | (0)                                                                                                                          |
| (d)      | 12                         | В                                                                                                                            |
| ©        | 13                         | ©                                                                                                                            |
| ©        | 14                         | В                                                                                                                            |
| В        | 15                         | (c)                                                                                                                          |
| (O)      | 16                         | (0)                                                                                                                          |
| <u>D</u> | 17                         | A                                                                                                                            |
| <u>D</u> |                            |                                                                                                                              |
|          | B<br>D<br>O<br>O<br>B<br>B | D       10         B       11         D       12         C       13         C       14         B       15         C       16 |

www.pakcity.org

11<sup>th</sup> Class: Chemistry

| Chapter 5: Atomic Structures |  |
|------------------------------|--|
|------------------------------|--|

|               |                                                             |                                    | ıaı        |                     | ••••  |          |                                            |             |                          |  |  |  |
|---------------|-------------------------------------------------------------|------------------------------------|------------|---------------------|-------|----------|--------------------------------------------|-------------|--------------------------|--|--|--|
| Q 1:          | 1: In the ground state of an atom, the electron is present: |                                    |            |                     |       |          |                                            |             |                          |  |  |  |
| (3)           | A<br>C                                                      | In the nucleus<br>Nearest to the n | ucle       | eus                 | 3     |          | In the second shell<br>Farthest from the i |             | eus                      |  |  |  |
| Q 2:          | The                                                         | e e/m value for th                 | e po       | ositive rays is the | max   | kim      | um for the gas:                            |             |                          |  |  |  |
| (             | A                                                           | Hydrogen                           | lacksquare | Helium              | (.)   | ©        | Oxygen                                     | D           | Nitrogen                 |  |  |  |
| Q 3:          | The                                                         | e nature of positiv                | ve ra      | ays /anode rays d   | lepe  | nds      | s on:                                      |             |                          |  |  |  |
|               | A<br>C                                                      | Hydrogen<br>The nature of re       | sidu       | ıal gas             | -     | 441      | The nature of the d<br>All of these        | discl       | harge tube               |  |  |  |
| Q 4:          | Fre                                                         | e neutron decays                   | int        | o a proton with tl  | he er | nis      | sion of an electron                        | and         | d a:                     |  |  |  |
| (             | A                                                           | Positron                           | B          | Neutrino            | i)    | ©        | Beta particle                              | D           | Helium nucleus           |  |  |  |
| Q 5:          | The                                                         | e velocity of photo                | on is      | S:                  |       |          |                                            |             |                          |  |  |  |
|               | A<br>©                                                      | Independent of<br>Equal to square  |            | U                   |       |          | Depends on its sou<br>Independent on its   |             |                          |  |  |  |
| Q 6:          | Acc                                                         | cording to Bohr's                  | ator       | nic mode, radius    | of se | eco      | nd orbit of hydrog                         | en a        | tom is:                  |  |  |  |
| (             | A                                                           | 0.529 A                            | B          | 5.0 A               |       | ©        | 2.116A                                     | D           | 4.0 A                    |  |  |  |
| Q 7:          | Neg                                                         | gative charge on o                 | cath       | ode rays was esta   | ablis | he       | d by:                                      |             |                          |  |  |  |
| (             | A                                                           | William Crook                      | lacksquare | J. Perin            | i,    | ©        | JJ. Thomson                                | D           | Hittrof                  |  |  |  |
| Q 8:          | Wh                                                          | at is 'X' in the giv               | en r       | reaction? He + I    | Ве —  |          | C + X                                      |             |                          |  |  |  |
|               | A                                                           | Electron                           | В          | Proton              | (     | 9        | Neutron                                    | D           | Gamma Rays               |  |  |  |
| Q 9:          | Wh                                                          | ich of the followi                 | ng s       | eries lie in ultra  | viole | et r     | egion?                                     |             |                          |  |  |  |
| (             | A                                                           | Lyman                              | В          | Balmer              |       | ©        | Paschen                                    | D           | Brackett                 |  |  |  |
| <b>10</b> :   | Th                                                          | e limiting line of                 | the l      | Balmer series lies  | s in: |          |                                            |             |                          |  |  |  |
|               |                                                             | U.V region                         |            | Wisible region      |       | ©        | LR region                                  | D           | None of these            |  |  |  |
| 211:          | Sp                                                          | litting of spectral                | line       | s when excited a    | toms  | s ar     | re subjected to stro                       | ng e        | electric field is called |  |  |  |
| 90.           | ·                                                           | Zeeman effect                      |            | Stark effect        |       |          | notoelectric effect                        |             |                          |  |  |  |
| <b>)</b> 12:  | All                                                         | the d-orbitals hav                 | ve,        |                     |       |          |                                            |             |                          |  |  |  |
|               | A<br>C                                                      | Spherical shape<br>Four lobe shape |            |                     |       |          | Dumbbell shape<br>None of above            |             |                          |  |  |  |
| <b>Q</b> 13:  | Qua                                                         | antum number va                    | alue       | s for 3d orbitals a | are:  |          |                                            |             |                          |  |  |  |
| (             | A                                                           | n=3, l=1                           | В          | n=3, l=2            | ©     | n=       | =3, l=0                                    | <b>(</b> D) | n=2, l=2                 |  |  |  |
| <b>)14</b> :  | Wh                                                          | en 6d orbital is c                 | omp        | olete, the next ent | terin | g e      | lectron goes into:                         |             |                          |  |  |  |
| (             | A                                                           | 7f orbital                         | В          | 7s obital           | ©     | 7 p      | orbital                                    | (D)         | 7d orbital               |  |  |  |
| )15:          | Ноч                                                         | w many unpaired                    | lele       | ctrons are preser   | nt in | an       | atom of configurat                         | ion         | $1s^2$ , $2s^2$ , $2p$ ? |  |  |  |
| <del></del> . | $\overline{}$                                               |                                    | _          |                     |       |          |                                            | _           |                          |  |  |  |
| ;(            | (A)                                                         | 4                                  | (B)        | U                   | (c)   | <b>Z</b> |                                            | (D)         | 3                        |  |  |  |

Write down four properties of cathode rays.

| , <del>S</del> |                             | WWV                      | v.pakcity                                               | .org            |                         |                   | 11"                    | Class: C     | hemistry                     |            |
|----------------|-----------------------------|--------------------------|---------------------------------------------------------|-----------------|-------------------------|-------------------|------------------------|--------------|------------------------------|------------|
|                | Chapter 6: Chemical Bonding |                          |                                                         |                 |                         |                   |                        |              |                              |            |
| Q 1:           |                             | decrease i<br>due to:    | n atomic i                                              | radius is s     | mall wher               | n travel fro      | om left to             | right in T   | ransition E                  | Elements.  |
|                | _                           | Valence el<br>Nuclear ch |                                                         |                 |                         |                   | ber of shelvening ele  |              |                              |            |
| Q 2:           | The                         | elements                 | having lov                                              | v ionizatio     | n energy                | are:              |                        |              |                              |            |
|                | (A)                         | Non-metal                | S B                                                     | Metals          |                         | © Sem             | i-metals               | (D) <b>N</b> | <b>letalloids</b>            |            |
| Q 3:           | The                         | value of th              | ne third io                                             | nization e      | nergy of N              | Ag is:            |                        |              |                              |            |
|                | (A)                         | 1450 kJ m                | ol <sup>-1</sup>                                        | 7730 kJ r       | nol <sup>-1</sup>       | © 785             | 0 kJ mol <sup>-1</sup> | D            | 890 kJ mo                    | <b>]-1</b> |
| Q 4:           | lonio                       | c, Covalent              | t and Coor                                              | dinate Co       | valent boı              | nd is prese       | ent in:                |              |                              |            |
|                | A 5                         | SO <sub>2</sub>          | В                                                       | $C_2H_5$        |                         | © NH <sub>4</sub> | Cl                     | (D) H        | I <sub>2</sub> O             |            |
| Q 5:           | VSE                         | PR theory                | was propo                                               | osed by?        |                         |                   |                        |              |                              |            |
|                | (A)                         | Nyholm a                 | nd Gillesp                                              | oie B           | Kossel                  | © I               | Lewis                  | (D) S        | idwick & F                   | owell      |
| Q 6:           | 944                         |                          | tween two                                               |                 | nd is:                  |                   |                        |              |                              |            |
|                | (A) (2                      | 104.5°                   | (B)                                                     | 107.5°          |                         | © 92°             |                        | D 9          | 5°                           |            |
| Q 7:           |                             |                          | ollowing is                                             |                 | molecule                |                   | lone pairs             |              |                              |            |
|                | (A) I                       | 3eCl <sub>2</sub>        | (B)                                                     | CH <sub>4</sub> |                         | © BF <sub>4</sub> |                        | (D) H        | I <sub>2</sub> S             |            |
| Q 8:           | The                         | hybridizat               | tion in am                                              |                 | lecule is:              |                   |                        |              |                              |            |
|                | (A) (                       | lsp <sup>2</sup>         | (B)                                                     | Sp <sup>2</sup> |                         | $(c)$ $Sp^3$      |                        | (D) S        | p                            |            |
| Q 9:           |                             |                          | of sigma b                                              |                 | thyne (C <sub>2</sub> ) |                   |                        |              |                              |            |
|                | No.                         | Five                     |                                                         | Three           | 169/165)                | © Two             |                        | (D) F        | our                          |            |
| Q10:           |                             |                          | f bonds in                                              | - On S          |                         |                   |                        | <b></b>      | ·                            |            |
|                | (A)<br>(C)                  | One sigma<br>Three sigr  | $\mathbf{a}(\sigma)$ and $\mathbf{o}$ na $(\sigma)$ box | ne Figury b     | ona                     |                   |                        |              | $i(\pi)$ bonds $i(\pi)$ bond |            |
| Q11            |                             |                          | paired elec                                             | 3               | nti-bondi               | ng moleci         | ular orbita            | ıls?         |                              |            |
|                | (A)                         |                          | NN                                                      | $0_2^{-2}$      |                         | © B <sub>2</sub>  |                        | o F          | 2                            |            |
| Q12            | : The                       | paramagi                 | netic prop                                              | erty of ox      | ygen is we              | ell-explain       | ed on the              | basis of:    |                              |            |
|                | (A)                         | /SEPR-the                | eory B                                                  | VB-theor        | y pakci                 | © MO              | Γ-theory               | (D) N        | lone of the                  | se         |
| Q13:           | The                         | bond orde                | er of $O_2^{-2}$ :                                      |                 |                         |                   |                        |              |                              |            |
|                | (A) (                       | One                      | В                                                       | Two             |                         | © Thre            | ee                     | © F          | our                          |            |
| Q14:           | Whi                         | ch of the h              | ydrogen h                                               | nalide has      | highest p               | ercentage         | of ionic cl            | naracter?    |                              |            |
|                | (A)                         | HCl                      | В                                                       | HBr             |                         | © HF              |                        | (D) H        |                              |            |
| <b>(*</b> )    |                             |                          |                                                         |                 |                         |                   |                        |              |                              |            |
| An             | Answers:                    |                          |                                                         |                 |                         |                   |                        |              |                              |            |
|                | 1                           | (D)                      | 4                                                       | (C)             | 7                       | D                 | 10                     | B            | 13                           | A          |
|                | 2                           | B                        | 5                                                       | (D)             | 8                       | (C)               | 11                     | A            | 14                           | (C)        |
|                | 3                           | B                        | 6                                                       | (C)             | 9                       | В                 | 12                     | (c)          |                              |            |
|                |                             |                          |                                                         |                 |                         |                   |                        |              |                              |            |

|     |      | Short | Question | S |
|-----|------|-------|----------|---|
| S2/ | 2487 |       | 55-8° 54 |   |

- 1 What is the octet rule? Why it is not universal?
- 2 Bond distance is the compromise distance between two atoms, Justify.
- 3 Name the four factors affecting ionization energies.
- 4 Why second ionization energy is higher than first ionization energy?
- Why is the size of anion greater than the size of parent atom?
- 6 Cationic radius is always smaller than the size of the parent atom. Why?
- 7 Describe the variation of electron affinity along periods and groups in periodic table?
- 8 lonization energy is an index to the metallic nature of element Justify.
- 9 Why sizes of the atoms cannot be measure preciously?
- 10 No bond in chemistry is 100% ionic. Justify it
- 11 Sigma bond is stronger than pi-bond. Why?
- 12 Draw the hybridization diagram of  $H_2O$ ,  $CH_4$ ,  $NH_3$
- Why lone pair occupies more space then bond pair of electrons.
- 14 What is the basic assumption of VSEPR theory?
- Why are pi-bonds more diffused than sigma bonds?

  OR

  Differentiate between sigma and pi bond?
- 16 How nature of bond can be determined by electronegativity values?
- 17 Differentiate between Bonding and Antibonding molecular orbitals.
- 18 What is bond order? Give an example.
- 19 Why does Helium not exist in the form of He2?
- 20 Why is MOT superior to VBT?
- 21 How dipole moment is helpful to determine the molecular structure?
- 22 Define dipole moment and write the units of it.

## pakcity.org

#### Long Questions

- Explain the bonding in  $O_2$  or  $N_2$  according to molecular orbital theory and explain its paramagnetic property.
- Give the postulates of VSEPR theory. Explain the structure of ammonia on the basis of this theory.
- Define dipole moment. Give its units. How is it used to determine the geometry of molecules?
- 4 Define ionization energy. Give example. Discuss its trend in groups and periods.
- Describe sp<sup>2</sup> hybridization to explain the structure of ethene.
- 6 Describe sp hybridization to explain the structure of ethyne.
- 7 Define sp<sup>3</sup> hybridization. Discuss the structure of water and methane on its basis.

# Chapter 7: Thermochemistry

- Q1: If an endothermic reaction is allowed to take place very rapidly in the air, the temperature of the surrounding air:
  - A Remains constant B Increases
- © Decreases
- Remains unchanged
- Q2: For a given process, the heat changes at constant pressure  $(q_p)$  and at constant volume  $(q_v)$  are related to each other as:
  - $\bigcirc$   $q_p = q_v$
- $\bigcirc$   $q_p > q_v$
- $\bigcirc$   $q_p < q_v$
- ①  $q_p = q_v/2$

|               | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ww.pakcity.org                       | g                                      |                                      | 11 <sup>th</sup> Cla | ass: Che   | mistry                 |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------|------------|------------------------|--|--|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                        |                                      |                      |            |                        |  |  |
| Q3:           | Which of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e following is not                   | a state function                       | ?                                    |                      |            |                        |  |  |
|               | A Enthalpy B Temperature © Heat D Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                        |                                      |                      |            |                        |  |  |
| Q4:           | The units of Heat Capacity are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                        |                                      |                      |            |                        |  |  |
|               | ♠ kjK-1mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | K-1g-1                                 | © kjK-1                              |                      | © kjK      | ·1mol·2                |  |  |
| OE.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                        |                                      | t tompo              |            |                        |  |  |
| Ų5:           | called:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in heat energy of                    | a chemicai reac                        | tion at constar                      | it tempe             | erature ai | ia pressure is         |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oy change ®                          | Bond Energy                            | © Internal                           | energy               | ① Hea      | t of sublimation       |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                        |                                      | chergy               |            | t of Subminution       |  |  |
| Q6:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e of oxygen insid                    |                                        |                                      |                      | C 20       |                        |  |  |
|               | A) 100 atn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n ® 50                               | atm                                    | © 125 atm                            |                      | (D) 20 a   | atm                    |  |  |
| Q7:           | The enthalpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y of atomization                     | of hydrogen is:                        |                                      |                      |            |                        |  |  |
|               | (A) 180 kj i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mol <sup>-1</sup> ® 21               | .8 kj mol <sup>-1</sup>                | © -1368 kj                           | mol <sup>-1</sup>    | • -57.     | 4 kj mol <sup>-1</sup> |  |  |
| $\mathbf{A}$  | nswers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                        |                                      |                      |            |                        |  |  |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В                                    | 4                                      | ©                                    |                      | 7          | В                      |  |  |
|               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В                                    | 5                                      | A                                    |                      |            |                        |  |  |
|               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ©                                    | 6                                      | (D)                                  |                      |            |                        |  |  |
| i ii u        | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                        |                                      |                      |            |                        |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | Short C                                | )uestions                            |                      |            |                        |  |  |
| 1             | What is a t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hermochemical                        |                                        |                                      |                      |            |                        |  |  |
| $\frac{1}{2}$ | 5-7-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | te between exot                      | ************************************** | )                                    | nic reac             | tion.      |                        |  |  |
| 3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ite between spor                     |                                        | $\mathcal{A}(\mathcal{G}_{\lambda})$ |                      |            | xamples.               |  |  |
| 4             | TOP ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng if candle is a s                  | 1                                      |                                      |                      |            |                        |  |  |
| 5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | halpy of Neutral                     | - 7/7-32/                              | 127                                  | stion.               |            |                        |  |  |
| 6             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | halpy of Solution                    |                                        |                                      |                      |            |                        |  |  |
| 7             | Define Ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | halpy of atomiza                     | tion with an exa                       | mple.                                |                      |            |                        |  |  |
| 8             | Define Hes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s's law of consta                    | nt heat summat                         | ion with one ex                      | kample.              |            |                        |  |  |
| 9             | Define Sys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tem, Surroundin                      | g and Boundary                         |                                      |                      |            |                        |  |  |
| 1(            | ) What is Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ate Function? Giv                    | e two examples                         | II-XII-U<br>Lwi Amini<br>F-Tu        |                      |            |                        |  |  |
| 1 1           | Why is it n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ecessary to men<br>emical equation o | tion the physical                      | l states of reac                     | tants an             | d produc   | ts in a                |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                        |                                      |                      |            |                        |  |  |
| 12            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | fference betweer<br>nese two parame  |                                        | erature? Write                       | a mathe              | ematical r | elationship            |  |  |
| 13            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | law of thermody                      |                                        |                                      |                      |            |                        |  |  |
| 1/            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Haber Cycle.                         | 11aiiiicsi                             |                                      |                      |            |                        |  |  |
| 15            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ite between inter                    | rnal energy and                        | enthalpy.                            |                      |            |                        |  |  |
|               | 6 Prove that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | Trair office gy affair                 | orreitarpy.                          |                      |            |                        |  |  |
| 17            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t and work.                          |                                        |                                      |                      |            |                        |  |  |
|               | The second control of |                                      | Long                                   | )uestions                            |                      |            |                        |  |  |
|               | What is Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rn Haber Cycle?                      | <u> </u>                               |                                      | ttice en             | ergy of N  | aCI2                   |  |  |
| 2             | us.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | alpy of food is de                   |                                        |                                      |                      | cigy of IN | a <b>u i</b>           |  |  |
| 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ass calorimeter is                   |                                        |                                      |                      | eaction?   |                        |  |  |
| 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | explain with two                     |                                        |                                      |                      |            | ation                  |  |  |
| 5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | <del></del>                            |                                      |                      |            |                        |  |  |
|               | State first law of thermodynamics. Prove that: $AE = q_v$ and $AH = q_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                                        |                                      |                      |            |                        |  |  |

Please visit for more data at: www.pakcity.org



| 7 | Differentiate between sp    | ontaneous and      | non-spontaneous | reactions |
|---|-----------------------------|--------------------|-----------------|-----------|
| 1 | Differ efficiate between op | Jointaile oas alla | mon spontaneous | reaction  |

## Chapter 8: Chemical Equilibrium

| $\sim$ 4     |      |     |          | 62% & E  |    | 1   | 1 1  |
|--------------|------|-----|----------|----------|----|-----|------|
| ()1 ·        | Mo   | lar | concen   | tration  | 15 | cal | led: |
| $\Delta T$ . | 1110 | u   | COLICCII | ci acion | LO | Cai | icu. |

Active mass

Weight

Mass

None of theses

Q2: For which system does the equilibrium Ke have units of (conc-1)?

 $N_2 + 3H_2 \rightarrow 2NH_3$ 

(B)  $H_2 + I_2 \rightarrow 2HI$ 

 $2NO_2 \rightarrow N_2H_4$ 

(D)  $2HF \rightarrow H_2 + F_2$ 

Q3: Equilibrium constant for gaseous equilibrium is represented by:

Q4: When  $K_c$  value is small, the equilibrium position is:

(A) Towards left

B Towards right G Remains unchanged D None of these

Q5: Which statement about the following equilibrium is correct:  $2SO_2 + O_2 \rightarrow 2SO_4$  $\Delta H = -183 \text{kjmol}^{-1}$ . The yield of SO<sub>3</sub> will be maximum if:

Both temperature and pressure are reduced

Temperature is increased and pressure is kept constant

Both temperature and pressure are increased

Temperature is reduced and pressure is increased

Q6: The unit of ionic product of water:

 $\bigcirc$  mol<sup>-1</sup> dm<sup>3</sup>

mol<sup>-2</sup> dm<sup>3</sup>

mol<sup>-2</sup> dm<sup>5</sup>

mol<sup>-2</sup> dm<sup>4</sup>

Q7: The ionic product of water will increase if:

H<sup>+</sup> ions are added

OH- sons are added

Temperature is increased

H<sup>+</sup> and OH<sup>-</sup> ions are added in equal amount

Q8: The law of mass action was given by:

Vant's Hoff

Bondeinstin

Q9: When 50% of reactants in a reversible reaction are converted into a product, the value of equilibrium constant Ke is:

Q10: The term pH was introduced by:

(A) Henderson

(B) Sorenson

Goldsmith

Thomson

Q11: The pH of 10<sup>-2</sup> moles dm<sup>-3</sup> of an aqueous solution of NaOH is:

10

Q12: Which relationship is correct about the strength of an acid with the strength of its conjugated base?

 $\triangle$   $K_a \propto \frac{1}{K_a}$ 

 $^{\circ}$   $K_a \propto K_b$ 

 $\bigcirc$   $\overline{Ka} \propto K_b$ 

None of these

Q13: Sum of p $K_a$  and p $K_b$  is equal to:

0

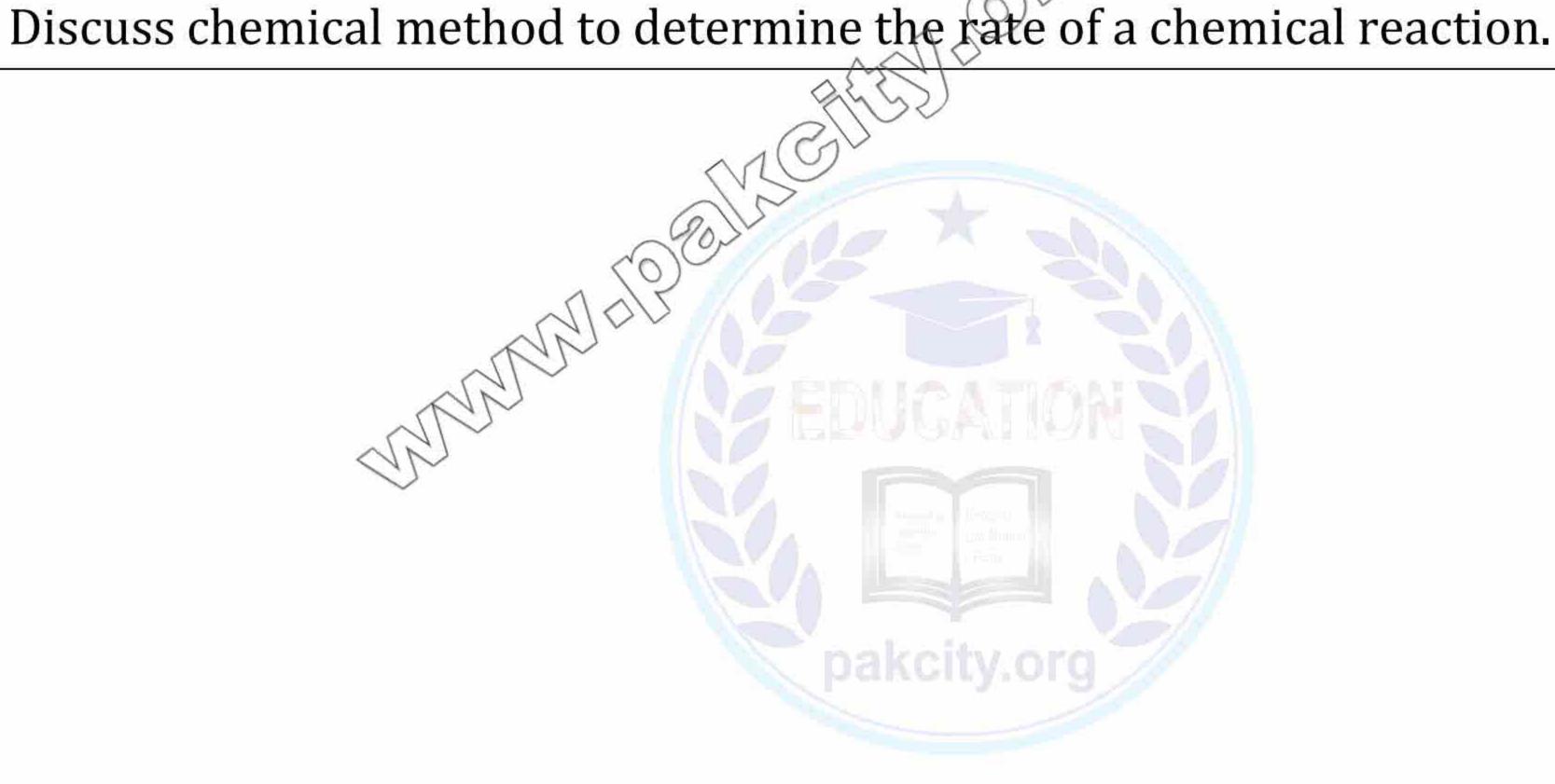
Q14: Ionization of hydrogen sulphide gas is suppressed by:

KCI

NaCI

HCI

NH<sub>4</sub>CI


Q15: The  $K_p$  value for PbSO<sub>4</sub> is 1.8 x 10<sup>4</sup>. The maximum concentration of Pb<sup>-2</sup> ions is:

(A)  $1.8 \times 10^{-4}$ 

(B)  $1 \times 10^{-4}$ 

©  $1.34 \times 10^{-4}$  ©  $1.69 \times 10^{-4}$ 

Define half-life period. How is it used to determine the order of reaction?



Explain the effect of temperature on rate of reaction.

How light and surface area affects rate of a chemical reaction.