

9. The energy stored in a dam is:

A electric energy B potential energy C kinetic energy D thermal energy

10.In Einstein's mass-energy equation, c is the:

(A) speed of sound

B speed of light

© speed of electron

speed of earth

11. The rate of doing work is called:

- (A) energy
- **B** torque
- © power
- ^D momentum

Answer Key:

1	<u>C</u>	7	В
2	(i)	8	(O)
3	0	9	В
4	D	10	B
5	A	11/0	©
6	©		

1. Define work. What is its SI unit?

Ans: Work:

Work is said to be done when force acting on a body displaces it in the direction of the force.

Formula:

Work = Force
$$\times$$
 distance

$$W = F \times S$$

SI unit of work:

SI unit of work is joule (J) or Nm

<u>Joule:</u>

www.pakcity.org

9th Class: Physics Notes

2. Why do we need energy?

Ans: We need energy to do different types of work in our daily life. When we say that body has energy, we mean that it has the ability to do work.

OR

- Energy is used by us to perform many activities of life.
- Energy is necessary for running and walking for humans.

3. When does a force do work? Explain.

Ans: Work is done when the force acting on a body displaces it in the direction of applied force.

4. Define energy, and give two types of mechanical energy.

Ans: Energy:

A body possesses energy if it is capable to do work

Types of mechanical energy:

Mechanical energy has two following types:

(i) Kinetic energy

(ii) Potential energy

Kinetic energy:

The energy possessed by a body due to its motion is called its kinetic energy.

Formula:

$$K.E = \frac{1}{2} mv^2$$

Potential energy:

The ability of a body to do work due to its position is known as its potential energy.

Formula:

$$P.E = mgh$$

5. Define potential energy and derive its relation.

Ans: Potential energy:

Energy possessed by a body due to its position is called potential energy.

$$P.E = mgh$$

Derivation:

$$P.E = work$$

$$P.E = F.d$$

$$P.E = (mg)(h)$$

$$P.E = mgh$$

6. Define K.E and derive its relation.

Ans: "The energy possessed by a body due to its motion is called kinetic energy".

Example:

As

- Moving air is called wind. We can use wind energy for doing various things. It drives windmills and pushes sailing boats.
- Moving water in a river can carry wooden logs through large distances and can also be used to drive turbines for generating electricity.

Mathematical Derivation:

Let a body of mass m is moving with velocity v. An opposing force F acting through a distance S brings it to rest. The body possesses kinetic energy and is capable to do work against opposing force F until add of its kinetic energy used up.

K.E of the body Work done by it due to motion

$$K.E = FS$$

$$v_i =$$

$$v_f \neq \ell$$

$$F = ma$$

$$a = -\frac{F}{m}$$

Since motion is opposed, hence, is a negative. Using 3rd equation of motion:

$$2aS = v_f^2 - v_i^2$$

$$2\left(-\frac{F}{m}\right)S = (0)^2 - (v)^2$$

$$2(-FS) = -mv^2$$

$$-FS = -\frac{1}{2}mv^2$$

$$FS = \frac{1}{2} mv^2$$

As we know that K.E is equal to the work done,

www.pakcity.org

9th Class: Physics Notes

So
$$K.E = \frac{1}{2} mv^2$$

The above equation gives the K.E possessed by a body of mass m moving with velocity v.

7. Why fossils fuels are called non-renewable form of energy?

Ans: The fossil fuels take millions of years for their formation. So, these are known as nonrenewable resources.

8. How is energy converted from one form to another? Explain.

Ans: With the help of different devices and through chemical reactions energy is converted from one form to another.

Example:

Solar cells are used to convert light energy into electrical energy.

9. Which form of energy is most preferred and why?

Ans: Solar energy is the most preferred energy because sunlight does not pollute the environment in any way.

Solar energy reaching Earth is a thousand times more than the energy consumption of mankind.

10. Name a device that converts mechanical energy into electrical energy.

Ans: A generator is a device that converts mechanical energy into electrical energy.

11. Name the five devices that convert electrical energy into mechanical energy.

Ans: Name of five devices:

- (i) Washing machine
- (iii) Electric grinder
- (v) Juicer

- (ii) Electric motor
- (iv) Electric spinner

12. What is meant by the efficiency of a system?

Ans: Efficiency:

The efficiency of a system is the ratio of required form of energy obtained from a system as output to the total energy given to it as input.

pakcity.org

Formula:

$$Efficiency = \frac{Output}{Input}$$

Input is the energy given to machine to work while output is work done by machine.

www.pakcity.org

What is meant by the term power? **13.**

Power: Ans:

Power is defined as the rate of doing work.

Formula:

Power =
$$\frac{\text{Work}}{\text{Time}}$$

i.e.

$$P = \frac{W}{t}$$

Unit:

The SI unit of power is watt (W).

How can you find the efficiency of a system? **14.**

The efficiency of a system can be determined by following the formula. Ans:

$$Efficiency = \frac{Output}{Input}$$

$$\%Efficiency = \frac{Output}{Input} \times 100$$

Define Watt.

Watt: Ans:

> The power of a body is one watt if it does work at the rate of 1 joule per second $(1Js^{-1}).$

1 watt
$$=\frac{1J}{1 \text{ sec}}$$

Important Formulas

$$\triangleright$$
 %Efficiency = $\frac{\text{Output}}{\text{Input}} \times 100$

$$\triangleright$$
 Efficiency = $\frac{\text{Output}}{\text{Input}}$

$$\triangleright$$
 W = F × S

$$K.E = \frac{1}{2} mv^2$$

$$\triangleright$$
 P.E = mgh

$$\triangleright$$
 E = mc²

$$E = mc^{2}$$

$$P = F \cdot V \text{ or } P = \frac{W}{t}$$

Important Values

- \triangleright Speed of light = $e = 3 \times 10^8 \,\text{ms}^{-1}$
- \triangleright Density of water = 1000 kgm⁻³
- Mass of 1 liter water = 1kg
- \triangleright 1hp = 746 watt
- $> 1MJ = 10^6 J$

Units:

- ❖ Work = Joule
- ❖ Power = Watt

- Energy = Joule
- (1 joule = Newton meter)
 (Watt = Joule/sec)

Numerical

1. A man has pulled a cart through 35m applying a force of 300N. Find the work done by the man.

pakcity.org

Ans: Given data:

$$S = 35m$$

$$F = 300$$
N

To Find:

$$Work = W = ?$$

Solution:

$$W = F \times S$$

$$W = 300 \times 35$$

$$W = 10500 J$$

Result:

Work done by the man
$$= W = 10500 J$$

2. A block weighing 20N is lifted 6m vertically upward. Calculate the potential energy stored in it.

Ans: Given data:

Weight =
$$S = 20N$$

$$h = 6m$$

To Find:

$$P. E = ?$$

Solution:

$$P.E = Work done$$

$$P.E = F.d = mgh = w.h$$

$$P.E = w.h$$

$$P.E = 20 \times 6$$

$$P.E = 120 J$$

Result:

Potential energy = P.E = 120 J

3. A car weighing 12kN has the speed of 20ms⁻¹. Find its kinetic energy.

Ans: Given data:

Weight =
$$w = 12kN = 12 \times 1000N = 12000N$$

$$v = 20 \text{ms}^{-1}$$

To Find:

$$K.E = ?$$

Solution:

$$K.E = \frac{1}{2} mv^2$$
(i)

Now,

$$w = mg$$

$$m = \frac{w}{g} = \frac{12000}{10} = 1200 \text{kg}$$

$$K.E = \frac{1}{2} \times 1200 \times (20)^2$$

$$K.E = \frac{1}{2} \times 1200 \times 400$$

$$K.E = 240000 J$$

$$1000 \text{ J} = 1 \text{Kj}$$

$$K.E = 240kJ$$

Result:

Kinetic energy = K.E = 240kJ

- 4. A 500g stone is thrown up with a velocity of 15ms⁻¹. Find its.
 - (a) P.E at its maximum height.

Ans: Given data:

$$m = 500g = \frac{500}{1000} = 0.5kg$$

$$v = 15ms^{-1}$$

To Find:

$$P.E = ?$$

$$K.E = ?$$

Solution:

$$K.E = \frac{1}{2} mv^2$$

$$K.E = \frac{1}{2} \times 0.5 \times (15)^2$$

$$K.E = \frac{1}{2} \times 1200 \times 225$$

$$K.E = 56.25 J$$

As we know that;

Potential energy at maximum height \(\) Kinetic energy while throwing

$$K.E = P.E$$

Because energy is converted one form to another but it remains the same.

5. On reaching the top of a slope 6m high from its bottom, a cyclist has a speed of 1.5ms⁻¹. Find the K.E and P.E of the cyclist. The mass of the cyclist and his bicycle is 40kg.

pakcity.org

Ans: Given data:

$$h = 6m$$

$$g = 1.5 \text{ms}^{-1}$$

$$m = 40 kg$$

To Find:

$$K.E = ?$$

$$P.E = ?$$

Solution:

$$K.E = \frac{1}{2} mv^2$$

$$K.E = \frac{1}{2} \times 40 \times (1.5)^2$$

K.E =
$$\frac{1}{2} \times 40 \times (1.5)^2$$

K.E = $\frac{1}{2} \times 40 \times 2.25$

$$K.E = 45 J$$

$$P.E = mgh$$

$$P.E = 40 \times 10 \times 6$$

$$P.E = 2400J$$

6. A motorboat moves at a steady speed of 4ms⁻¹, water resistance acting on it is 4000N. Calculate the power of its engine. 🖁 pakcity.org 🎇

Given data: Ans:

$$v = 4ms^{-1}$$

$$F = 4000N$$

To Find:

$$P = ?$$

Solution:

$$P = F.v$$

$$P = 4000 \times 4$$

$$P = 16 \times 1000$$

$$P = 16 \times 10^{3}$$

$$P = 16kW$$

A man pulls a block with a force of 300N through 50m in 60s. Find the 7. power used by him to pull the block.

Given data: Ans:

$$F = 300N$$

$$S = 50m$$

$$t = 60s$$

To Find:

$$P = ?$$

Solution:

$$P = \frac{W}{t}$$

$$: W = F \times S$$

$$P = \frac{F \times S}{t}$$

$$P = \frac{300 \times 50}{60}$$

$$P = 250 \text{watt}$$

8. A 50kg man moved 25 steps up in 20 seconds. Find his power, if each step is 16cm high.

Ans: Given data:

$$m = 50 \text{kg}$$

 $t = 20 \text{s}$

Height of each step =
$$16cm = \frac{16}{100} = 0.16m$$

Height of 25 step = $0.16 \times 25 = 4m$

To Find:

$$P = ?$$

Solution:

$$P = \frac{W}{t}$$

$$P = \frac{mgh}{t}$$

$$W = mgh$$

$$P = \frac{50 \times 10 \times 4}{20}$$

$$P = 100$$
watt

9. Calculate the power of a pump which can lift 200kg of water through a height of 6m in 10 seconds.

pakcity.org

Ans: Given data:

$$m = 200 \text{kg}$$
 $h = 6 \text{m}$
 $t = 10 \text{s}$

To Find:

$$P = ?$$

Solution:

$$P = \frac{W}{t}$$

$$P = \frac{mgh}{t}$$

$$\therefore$$
 W = mgh

$$P = \frac{200 \times 10 \times 6}{10}$$

$$P = 1200$$
watt

10. An electric motor of 1hp is used to run water pump. The water pump takes 10 minutes to fill an overhead tank. The tank has a capacity of 800 liters and height of 15m. Find the actual work done of motor to fill the tank. Also find efficiency of the system.

(Density of water = 1000kgm⁻¹)

Mass of 1 litre of water = 1kg).

Ans: Given data:

$$v = 800$$
 liters

$$t = 10 \text{ min} = 10 \times 60 = 600 \text{ sec}$$

$$P = 1hP$$

$$\therefore$$
 1hp = 746 watt

$$P = 746$$
 watt

$$h = 15m$$

To Find:

$$W = ?$$

Efficiency
$$=$$
 ?

Solution:

$$P = \frac{W}{t} \sqrt{t}$$

$$W = P \times t$$

$$W = 746 \times 600$$

$$Input = W = 447600J$$

We know that;

1 litre of water = 1kg of water

So,

$$800$$
litres = 800 kg

$$m = 800kg$$

Now,

$$W = mgh$$

$$W = 800 \times 10 \times 15$$

$$W = 120000J$$

pakcity.org

Work input = 447600J

Work input = 120000J

%Efficiency = $\frac{\text{Output}}{\text{Input}} \times 100$

%Efficiency = $\frac{120000}{447600} \times 100$

%Efficiency = 26.8%

