| Paper Code     |                                                                                                                                                                                                                                                                                                                     | 2024 (1 <sup>st</sup> -A)               |                                     |                                                  | 🍇 pakcity.org 💸                            |                                     |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|--------------------------------------------------|--------------------------------------------|-------------------------------------|--|
|                | ıber: 4477                                                                                                                                                                                                                                                                                                          |                                         | ATE PART-II                         | (12 <sup>th</sup> Class)                         | Roll No:                                   |                                     |  |
| Land Water Co. | SICS PAPER-                                                                                                                                                                                                                                                                                                         |                                         | — onn                               | CTIVE                                            | MAXIMUM MAR                                | VS. 17                              |  |
|                | E ALLOWED: 20                                                                                                                                                                                                                                                                                                       |                                         |                                     | ECTIVE                                           |                                            |                                     |  |
| Q.N            | Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. |                                         |                                     |                                                  |                                            |                                     |  |
| S.#            | QUES                                                                                                                                                                                                                                                                                                                | TIONS                                   | A                                   | В                                                | С                                          | D                                   |  |
| 1              | Two opposite point<br>by a distance 2d, the<br>at mid-way between                                                                                                                                                                                                                                                   | e electric potential                    | 1 volt                              | 2 volts                                          | 3 volts                                    | Zero volt                           |  |
| 2              | A current carrying of experience maximu uniform magnetic fin placed:                                                                                                                                                                                                                                                | m force in a                            | Perpendicular<br>to field           | Parallel to fie                                  | At an angle $\theta = 60^{\circ}$ to field | At an angle of 180° to field        |  |
| 3              | Which substance of greatest resistivity?                                                                                                                                                                                                                                                                            | •                                       | Silver                              | Germaniun                                        |                                            | Gold                                |  |
| 4              | When the coil at res<br>uniform magnetic fi<br>current would be:                                                                                                                                                                                                                                                    | st is placed in a<br>ield, then induced | Maximum                             | Minimum                                          | maximum<br>some time<br>minimum            | Zero                                |  |
| 5              | In D.C motor the sp                                                                                                                                                                                                                                                                                                 | olit rings act as:                      | Commutator                          | Capacitor                                        | Resistor                                   | Inductor                            |  |
| 6              | In three phase A.C voltage across the f is zero, then it has t                                                                                                                                                                                                                                                      | irst pair of slip rings                 | • 0°                                | 90°                                              | \$150°                                     | 180°                                |  |
| 7              | The amplitude mod frequencies range is                                                                                                                                                                                                                                                                              | ulation transmission                    | 88 MHz to 108<br>MHz                | 540 ki Ziri<br>1600 ki                           |                                            | 88 kHz to 108<br>MHz                |  |
| 8              | A temperature above conductor referred                                                                                                                                                                                                                                                                              | re 77k, any super as:                   |                                     | temperatur<br>super conduc                       |                                            | High<br>temperature<br>conductor    |  |
| 9              | The symbol of NO                                                                                                                                                                                                                                                                                                    | Γ gate is:                              | Rectangle                           |                                                  | y Triangle and Bubble                      | Square                              |  |
| 10             | SI unit of voltage g<br>transistor is                                                                                                                                                                                                                                                                               | ain of NPN                              | Volt                                | Coulomb                                          | Farad                                      | No unit                             |  |
| 11             | The materialization place in the process                                                                                                                                                                                                                                                                            | of energy take<br>s of:                 | Photo electric                      | Compton eff                                      | Pair production                            | Annihilation of matter              |  |
| 12             | Which one of the pindependent of relaspeed?                                                                                                                                                                                                                                                                         | hysical quantity is<br>tivistic         | Mass                                | Length                                           | Time                                       | Charge                              |  |
| 13             | Which one of the re has the most energe                                                                                                                                                                                                                                                                             | idiations<br>tle photon?                | T.V waves                           | γ – rays<br>accity.org                           | X - rays                                   | Microwaves                          |  |
| 14             | Electromagnetic rad<br>wavelength longer<br>is known as:                                                                                                                                                                                                                                                            | diation having                          | Infrared radiation                  | Ultraviole radiation                             |                                            | Gamma rays                          |  |
| 15             | The half life of radi<br>depends upon the:                                                                                                                                                                                                                                                                          | oactive element                         | Temperature                         | Atmospher pressure                               | ic Number of nucleons                      | Number of electrons                 |  |
| 16             | The unit of radiatio equal to:                                                                                                                                                                                                                                                                                      | n one Becquerel is                      | One<br>disintegration<br>per second | 3.7 × 10 <sup>10</sup> disintegration per second | on disintegration                          | 3.7<br>disintegration<br>per minute |  |
| 17             | Due to polarization electrical energy sto plates of capacitor connected:                                                                                                                                                                                                                                            | ored between the                        | Increases                           | Decreases                                        | Remains same                               | May increase or decreases           |  |
|                |                                                                                                                                                                                                                                                                                                                     |                                         |                                     | · · · · · · · · · · · · · · · · · · ·            | شر)-2024(1 <sup>st</sup> -A)-2500(         | (MITT TAN)                          |  |

19(Obj)(☆☆☆☆)-2024(1<sup>st</sup>-A)-25000 (MULTAN)

| 6    |
|------|
|      |
|      |
| uted |
|      |
|      |
|      |
|      |
|      |
| :    |
| į    |
|      |
|      |
|      |
|      |
| nim? |
|      |
| ver. |
| 6    |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| 4    |
| 0    |
| 0    |
|      |
|      |
| 0:   |
| U.   |
|      |
| 0.   |
| 0:   |
|      |
|      |
| 0    |
| 03   |
|      |
| 03   |
| •    |



|     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 9                      |                        |
|-----|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|------------------------|
|     | er Code                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1 <sup>st</sup> -A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                        |                        |
|     | nber: 4478                                   | INTERMEDIATE P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ART-II (12th C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lass) Roll                         | No:                    |                        |
|     | SICS PAPER-                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                        |                        |
|     | IE ALLOWED: 20                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OBJECTIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | MUM MARKS              |                        |
| Q.N |                                              | choices for each objective t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                        |                        |
| l   | bubbles. Cutti                               | it bubble in front of that qu<br>ng or filling two or more bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | estion number, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n bubble sheet.<br>in zero mark in | Use marker or p        | pen to till the        |
| S.# |                                              | UESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B                                  | C C                    | D                      |
| 1   | Half life of uranium                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.5 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.5 min                           | 23.5 min               | 26.5 min               |
| 2   | The building blocks                          | s of protons and neutrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Positron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quarks                             | Electron               | Neutron                |
| _   | are called:                                  | . See the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T OSILION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quarks                             | Licetion               | Neutron                |
| 3   | If the medium between                        | een the charges is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Decrease                           | Remains                | Infinite               |
|     | free space, then ele                         | ctrostatic force will:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | constant               |                        |
| 4   | N                                            | $\Delta V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Decreasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Increasing                         | Increasing             | Magnitude              |
|     | Negative sign in equ                         | uation $E = -\frac{\Delta V}{\Delta r}$ shows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | potential                          | strength               |                        |
| 5   | Daniman al afamilia                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stage (a)                          |                        |                        |
|     | Reciprocal of resisti                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conductance                        | Conductivity           | Resistance             |
| 6   | A charged particle e<br>magnetic field its K |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Infinite                           | Decreases              | Remains                |
|     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W. Carrie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                        | same 🛑                 |
| 7   | When a charged par                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Helix 🦙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Circular                           | Spiral                 | Ellipse                |
|     | its path is:                                 | niform magnetic field,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                        |                        |
|     | _ •                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (PS)                               |                        |                        |
| 8   | If the angular freque                        | ency of A.C generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Doubled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Four times                         | Half                   | One fourth             |
|     | is doubled, the time                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Asses                              |                        |                        |
| 9   | Split ring are used in                       | n:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D.C motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Transformer                        | A.C generator          | A.C motor              |
| -10 | Root mean square v                           | alue of voltage is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VIZV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{i}$                            | V                      | $2V_{o}$               |
|     |                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49                                 | $\frac{V_o}{\sqrt{2}}$ | 2,0                    |
| 11  | The phase of A.C.                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | V 2                    |                        |
| 11  | The phase of A.C at                          | positive peak from origin is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pi_{i,j,j'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pi$                              | $\frac{3\pi}{2}$       | $\pi$                  |
|     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                  | 2                      |                        |
| 12  | Which is pentavaler                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Boron                              | Indium                 | Antimony               |
| 13  | Which component of                           | of the transistor has lowest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Emitter                            | Collector              | Resistor               |
|     | concentration of imp                         | purity?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | With the same of t |                                    |                        | 1100.0101              |
| 14  | Bolean expression f                          | or AND gate is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X = A + B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V - 1 D                            | $X = A \cdot B$        |                        |
|     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $X = \overline{A \cdot B}$         | N-A-D                  | $X = \overline{A + B}$ |
| 15  | Compton shift for w                          | vavelength is minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90° of fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ora 0°                             | 45"                    | 270°                   |
|     | for scattering angle                         | $\theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                  |                        | 2,0                    |
| 16  | At higher energies r                         | more then 1.02 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Compton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Photoelectric                      | Fission                | Pair 👝                 |
|     | the dominant proces                          | ss is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | effect                             | process                | production             |
| 17  | Electron normally c                          | an reside in excited state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                        |                        |
|     | for about:                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-8</sup> s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 <sup>-3</sup> s                 | 10 <sup>-6</sup> s     | 10 <sup>8</sup> s      |
|     |                                              | A STATE OF THE STA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Az = Az = Az \ 000                 |                        |                        |
|     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                        |                        |

20(Obj)(公公公公)-2024(1<sup>st</sup>-A)-25000 (MULTAN)

Multan Board-2024 INTERMEDIATE PART-II (12th Class) Roll No: **PHYSICS** PAPER-II **GROUP-II SUBJECTIVE MAXIMUM MARKS: 68** TIME ALLOWED: 2.40 Hours NOTE: Write same question number and its parts number on answer book, as given in the question paper. SECTION-I  $8 \times 2 = 16$ 2. Attempt any eight parts. Describe the force or forces on a positive point charge when placed between parallel plates. (a) with similar and equal charges (b) with opposite and equal charges Do electrons tend to go to region of high potential or of low potential? (ii) Two opposite point charges, each of magnitude q are separated by a distance 2d. (iii) What is the electric potential at a point P mid way between them? Sketch the graphs for charging and discharging of a capacitor. (iv) How can a current loop be used to determine the presence of a magnetic field in a given region of space? (v) How can you use a magnetic field to separate isotopes of chemical element? (vi) How can a galvanometer be converted into an ammeter? Also write down the formula to adjust the shunt resistance. Define CRO and write down its principle. (viii) If a nucleus has half-life of 1 year, does this mean that it will be completely decayed after 2 years? Explain. (ix) What do you understand by "background radiation"? State two sources of this radiation. Explain the effects of low level radiation and high level radiation. (xii) Explain the p-p reaction in the sun with the help of equations.  $8 \times 2 = 16$ 3. Attempt any eight parts. Give two differences between Electromotive force and Potential difference. What is Open circuit and Closed circuit? (ii) (iii) Calculate the terminal potential difference across an external resistance when a current 0.5A flowing in a circuit. The emf is 2V and source of emf has internal resistance  $1\Omega$ . (iv) Name the device that will (a) permit flow of direct current but oppose the flow of alternating current (b) permit flow of alternating current but not the direct current How the reception of a particular radio station is selected on your radio set? (v) (vi) Find the capacitance required to construct a resonance circuit of frequency 1000kHz with an inductor of 5mH. (vii) Define Proportional limit and Ultimate tensile strength. (viii) How n-type semi conductor is formed by the process of doping? (ix) What is the difference between Ferromagnetic and Paramagnetic substances? (x) What is Electronics? Write down only names of electronic devices (at least two). (xi) Why +ve terminal of a battery is connected with p-type and -ve terminal with n-type region. (xii) Explain briefly Light emitting diode. 4. Attempt any six parts.  $6 \times 2 = 12$ What is to be done in order to enhance the magnetic flux in transformer? (i) In a certain region, the earth's magnetic field points vertically down. When a plane flies due north, which (ii) wingtip is positively charged? (iii) Four unmarked wires emerge from a transformer. What steps would you take to determine the turns ratio? State Stefen-Boltzmann law and write its mathematical relation. (iv) The classical theory cannot explain the threshold frequency of light. Why? Explain. (v) If an electron and a proton have the same de Broglie wavelength, which particle has greater speed? (vi) What advantages an electron microscope has over an optical microscope? (vii) How line spectra can be used for the identification of elements? Explain. (viii) Explain why laser action cannot occur without population inversion between atomic levels? (ix) SECTION-II  $3 \times 8 = 24$ NOTE: Attempt any three questions. 05 5.(a) Define Xerography. Draw the schematic diagram of a photocopier and explain its working. (b) How many electrons pass through an electric bulb in one minute if the 300 mA current is passing through 03 05 6.(a) State Ampere's law. Apply it to find magnetic field inside the solenoid. A D.C motor operates at 240V and has a resistance of  $0.5\Omega$ . When the motor is running at normal 03 speed, the armature current is 15A. Find the back emf in the armature. 7.(a) 05 Describe the A.C through R.C series circuit. (b) Calculate the gain of non-inverting amplifier as shown in 03 given figure: pakcity.org 8.(a) 05 What is Compton effect? Derive relation for Compton shift? Also discuss it for  $\theta = 0^{\circ}$  and  $\theta = 90^{\circ}$ (b) The length of a steel wire is 1.0 m and its cross-sectional area is  $0.03 \times 10^{-4} \, m^2$ . Find the work done in 03 stretching the wire when a force of 100N is applied on it. Where  $Y = 3.0 \times 10^{11} Nm^{-2}$ . 9.(a) What is Nuclear Reactor? Describe function of its main parts. 05 (b) The wavelength of KX - ray from copper is  $1.377 \times 10^{-10} m$ . What is the energy difference between 03 the two levels from which this transition results?

Paper Code Number: 4473

2023 (1<sup>st</sup>-A) INTERMEDIATE PART-II (12<sup>th</sup> Class)

Roll No:

PHYSICS

PAPER-II

GROUP-I

| PHY  | YSICS PAPER-II GROU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JP-I                                    | /lultan Bo                              | ard-2023                            |                                                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|-----------------------------------------------------|
| TIM  | IE ALLOWED: 20 Minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OBJEC                                   | CTIVE                                   | MAXIMUM                             | MARKS: 17                                           |
| Q.No | is correct, fill that bubble in front of fill the bubbles. Cutting or filling two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | that question nu                        | imber, on bubb                          | le sheet. Use m                     | arker or pen to                                     |
| S.#  | QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A                                       | В                                       | C                                   | D                                                   |
| 1    | Root mean square value of an alternating voltage is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{V_o^2}{\sqrt{2}}$                | $\frac{V_o}{\sqrt{2}}$                  | $\frac{V_o^2}{2}$                   | $\frac{V_o}{2}$                                     |
| 2    | Power dissipated in a pure inductor is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zero                                    | Infinite                                | Small                               | Maximum                                             |
| 3    | The value of potential barrier for silicon at room temperature is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3 <i>V</i>                            | 0.51                                    | 0.7 <i>V</i>                        | 0.9 <i>V</i>                                        |
| 4    | The ratio of impurity addition in an intrinsic semiconductor is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 to 10 <sup>3</sup>                    | 15(6)(0)                                | 1 to 10 <sup>5</sup>                | 1 to 10 <sup>6</sup>                                |
| 5    | SI unit of current gain of transistor is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coulomb                                 | Ampere                                  | No unit                             | Farad                                               |
| 6    | When platinum wire is heated, it appears cherry red at temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500°C                                   | 900° (5)                                | 1100° & 11                          | 1300°C                                              |
| 7    | A photocell is base on:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Photoelectric<br>effect                 | Rolarization                            | Time<br>dilation                    | Compton effect                                      |
| 8    | Normally an electron can reside in excited state for about:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                      | 10-4 s                                  | 10 3                                | 10 <sup>-8</sup> s                                  |
| 9    | Dead time of the counter is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sim 10^{-7} s$                        | 10-62                                   | ~10 <sup>-4</sup> s                 | $\sim 10^{-5} s$                                    |
| 10   | The building to the sand neutrons alled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quar                                    | Elector                                 | Protons                             | Ions                                                |
| 11   | The cond of an electric distribution of an electric distri | Henry                                   | Faraday                                 | Watt                                | Oersted                                             |
| 12   | Electric field intensity due to an infinite sheet of charge is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $E = \frac{2\sigma}{\varepsilon_o}$     | $E=2\sigma\varepsilon_o$                | $E = \frac{\sigma}{2\varepsilon_o}$ | $E = \frac{\sigma}{\varepsilon_o}$                  |
| 13   | The value of drift velocity of electrons is of the order of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $10^3  ms^{-1}$                         | 10 <sup>2</sup> ms <sup>-1</sup>        | 10 <sup>-3</sup> ms <sup>-1</sup>   | $10^{-2}  ms^{-1}$                                  |
| 14   | Formula for shunt resistance $R_S$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $R_{S} = \frac{I_{g}}{I - I_{g}} R_{g}$ | $R_{s} = \frac{V_{g}}{I - I_{g}} R_{g}$ | $R_S = \frac{I - I_g}{I_g} R_g$     | $R_{S} = \frac{I - I_{g}}{I_{g}R_{g}}$              |
| 15   | Voltmeter is connected in the circuit in:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Perpendicular                           | Parallel                                | Series                              | Anti parallel                                       |
| 16   | The principle of an A.C. generator is base on:  pakcity.org                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mutual<br>Induction                     | Lenz's law                              | Self<br>induction                   | Faraday's law<br>of<br>electromagnetic<br>induction |
| 17   | When the motor is just started, back emf always:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Becomes<br>zero                         | Decreases                               | Remains<br>same                     | Increases                                           |

| II     | NTERMEDIATE PART-II (12 <sup>th</sup> Cla                                | ss)        | 2023 (1 <sup>st</sup> -A)                            | )        | Roll No:                                           | _     |
|--------|--------------------------------------------------------------------------|------------|------------------------------------------------------|----------|----------------------------------------------------|-------|
| PHYS   | SICS PAPER-II GROUP-I                                                    | Multa      | n Board-20                                           | 023      |                                                    |       |
|        | E ALLOWED: 2.40 Hours                                                    |            | UBJECTIVE                                            |          | MAXIMUM MARKS: 68                                  |       |
|        | E: Write same question number and                                        |            |                                                      | ver boo  |                                                    | per.  |
|        |                                                                          |            | TION-I                                               |          |                                                    |       |
| 2. At  | tempt any eight parts.                                                   |            |                                                      |          | 8×2                                                | = 16  |
| (i)    | State Gauss's law.                                                       |            | (ii) What is t                                       | the fund | ction of ECG?                                      |       |
| (iii)  | Do electrons tend to go to region of h                                   | igh pote   | ntial or of low po                                   | tential' | ?                                                  |       |
| (iv)   | Draw q - t curve for charging process                                    |            |                                                      |          |                                                    |       |
| (v)    | Define tesla and write relation between                                  | en tesla a | and Gauss.                                           |          |                                                    |       |
| (vi)   | Why a voltmeter is always connected                                      | in paral   | lel in circuit?                                      |          |                                                    |       |
| (vii)  | If the length of the solenoid is double                                  | d by kee   | ping number of t                                     | turns co | onstant 3                                          |       |
|        | for steady current then what should b                                    | e the nev  | v value of the ma                                    | agnetic  | field? 2 nakcity o                                 | ra 🕸  |
| (viii) | If a charged particle moves in a straig                                  |            |                                                      | ion of s | space,                                             | , a @ |
|        | can you say that magnetic field in tha                                   | t region   |                                                      |          |                                                    |       |
| (ix)   | Name the six quarks.                                                     |            |                                                      |          | ction of dosimeter?                                |       |
| (xi)   | What are isotopes? What do they have                                     |            |                                                      |          |                                                    |       |
| (xii)  | Discuss the advantages and disadvant                                     | tages of   | fission power from                                   | m the p  | point of safety,                                   |       |
|        | pollution and resources.                                                 |            |                                                      |          |                                                    |       |
|        | tempt any eight parts.                                                   |            |                                                      |          | 8 × 2                                              | = 16  |
| (i)    | Do bends in a wire affect its electrica                                  |            |                                                      |          |                                                    |       |
| (ii)   | Describe a circuit which will give a c                                   |            |                                                      |          |                                                    |       |
| (iii)  | What is a series resistance circuit? H                                   |            |                                                      |          |                                                    |       |
| (iv)   | A sinusoidal current has rins value of                                   |            |                                                      |          |                                                    |       |
| (v)    | How the reception of a particular radi                                   |            |                                                      |          |                                                    |       |
| (vi)   |                                                                          | resistive  |                                                      |          | circuit?                                           |       |
| (vii)  | What is meant by strain energy? How                                      |            |                                                      |          | e-extension graph?                                 |       |
| (viii) | How would you justify that Young's                                       |            |                                                      |          |                                                    |       |
| (ix)   | How existing view of magnetism forb                                      |            |                                                      | ed mag   | netic pole?                                        |       |
| (x)    | Why ordinary silicon diodes do not e                                     |            |                                                      | <u> </u> | <del></del>                                        |       |
| (xi)   | Draw circuit diagram of half wave re                                     |            |                                                      | etorm i  | or sinusoidal input.                               |       |
| (xii)  | Define open loop voltage gain of an o                                    |            |                                                      |          | *                                                  | -     |
|        | What is its value for a typical operation                                | onal amy   | officer?                                             |          |                                                    |       |
|        | tempt any six parts.                                                     |            | C 11                                                 | - 4      | 6 X 2 =                                            | 12    |
| (i)    | Is it possible to change both the area                                   | and the r  | nagnetic field pas                                   | ssing tr | irough                                             |       |
| (11)   | the loop and still not have an influeed                                  |            |                                                      | PARE     |                                                    |       |
| (ii)   | Can a step-up transformer increase th                                    |            |                                                      | UM       | **4                                                |       |
| (iii)  | Why self induced emf is also called a                                    |            |                                                      |          |                                                    |       |
| (iv)   | A beam of red light and a beam of bit                                    |            | A CONTRACTOR OF STREET OF STREET OF STREET OF STREET | same er  | nergy.                                             |       |
| (-)    | Which bean contains the greater num                                      |            |                                                      |          |                                                    |       |
| (v)    | Why don't we observe a Compton eff                                       |            |                                                      |          |                                                    |       |
| (vi)   | Describe the dual nature of energy an Which has the lower energy quanta? |            |                                                      | rq       | /                                                  |       |
| (vii)  | Why Neon is mixed with Helium in N                                       |            |                                                      |          |                                                    |       |
| (viii) | What do we mean when we say that t                                       |            |                                                      |          |                                                    |       |
| (ix)   | what do we mean when we say that t                                       |            |                                                      |          |                                                    |       |
| VOTE   | Attannat and thus an actions                                             | SEC        | FION-II                                              |          | 2 ∨ 0 -                                            | - 24  |
|        | : Attempt any three questions.                                           | - marallal | mlete conscitor o                                    | nd hon   | 3 × 8 =                                            |       |
| (h)    | Derive the relation for capacitance of                                   | -          | A                                                    |          |                                                    | 5     |
| (b)    | A platinum wire has resistance of 10                                     |            |                                                      |          |                                                    |       |
|        | Find the value of temperature co-effic                                   |            |                                                      |          |                                                    | 3     |
| 5.(a)  | Drive an expression of force on a mo                                     |            |                                                      |          |                                                    | 5     |
| (b)    | A Square coil side 16cm has 200 turn                                     |            |                                                      | n magn   | etic field of magnitude 0.057                      |       |
|        | If the peak emf is 12V. What is angu-                                    |            |                                                      |          | 2000 2 - 102 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 3     |
| 7.(a)  | What is rectification? Draw diagram                                      |            |                                                      |          |                                                    | 5     |
| (b)    | Find the value of the current and indu                                   | ictive rea | actance when A.C                                     | C. volta | age of 220V at 50Hz is passe                       |       |
|        | through an inductor of 10H.                                              |            |                                                      |          |                                                    | 3     |
| 3.(a)  | What is photoelectric effect? How its                                    |            |                                                      |          |                                                    | 5     |
| (b)    | A 1.0m long copper wire is subjected                                     |            | -                                                    | _        |                                                    |       |
|        | Calculate the tensile strain and the pe                                  |            |                                                      |          |                                                    | 3     |
| ).(a)  | What is mass defect and binding ener                                     |            | w the graph bety                                     | ween b   | inding energy per nucleus an                       |       |
|        | nucleus number. Also explain this cu                                     |            |                                                      |          |                                                    | 5     |
| (b)    | Electrons in an X-ray tube are acceler                                   |            |                                                      |          |                                                    |       |
|        | are slow down in a target, what will                                     | be the m   | inimum wavelen                                       |          |                                                    | 3     |
|        |                                                                          |            |                                                      | 10 1     | 2023(1st_A)-25000 (MIII.T                          | AMI   |

Paper Code

Number: 4478

INTERMEDIATE PART-II (12th Class)



**PHYSICS** PAPER-II **GROUP-II** 

**TIME ALLOWED: 20 Minutes OBJECTIVE** 

**MAXIMUM MARKS: 17** 

Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to

|     | fill the bubbles. Cutting or filling two or m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| S.# | QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A                       | В                         | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                    |
| 1   | To display the given voltage along $Y$ – axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X - plates              | Y-plates                  | Cathode of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Anodes of            |
|     | on C.R.O, connected to it:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of C.R.O.               | of C.R.O.                 | C.R.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C.R.O.               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 2   | If we want to increase the measuring range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                    |
|     | of voltmeter, the series high resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Increased               | Decreased                 | Kept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zero                 |
|     | value should be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                           | constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| 3   | The direction of induced current in a circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ohm's law               | Faraday's                 | Gauss's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lenz's law           |
|     | is determined by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Omn Statt               | law                       | Guass s law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Denz s iu v          |
|     | is determined by.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 4   | For alternating current in a circuit, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thermistor              | Resistor                  | Capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rectifier            |
|     | inductor behaves like:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                           | à.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 5   | Metal detectors consist of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R-C                     | R-L                       | RLC series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L-C circuit          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | circuit                 | direuit                   | Lettouit -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
|     | ASIT CONTRACTOR OF THE PARTY OF | 1292m                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 6   | At high frequency, RLC series circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | Pure                      | <b>维护和</b> 。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pure                 |
|     | shows the behaviour as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R L circuit             | inductive                 | R-C circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | capacitive           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8475                    | circuit?                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | circuit              |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           | The state of the s |                      |
| 7   | High temperature super conductors have a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.52K                  | 77K                       | 125K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 163K                 |
|     | critical temperature greater than:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 1                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 8   | In, Op-amp as a comparator, when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $V_o = +V_{CC}$         | =0                        | $V_o = -V_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_o = \infty$       |
|     | then at the output we get:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 66                  |                           | * a * CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                    |
|     | then at the output get.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DUCA                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 9   | The SI unit of current gain are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ampere                  | Ohm                       | Gray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No unit              |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE THE                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 10  | Which photon of light has least energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Red                     | Yellow                    | Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Green                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 11  | The rest mass of photon is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $9.1 \times 10^{-3} kg$ | $1.67 \times 10^{-27} kg$ | Zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Infinity             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 12  | X – rays are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | High energy             | High energy               | High energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | High energy          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | electrons               | neutrons                  | protons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | photons              |
| 10  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 13  | Heat produced due to fission reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500°C                   | 900°C                     | 1100°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1300°C               |
|     | taking place in the core of Nuclear reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|     | is about:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 14  | Subatomic particles are divided into:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Six groups              | Five groups               | Four groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Three groups         |
| 15  | If a monitive abayead martials of many " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                    |
| 15  | If a positive charged particle of mass "m"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zero                    | $q\bar{E}$                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\vec{E}}{qm}$ |
|     | is projected parallel to uniform electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zero                    | m                         | $qmec{E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | qm                   |
|     | field $\vec{E}$ , The acceleration of the particle is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                       | à                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 1.0 | 1 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * pakcii                | y.org 🎇                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| 16  | A $3K\Omega$ resistor is connected in series with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                       |                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                 |
|     | a capacitor of capacitance 2mF. The time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 sec                   | 5 sec                     | 6 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.33 sec             |
|     | constant for capacitor is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 17  | If no fourth band is present on a carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ±20%                    | ±10%                      | ±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0%                   |
| 1,  | resistor then its tolerance will taken:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ± 2070                  | -10/0                     | 2570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 070                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |

| INTE        | RMEDIATE PART-II (12th Class)                                                       | 2023 (1 <sup>st</sup> -A)                         | Roll No:                                  |
|-------------|-------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|
| PHY         |                                                                                     |                                                   |                                           |
| TIMI        | E ALLOWED: 2.40 Hours                                                               | SUBJECTIVE                                        | MAXIMUM MARKS: 68                         |
|             | 2: Write same question number and its parts                                         |                                                   |                                           |
|             |                                                                                     | CTION-I                                           | , , , , , , , , , , , , , , , , , , , ,   |
| 2. A        | tempt any eight parts.                                                              |                                                   | 8 × 2 = 16                                |
| (i)         | Suppose that you follow an electric field lin                                       | e due to a positive point                         |                                           |
|             | Do electric field increase or decrease?                                             | e ade to a positive point                         | omit go.                                  |
| iii)        | If a point charge $q$ of mass $m$ is released in                                    | a non-uniform field with                          | h field lines                             |
| ,           | pointing in the same direction, will it make                                        |                                                   | in Held lines                             |
| (iii)       | Show that ohms times farad is equivalent to                                         |                                                   |                                           |
| (iv)        | What is a test charge? Write its any two charges                                    |                                                   |                                           |
| (v)         |                                                                                     |                                                   |                                           |
| (vi)        | How can you use a magnetic field to separate                                        |                                                   | ement?                                    |
| (vii)       | Why the resistance of an ammeter should be                                          |                                                   |                                           |
|             | Define Lorentz force. Write role of each co                                         |                                                   |                                           |
| (viii)      | A proton enters this page from left to right v                                      |                                                   | t of the page.                            |
|             | Prove that it will be deflected towards botto                                       |                                                   |                                           |
| UX i        | What factors make fusion reaction difficult                                         |                                                   |                                           |
| (a)         | What is a radioactive tracer? Describe one                                          |                                                   | 1                                         |
| (xi)        | What are leptons? Name at least two lepton                                          | ns.   (XII)   Define nu                           | clear activity. Write its SI unit.        |
|             | tempt any eight parts.                                                              | 500WL 000WW 1.1. W                                | 8 × 2 = 16                                |
| (i)         | Is the filament resistance lower or higher in                                       |                                                   | than in a 100W, 220V builb?               |
| (11)        | How the bridge circuit is used to determine                                         |                                                   |                                           |
| iii)        | Why heat is produced in a conductor due to                                          |                                                   | <b>\</b>                                  |
| (iv)        | Describe amplitude modulation with diagram                                          |                                                   | <u> </u>                                  |
| (v)         | Describe the condition which will make the                                          |                                                   | váll.                                     |
| 171)        | Describe two advantages of a 3phase A.C. s                                          |                                                   |                                           |
| (117)       | Differentiate between crystalline and amorp                                         |                                                   |                                           |
| (viii)      | Draw stress-strain curves for ductile and bri                                       |                                                   |                                           |
| (13)        | How can the conductivity of a semi-conduct                                          |                                                   |                                           |
| (x)         | The anode of a diode is 0.2 volts positive wi                                       |                                                   |                                           |
| (31)        | What is the biasing requirement of the juner                                        |                                                   |                                           |
| (giz)       | What is importance of use of a semi-conduc                                          | tor in electronic circuits?                       |                                           |
|             | tempt any six parts.                                                                |                                                   | $6 \times 2 = 12$                         |
| (i)         | How can the spectrum of hydrogen contain:                                           | so many lines, when hydr                          | ogen contain one electron?                |
|             | Will bright light eject more electrons from a                                       |                                                   | er light of same colour?                  |
| (iii)       | Why don't we observe Compton effect with                                            |                                                   |                                           |
| (iv)        | Can an electric motor be used to drive an ele                                       | ectric generator with the                         | output from                               |
|             | generator being used to operate the motor?                                          | Add Total                                         |                                           |
| (v)         | In a certain region the earth's magnetic field                                      |                                                   | rd.                                       |
| <del></del> | When a plane flies due north, which wingtip                                         |                                                   |                                           |
| (vi)        | What is the importance of minus sign in the                                         | expression? $\varepsilon = -\frac{N\Delta\phi}{}$ |                                           |
| i           |                                                                                     | $\Delta t$                                        |                                           |
| (vii)       | What is threshold frequency in photoelectric                                        | effect?                                           |                                           |
| (viii) ;    | What do you mean by annihilation of matter                                          | ? (ix) Write dow                                  | n two postulates of Bohr's theory.        |
|             |                                                                                     | CTION-II                                          |                                           |
|             | : Attempt any three questions.                                                      |                                                   | $3\times8=24$                             |
| 5.(a)       | What is Wheatstone bridge? Explain and pr                                           |                                                   |                                           |
| (b)         | Determine the electric field at the position $\vec{r}$                              | f = (4i + 3j)m caused b                           | y a point charge                          |
| i           | $q = 5.0 \times 10^{-6} C$ placed at origin.                                        |                                                   | 3                                         |
| 5.(a)       | What is transformer? Derive its equation an                                         | d discuss power losses in                         |                                           |
| (1)         | The resistance of a galvanometer is 50 ohm                                          |                                                   |                                           |
|             | Show by a diagram how to convert this galv                                          |                                                   |                                           |
| ·.(a)       | What is an operational amplifier? Describe                                          |                                                   |                                           |
|             | amplifier and find its gain.                                                        | are use or operational an                         | 5                                         |
| (b)         | A $10mH$ , $20\Omega$ coil is connected across 240V                                 | and 180/ Hz source.                               | (3 22 22 22 22 22 22 22 22 22 22 22 22 22 |
|             |                                                                                     | $\pi$                                             | 🖁 pakcity.org 🛞 🛒                         |
|             | How much power does it dissipate?                                                   |                                                   | 6                                         |
| ".(a)       | Derive an expression for strain energy in de                                        |                                                   | 5                                         |
| (b)         | What is the de Broglie wavelength of an elec                                        |                                                   |                                           |
| 7.(a)       | Write postulates of Bohr's Model. Prove that ra                                     |                                                   |                                           |
| (b)         | Find the mass defect and binding energy for Mass of peutron = 1 00866511 Mass of pe |                                                   |                                           |
| 1           | IVIASS OF DESIGNATION = 1 UUAND 31  VIASS OF DE                                     | 0100 - 1 007770 U VI                              | 488 OF ETECTION = 0.00033 U. 3            |

#### TIME ALLOWED: 20 Minutes PHYSICS PAPER-II GROUP-I **MAXIMUM MARKS: 17** Multan Board-2021 **OBJECTIVE** Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER. **⋘ pakcity.org** Q.No.1 ohm is equal to: (1)(A) Coulomb (B) Farad (C) Joule (D) Ampere (2)S.I unit of electric flux is: (B) $Nm^2C^{-1}$ (A) NC<sup>-1</sup> (C) $NmC^{-1}$ (D) $NmC^2$ (3) A thermistor is a heat sensitive: (B) Capacitor (C) Inductor (D) Diode (A) Resistor S.I unit of magnetic flux density is: (4) (C) $Wb \, m^{-2}$ (B) Wb m-1 (A) Wb m If 300 turns of wire are wound on 30cm length, then number of turns per unit length is: (5)(D) 1000 (A) 10 (B) 20 (C) 100 The principle of A.C generator is: (6) (C) Electromagnetic induction (D) All of these (A) Mutual induction (B) Self induction Energy density in inductor is given by: (7)(D) $\frac{1}{2} \frac{B^2}{u_0}$ (A) $\frac{1}{2} \frac{B}{\mu_0}$ The device which allows only the flow of D. C. Is (8)(B) Resistor (C) Inductor (A) Capacitor (D) Generator In R.L.C series circuit resonance occurs when: (9)(A) $X_C > X_L$ The Curie temperature for iron is: (10)(C) 823 K (B) 1023 K (D) 723 K (A) 923 K For non-inverting amplifier, if $R_1 = \infty ohm$ , $R_2 = 0 ohm$ then gain of amplifier is: (11)(D) Infinite (12)The current gain " $\beta$ " of a transistor is given by: (D) $\frac{I_E}{I_B}$ (B) $\frac{I_E}{I_C}$ The rest mass of X – ray photon is: (13)(A) $1.6 \times 10^{-19} kg$ (B) $9.1 \times 10^{-31} kg$ (C) $1.67 \times 10^{-27} kg$ When platinum wire is heated, it becomes white at temperature: (14)(D) 1600°C (A) 900°C (B) 1100°C (C) 1300°C The value of Rydberg constant is: (15)(B) $1.0974 \times 10^{-7} \, m^{-1}$ (C) $1.0974 \times 10^{11} \, m^{-1}$ (D) $1.0974 \times 10^{-11} \, m^{-1}$ (A) $1.0974 \times 10^7 \, m^{-1}$ When $\gamma$ -rays are emitted, the nuclear mass of an element: (16)(B) Increases by 1 unit (C) Decreases by 4 units (D) Does not change (A) Increases by 2 units The particles equal in mass or greater than proton are: (17)

(C) Fermions

(D) Mesons

(B) Hadrons

(A) Baryons

# INTERMEDIATE PART-II (12th CLASS)

### GROUP-I Multan Board-2021 TIME ALLOWED: 2.40 Hours PHYSICS PAPER-II **SUBJECTIVE**

**MAXIMUM MARKS: 68** 

NOTE: Write same question number and its part number on answer book, as given in the question paper.

### SECTION-I

#### 2. Attempt any eight parts.



 $8 \times 2 = 16$ 

- Electric lines of force never cross. Explain why? (i)
- If a point charge 'q' of mass m is released in a non-uniform electric field with field lines (ii) pointing in the same direction, will it make a rectilinear motion?
- Prove that  $1 \frac{volt}{meter} = 1 \frac{Newton}{Coulomb}$ (iii)
- A particle carrying a charge of 2e falls through a potential difference of 3.0V. (iv) Find energy acquired by it.
- How can you use a magnetic field to separate isotopes of chemical element? (v)
- If a charged particle moves in a straight line through some region of space, (vi) can you say that magnetic field in the region is zero?
- Draw Saw tooth voltage waveform and explain it. (vii)
- Define magnetic flux and one Tesla. (viii)
- Does the induced emf in a circuit depend on the resistance of the circuit? (ix)
- How would you position a flat loop of wire in a changing magnetic field, (x) so that there is no emf induced in the loop?
- A metal rod of length 25cm is moving at speed of 0.5m/s in a direction perpendicular (xi) to a 0.25T magnetic field. Find the end produced in the rod.
- Define motional emf and write its mathematical expression. (xii)

#### Attempt any eight parts 3.

 $8 \times 2 = 16$ 

- Do bends in a wire affect its electrical resistance? Explain. (i)
- Why does the resistance of a conductor rise with temperature? (ii)
- State Kirchhoff's Second Rule and write its equation. (iii)
- In a R-L circuit will the current lag or lead the voltage? Illustrate your answer by a vector diagram. (iv)
- How does doubling the frequency affect the reactance of (a) an inductor (b) a capacitor (v)
- (vi) Write four properties of parallel resonance circuit.
- Distinguish between ductile and brittle substances. (vii)
- Define modulus of elasticity. Show that the units of modulus of elasticity and stress are the same. (viii)
- (ix) Write a brief note on superconductor.
- (x) What is rectification, write its two types.
- Why is the base current in a transistor very small? (xi)
- Why ordinary silicon diodes do not emit light? (xii)

#### 4. Attempt any six parts.

- Discuss the variation of photoelectric current with the intensity of light falling (i) on plate of photocell.
- Which photon, red, green or blue carries the most (a) energy and (b) momentum. (ii)
- What advantages an electron microscope has over an optical microscope? (iii)

- (iv) What are characteristic X rays? How are they originated from the atoms?
- (v) Can the electron in the ground state of hydrogen absorb a photon of energy 13.6 eV and greater than 13.6 eV?
- (vi) Why is the mass of a nucleus less than the total mass of constituent particles? Where is this mass lost?
- (vii) What is the difference between hadrons and leptons?

9.(a)

(b)

- (viii) A particle which is more ionizing is less penetrating. Why?
- (ix) What do you understand by "back ground radiation"? State two sources of this radiation.

3

5

3

## SECTION-II NOTE: Attempt any three questions. $3 \times 8 = 24$ 5.(a)Derive an expression for the energy stored in the capacitor. 5 The potential difference between the terminals of a battery in open circuit is 2.2V. (b) When it is connected across a resistance of 5.0 $\Omega$ . The potential falls to 1.8 V. Calculate the current and the internal resistance of the battery. 3 Define self induction. Prove that in case of inductor, the energy density is directly 6.(a)proportional to the square of magnetic field. 5 A power line 10m high captes a current 200A. Find the magnetic field of the wire at the ground. (b) 7.(a)Describe A.C through R-C series circuit. 5 (b) In a circuit, the transistor has a current $10 \, mA$ at collector and base current $40 \, \mu A$ . What is the current gain of the transistor? 3 8.(a) What are intrinsic and extrinsic semiconductors? How the P-type and N-type materials are formed? 5 (b) Calculate the energy (in MeV) released in the following fusion reaction: 3 $^{2}H + ^{3}H \longrightarrow ^{4}He + ^{1}n$

potential difference. Find the shortest wavelength of the bremsstrahlung radiation emitted.

Please visit for more data at: www.pakcity.org

What is photoelectric effect? Write two results of this effect which cannot be explained by classical electromagnetic theory. Explain them on the basis of quantum theory.

A tungsten target is struck by electron that have been accelerated from rest through  $40\,kV$ 

| Numi          | per: 4474 I                                          | NTERMEDIATE PA                                                                     | RT-II (12" CLASS)                                                                                           | Multan Board-202                                 |
|---------------|------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| PHYS          | SICS PAPER-II G                                      | ROUP-II                                                                            | TIME A                                                                                                      | ALLOWED: 20 Minute                               |
|               |                                                      | OBJECTI                                                                            |                                                                                                             | MUM MARKS: 17                                    |
| Note:         | think is correct, fill the or pen to fill the bubble | at bubble in front of that<br>es. Cutting or filling tw<br>I be awarded in case BU | question as A, B, C and E<br>t question number, on bu<br>o or more bubbles will re<br>BBLES are not filled. | bble sheet. Use marker sult in zero mark in that |
| Q.No.1<br>(1) | The SI unit of Impedance                             | ee is:                                                                             |                                                                                                             | -                                                |
|               | (A) Henry                                            | (B) Hertz                                                                          | (C) Ohm                                                                                                     | (D) Volt                                         |
| (2)           | Which one of the follow                              | ring is the example of cry                                                         | stalline solid?                                                                                             |                                                  |
|               | (A) Plastic                                          | (B) Glass                                                                          | (C) Rubber                                                                                                  | (D) Zirconia                                     |
| (3)           | Which component of the                               | e transistor has greater co                                                        | ncentration of impurity?                                                                                    |                                                  |
|               | (A) Base                                             | (B) Emitter                                                                        | (C) Collector                                                                                               | (D) Resistor                                     |
| (4)           | In full wave rectification                           | n, the numbers of diodes r                                                         | required is:                                                                                                |                                                  |
|               | (A) 4                                                | (B) 3                                                                              | (C) 1                                                                                                       | (D) 5                                            |
| (5)           | Plank's constant 'h' has                             | the same unit as that of:                                                          |                                                                                                             |                                                  |
|               | (A) Angular momentum                                 | (B) Linear velocity                                                                | (C) Torque                                                                                                  | (D) Power                                        |
| (6)           | The factor $\frac{h}{m_0 c}$ has the                 | dimension of:                                                                      |                                                                                                             |                                                  |
|               | (A) Mass                                             | (B) Time                                                                           | (C) Length                                                                                                  | (D) Power                                        |
| (7)           | The radius of 10 <sup>th</sup> orbit of              | of hydrogen atom in nmi                                                            | 8                                                                                                           |                                                  |
|               | (A) 0.53                                             | (B) 51.3                                                                           | (C) 5.3                                                                                                     | (D) 53                                           |
| (8)           | The binding energy per                               | nucleon is maximum for:                                                            | 3/1                                                                                                         |                                                  |
|               | (A) Iron                                             | (B))Helium                                                                         | (C) Radium                                                                                                  | (D) Copper                                       |
| (9)           | Which of the following                               | is highly penetrating?                                                             | DUCATION S                                                                                                  |                                                  |
|               | (A) $\alpha$ – particles                             | (B) $\gamma$ - rays                                                                | (C) X - rays                                                                                                | (D) $\beta$ – particles                          |
| (10)          | The force on electron in                             | an electric field of magni                                                         | itude $10^4 NC^{-1}$ is:                                                                                    |                                                  |
|               | (A) $1.9 \times 10^{-15} N$                          | (B) $1.6 \times 10^{-15} N$                                                        | (C) $1.6 \times 10^{-8} N$                                                                                  | (D) $1.8 \times 10^{-15} N$                      |
| (11)          | The total electric flux th                           | rough any closed surface                                                           | depends upon:                                                                                               |                                                  |
|               | (A) Charge                                           | (B) Medium                                                                         | T                                                                                                           | surface (D) Both A and                           |
| (12)          | Heat generated by a 50 v                             | watt bulb in one hour is:                                                          |                                                                                                             |                                                  |
|               | (A) 36000 J                                          | (B) 48000 J                                                                        | (C) 1800 J                                                                                                  | (D) 180000 J                                     |
| (13)          | One Tesla(T) is equal to (A) 1 NA <sup>-1</sup>      | :<br>(B) 1 Nm <sup>-1</sup>                                                        | (C) 1 <i>NA</i> <sup>-1</sup> <i>m</i>                                                                      | (D) $1 NA^{-1}m^{-1}$                            |
| (14)          | 8                                                    |                                                                                    | nt angle to uniform magnet                                                                                  |                                                  |
| . ,           | The force on the wire is:                            |                                                                                    |                                                                                                             |                                                  |
|               | (A) 5N                                               | (B) 4N                                                                             | (C) 2N                                                                                                      | (D) 1.5N                                         |
| (15)          | Lenz's law is in accorda                             | nce with the law of conse                                                          | ervation of:                                                                                                |                                                  |
|               | (A) Mass                                             | (B) Momentum                                                                       | (C) Energy                                                                                                  | (D) Charge                                       |
| (16)          |                                                      | I inductor in which curre                                                          | nt changes from $5A$ to $3A$                                                                                | in 1ms is:                                       |
|               | (A) $2 \times 10^{-6} V$                             | (B) 2V                                                                             | (C) $6 \times 10^{-6} V$                                                                                    | (D) 8V                                           |
| (17)          | Current leads the applied                            | d voltage in pure                                                                  | circuit.                                                                                                    |                                                  |
|               | (A) Resistive                                        | (B) Capacitive                                                                     | (C) Inductive                                                                                               | (D) Reactive                                     |

# INTERMEDIATE PART-II (12th CLASS)

### PHYSICS PAPER-II

GROUP-II

TIMÉ ALLOWED: 2.40 Hours

### **SUBJECTIVE**

MAXIMUM MARKS: 68

NOTE: Write same question number and its part number on answer book, as given in the question paper.

### SECTION-I





 $8 \times 2 = 16$ 

- (i) How can you identify that which plate of capacitor is positively charged?
- (ii) Is  $\vec{E}$  necessarily zero inside a charged rubber balloon if balloon is spherical? Assume that charge is distributed uniformly over the surface.
- (iii) Define surface charge density. Also give its S.I unit.
- (iv) Describe the change in the magnetic field inside a solenoid carrying a steady current I,
  - if (a) length of solenoid is doubled but number of turns remains same and
    - (b) the number of turns is doubled but length remains the same.
- (v) What are dissimilarities between electric and gravitational forces?
- (vi) Two charged particles are projected into a region where there is a magnetic field perpendicular to their velocities. If the charges are deflected in opposite directions, what can you say about them?
- (vii) Write down the main parts of C.R.O.
- (viii) Define magnetic induction, also define its unit.
- (ix) How would you position a flat loop of wire in a changing magnetic field so that there is no *emf* induced in the loop?
- (x) Is it possible to change both the area of the loop and the magnetic field passing through the loop and still not have an induced emf in the loop?
- (xi) Name the factors upon which self inductance depends?
- (xii) Write down two methods for producing the induced emf in a loop.

# 3. Attempt any eight parts.

 $8 \times 2 = 16$ 

- (i) Do bends in a wire affect its electrical resistance? Explain.
- (ii) Why does the resistance of a conductor rise with increase of temperature?
- (iii) Write two uses of potentiometer.
- (iv) A sinusoidal current has rms value of 10 A. What is maximum or peak value?
- (v) In a R-L circuit, will the current lag or lead the voltage? Illustrate your answer by a vector diagram.
- (vi) What is the advantage of three phase A.C supply over single phase A.C?
- (vii) Distinguish between crystalline, amorphous and polymeric solids.
- (viii) What are superconductors? Write its two applications.
- (ix) Why does doping not change the basic structure of the solid? Explain.
- (x) Why does light emitting diodes emit visible light?
- (xi) What is the net charge on a n-type or a p-type substance?
- (xii) Why ordinary silicon diodes do not emit light?

### Attempt any six parts.

- (i) Will bright light eject more electrons from a metal surface than dimmer light of the same colour?
- (ii) Will higher frequency light eject greater number of electrons than low frequency light?
- (iii) Write the name of any four applications of photocell.

- Write any two uses of Laser in medicine and industry. (iv) What do we mean when we say that the atom is excited? (v) (vi) What is fission chain reaction? (vii) For what purpose, bromine is mixed with principal gas in Geiger tube? What information is revealed by the length and shape of the tracks of (viii) an incident particle in Wilson cloud chamber? What factors make a fusion reaction difficult to achieve? (ix) pakcity.org NOTE: Attempt any three questions.  $3 \times 8 = 24$ Compare the properties of electric and gravitational force. 5 5.(a) A platinum wire has resistance of  $10\Omega$  at  $0^{\circ}C$  and  $20\Omega$  at 27(b) Find the value of temperature co-efficient of resistance Polatinum. 3 Define mutual induction. Also derive an expression for induced emf in the secondary coil. 6.(a)5 A coil of  $0.1m \times 0.1m$  and of 200 turns carrying a current of 1.0mA is placed in a (b) uniform magnetic field of Calculate the maximum torque that acts on the coil. 3 What is operational amplifier. Derive the relation for the gain of non-inverting amplifier. 7.(a)5 · (b) Find the value of current flowing through a capacitance  $0.5 \mu F$ . When connected to a source of 150V at 50Hz3 8.(a) What is fusion reaction? Discuss in detail. What is the major source of heat and light in the Sun? 5 What stress would cause a wire to increase in length by 0.01% if the Young's modulus of the wire is (b)  $12 \times 10^{10}$  Pa? What force would produce this stress if the diameter of the wire is 0.56 mm?
- 9.(a) What is photoelectric effect? Explain it on the basis of quantum theory.

3

(b) Find the speed of the electron in the first Bohr's orbit.

| wine:                                  | r Code                                                                                                           | 2019 (A)                                                                            | Roll No                                                                                                   | lultan Board-2019                                                         |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Numi                                   | 1171 IN                                                                                                          | TERMEDIATE PÁI                                                                      | RT-II (12 <sup>th</sup> CLASS)                                                                            | pakcity.org                                                               |
|                                        |                                                                                                                  | NEW SCHEME)                                                                         | GROUP-I                                                                                                   | M MARKS: 17                                                               |
| Nate.                                  | ALLOWED: 20 Minu                                                                                                 | or each objective type a                                                            | uestion as A. B. C and D. T                                                                               | he choice which you                                                       |
| think i<br>Cuttin<br>questic<br>case B | s correct, fill that bubble<br>g or filling two or more l<br>ons as given in objective<br>UBBLES are not filled. | in front of that question<br>pubbles will result in zero<br>type question paper and | number. Use marker or poor mark in that question. At leave others blank. No creen this sheet of OBJECTIVE | empt as many<br>lit will be awarded in                                    |
| Q.No.1<br>(1)                          | The study of electric char<br>(A) Electromagnetism                                                               | ges at rest under the action (B) Electrostatics                                     | n of electric forces is known a<br>(C) Magnetic Induction                                                 | as:<br>(D) Electric field                                                 |
| (2)                                    |                                                                                                                  |                                                                                     | otential difference of $3V$ .                                                                             |                                                                           |
|                                        | The energy acquired by it (A) $9.6 \times 10^{-18} J$                                                            | (B) $9.6 \times 10^{-19} J$                                                         | (C) $1.6 \times 10^{-19} J$                                                                               | (D) $9.6 \times 10^{-17} J$                                               |
| (3)                                    | Kirchhoff's 2 <sup>nd</sup> rule is a r<br>(A) Energy                                                            | nanifestation of law of cor<br>(B) Charge                                           | nservation of:<br>(C) Mass                                                                                | (D) Momentum                                                              |
| (4)                                    | Formula for magnetic fie (A) $\mu_0$ I                                                                           | ld due to solenoid is given<br>(B) $\mu_o nI$                                       | (C) $\mu_{o} SI$                                                                                          | (D) $\mu_0$ $n\ell$                                                       |
| (5)                                    | The value of permeabili                                                                                          | ty of free space ' $\mu_o$ ' is:                                                    | (A) $4\pi \times 10^{-7}$                                                                                 | Wb A <sup>-1</sup> m <sup>-1</sup>                                        |
|                                        | (B) $4\pi \times 10^7 Wb A^{-1}m^{-1}$                                                                           | (C) $4\pi \times 10^{-7} Wb$                                                        | (A) $4\pi \times 10^{-7}$<br>$Am^{-1}$ (D) $4\pi \times 10^{7}$ Wb Ai                                     | n <sup>-1</sup>                                                           |
| (6)                                    | The Lenz's Law is also a (A) Law of Conservation (C) Law of Conservation                                         | of Momentum                                                                         | (B) Law of Conservation of<br>(D) Faraday Law of Electro                                                  | Charge                                                                    |
| (7)                                    | Electric current produces (A) Farnday                                                                            | magnetic field was discov                                                           | vered by:<br>(C) Oersted                                                                                  | (D) Lenz                                                                  |
| (8)                                    | The impedance of R - L                                                                                           | series circuitis                                                                    |                                                                                                           |                                                                           |
|                                        | (A) $Z = \sqrt{R^2 + X_L^2}$                                                                                     | $E = \sqrt{R^2 + X_C^2}$                                                            | (C) $\mathcal{Z} = \sqrt{R + X_L}$<br>circuit of frequency 1000kHz                                        | (D) $Z = R$                                                               |
| (4)                                    | The capacitance required an inductor of SmH is:                                                                  |                                                                                     |                                                                                                           |                                                                           |
|                                        | (A) $5.09 pF$                                                                                                    | (B) 5.09 μF                                                                         | 700                                                                                                       | (D) 50.9 pF                                                               |
| (10)                                   | (B) Non-magnetic Subst                                                                                           |                                                                                     | I they break are called: (A) ubstances (D) Ductile Su                                                     | Brittle Substances<br>bstances                                            |
| (11)                                   | The size of base of transi                                                                                       | stor is of the order of:  (B) $10^{-5} m$                                           | (C) 10 <sup>-4</sup> m                                                                                    | (D) $10^{-3} m$                                                           |
| (12)                                   | (A).10 <sup>-6</sup> m.                                                                                          | with inputs A and B ha                                                              |                                                                                                           | (D) 10 m                                                                  |
| (12)                                   | (A) A is O                                                                                                       | (B) B is O (C) B                                                                    | both $A$ and $B$ are $O$ (D) B                                                                            | oth $A$ and $B$ are 1                                                     |
| (13)                                   | Compton wavelength is:                                                                                           | he                                                                                  | h                                                                                                         | hc                                                                        |
|                                        | $(\Lambda) \frac{h}{m_0 c^2}$                                                                                    | (B) $\frac{hc}{m_o}$                                                                | (C) $\frac{h}{m_0 c}$                                                                                     | (D) $\frac{hc}{m_o\lambda}$                                               |
| (14)                                   | The energy required for p<br>(A) 0.51 MeV                                                                        | pair production is:<br>(B) 1.02 MeV                                                 | (C) 2.04 MeV                                                                                              | (D) 3.06 MeV                                                              |
| (15)                                   | The relation for Balmer                                                                                          |                                                                                     |                                                                                                           | 1 (1 1)                                                                   |
|                                        | $(A)\frac{1}{\lambda} = RH\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$                                            | (B) $\frac{1}{\lambda} = R_{II} \left( \frac{1}{3^2} - \frac{1}{n^2} \right)$       | $\int (C) \frac{1}{\lambda} = R_H \left( \frac{1}{4^2} - \frac{1}{n^2} \right)$                           | $(D)\frac{1}{\lambda} = R_H \left( \frac{1}{5^2} - \frac{1}{n^2} \right)$ |
| (16)                                   | 1 fem is equal to:                                                                                               | (B) 0.01Sv                                                                          | (C) 10.Sv                                                                                                 | (D) 100.Sv                                                                |
| (17)                                   | Subatomic particles are d (A) Six groups                                                                         | livided into:<br>(B) Five groups                                                    | (C) Four groups                                                                                           | (D) Three groups                                                          |
|                                        |                                                                                                                  |                                                                                     |                                                                                                           | 61 187 939                                                                |

# Multan Board-2019 Roll No:

# INTERMEDIATE PART-II (12th CLASS)

PHYSICS PAPER-II (NEW SCHEME)

GROUP-I

TIME ALLOWED: 2.40 Hours

SUBJECTIVE

**MAXIMUM MARKS: 68** 

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

### **SECTION-I**



- 2. Attempt any eight parts.
  - (i) Suppose that you follow an electric field line due to a positive point charge. Do electric field and the potential increase or decrease?
  - (ii) Is it true that Guass's law states that the total number of lines of forces crossing any closed surface in the outward direction is proportional to the net positive charge enclosed within surface?
  - (iii) What are the factors upon which the electric flux depend?
  - (iv) Differentiate between electrical potential difference and electric potential at a point.
  - (v) How can a current loop be used to determine the presence of a magnetic field in a given region of space?
  - (vi) Why does the picture on a TV screen become distorted when a magnet is brought near the screen?
  - (vii) What is galvanometer? On which principle it works?
  - (viii) What is Magnetic Flux Density? Also write its unit.
  - (ix) How would you position a flat loop of wire in a changing magnetic field so that there is no emf induced in the loop?
  - (x) A suspended magnet is Oscillating freely in a horizontal plane. The Oscillations are strongly damped when a metal plate is placed under the magnet. Explain why does this occur?
  - (xi) What is Transformer? What is its working principle?
  - (xii) What is back emf effect in motors?

### 3. Aftempt any eight parts.

 $8 \times 2 = 16$ 

- (i) Why does the resistance of a conductor rise with temperature?
- (ii) Is the filament resistance lower or higher in a 500W, 220V light bulb than in a 100W, 220V bulb?
- (iii) Slate Kirchhoff's first rule and write its mathematical formula.
- (iv) How many times per second will an incandescent lamp reach maximum brilliance when connected to a 50 Hz source?
- (v) How does doubling the frequency affect the reactance of (a) an inductor (b) a capacitor
- (vi) Define impedance and write the impedance expression for R L series circuits.
- (vii) Differentiate between Ductile and Brittle substances.
- (viii) How would you obtain n-type and p-type material from pure Silicon?
- (ix) Define Modulus of clasticity. Show that the units of Modulus clasticity and stress are the same.
- (x) Write two characteristics of Op-amplifier.
- (xi) How does the motion of an electron in a n-type substance differ from the motion of holes in a p-type substance?
- (xii) What is the effect forward and reverse biasing of a diode on the width of depletion region?

#### Attempt any six parts.

- (i) A particle of mass 5.0 mg moves with speed of  $8.0 \, ms^{-1}$ . Calculate de Broglie wavelength.
- (ii) Why don't we observe a Compton effect with visible light?
- (iii) Which has the lower energy quanta? Radiowaves or X-rays.
- (iv) Define Spectroscopy.
- (v) What are the advantages of Laser over ordinary light?

(2)

- (vi) Write the names of four basic forces of nature.
- (vii) What information is revealed by the length and shape of the tracks of an incident particle in Wilson Cloud Chamber?
- (viii) What do you understand by "background radiation"? Give two sources of this radiation.
- (ix) If a nucleus has a half-life of 1(one) year, does this mean that it will be completely decayed after 2 years?



# SECTION-II

| NOTE: - | Attempt any three questions. 3 × 8 =                                                                                                            | 24 |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5.(a)   | Define Electric Potential. Derive the relation of electric potential at a point due to point charge.                                            | 5  |
| (b)     | A platinum wire has resistance of 10 ohm at 0°C and 20 ohm at 273°C. Find the value of temperature coefficient of resistance of platinum.       | 3  |
| 6.(a)   | Define Solenoid. Derive an expression for the energy stored per unit volume inside the solenoid.                                                | 5  |
| (b)     | A power line 10.0m high carries a current 200A. Find the magnetic field of the wire at the ground.                                              | 3  |
| 7.(a)   | What are Electromagnetic Waves? Discuss principle of generation, transmission and reception of electromagnetic waves.                           | 5  |
| (b)     | The current flowing into the base of a transistor is $100  \mu A$ . Find its collector current $I_c$ ,                                          |    |
|         | its emitter current $I_{\varepsilon}$ and the ratio $I_{\varepsilon}/I_{\varepsilon}$ if the value of current gain $\beta$ is 100.              | 3  |
| 8.(a)   | What is meant by Strain Energy? How can it be determined from the force-extension graph?                                                        | 5  |
| (b)     | What is the maximum wavelength of the two photons produced when a positron annihilates an electron? The rest mass energy of each is $0.51MeV$ . | 3  |
| 9.(a)   | What are building blocks of matter? Explain.                                                                                                    | 5  |
| (b)     | What is the energy in $eV$ of quanta of wavelength of $\lambda = 500  nm$ .                                                                     | 3  |

19-2019(A)-24000 (MULTAN)

### 2019 (A)

INTERMEDIATE PART-II (12th CLASS)

PHYSICS PAPER-II (NEW SCHEME)

**GROUP-II** 

TIME ALLOWED: 2.40 Hours

SUBJECTIVE

MAXIMUM MARKS: 68

NOTE: - Write same question number and its part number on answer book, as given in the question paper.



- 2. Attempt any eight parts.
  - (i) Write the names of main parts of xerography and draw its diagram.
  - (ii) Define electric flux and write its formula. Also give its SI unit.
  - (iii) Suppose that you follow an electric field line due to a positive point charge. Do electric field and the potential increase or decrease?
  - (iv) Is E necessarily zero inside a charged rubber balloon if balloon is spherical? Assume that charge is distributed uniformly over the surface.
  - A solenoid 15 cm long has 300 turns of wire. A current of 5.0 A flows through it. What is the (v) magnitude of magnetic field inside the solenoid?
  - (vi) Differentiate between sensitive and dead beat galvanometer. Also define sensitivity of galvanometer.
  - (vii) Suppose that a charge q is moving in a uniform magnetic field with a velocity V. Why is there no work done by the magnetic force that acts on the charge?
  - (viii) A loop of wire is suspended between the poles of a magnet with its plane parallel to the pole faces. What happens if a direct current is got through the coil? What happens if an alternating current is used instead?
  - (ix) Write any two methods in which the current is induced in a coil.
  - Why me motor is overloaded? Give the reason. (x)
  - When an electric motor, such as an electric drill, is being used, does it also act as a generator? (xi) If so what is the consequence of this?
  - Can a D.C. motor be turned into a D.C generator? What changes are required to be done? (xii)
- 3. Attempt any eight purts.

 $8 \times 2 = 16$ 

- (i) Describe a circuit which will give a continuously varying potential.
- (ii) What are the difficulties in testing whether the filament of a lighted bulb obey's Ohm's law?
- Write four sources of Current. (iii)
- (iv) What is meant by A.M and F.M.?
- (v) How many times per second will an incandescent lamp reach maximum brilliance when connected to a 50 Hz source?
- (vi) What do you mean by root mean square value of voltage and write its formula?
- (vii) Distinguish between soft and hard magnetic materials with examples.
- (viii) Which is more elastic, steel or rubber? Why?
- (ix) Differentiate between ductile and brittle substances.
- (x) What is the net charge on a n-type or a p-type substance?
- (xi) What is the effect of forward and reverse biasing of a diode on the width of the depletion region?
- (xii) What is Potential Barrier? What is the value of potential barrier of Silicon and Germanium?
- 4. Attempt any six parts.

- (i) A beam of red light and a beam of blue light have exactly the same energy. Which beam contains the greater number of photons?
- (ii) We do not notice the de Broglie wavelength for a pitched cricket ball? Explain why?
- (iii) What are the measurements on which two observers in relative motion will always agree upon?

# Multan Board-2019 (2)

- (iv) Can X rays be reflected, refracted, diffracted and polarized just like any other waves? Explain.
- (v) Explain why laser action can not occur without population inversion between atomic levels?
- (vi) What do you understand by "background radiation"? State two sources of this radiation.
- (vii) How can radioactivity help in the treatment of cancer?
- (ix) Define absorbed dose(D) and write its SI unit.

# SECTION-II Pakcity.org

NOTE: - Attempt any three questions.

5.(a) What is Potentiometer? How it is used as potential divider and to measure an emf of a cell?

 $3 \times 8 = 24$ 1 + 2 + 2

(b) A capacitor has a capacitance of  $2.5 \times 10^{-8} F$ . In the charging process, electrons are removed from one plate and placed on the other one. When the potential difference between the plates is 450V, how many electrons have been transferred?

$$(e = 1.6 \times 10^{-19}C)$$

3

6.(a) Describe the method to determine the  $\frac{e}{m}$  of an electron.

5

(b) A square coil of side 16 cm has 200 turns and rotates in a uniform magnetic field of magnitude 0.05T. If the peak emf is 12V. What is the angular velocity of the coil?

3

7.(a) Explain the RLC parallel resonance circuit. Determine the value of resonant frequency and write down its properties.

1 + 2 + 2

(b) Calculate the gain of non-inverting amplifier shown in fig.

3



- 8.(a) What is energy band theory? How behaviours of electrical conductors, insulators and semi-conductors can be explained on the basis of energy band theory.
  - respect to a
  - (b) A bar 1.0 m in length and located along x-axis moves with a speed of 0.75 c with respect to a stationary observer. What is the length of bar as measured by the stationary observer.
- 9.(a) State Bolir's model of Hydrogen atom. Derive relation for quantized radii.
- 5

5

(b) A sheet of lead 5.0 mm thick reduces the intensity of a beam of y-rays by a factor 0.4.
 Find half value thickness of lead sheet which will reduce the intensity to half of its initial value.

INTERMEDIATE PART-II (12th CLASS)

PHYSICS PAPER-II (NEW SCHEME)

GROUP-I

TIME ALLOWED: 2.40 Hours

SUBJECTIVE

MAXIMUM MARKS: 68

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

# <u>section-i</u> - ∰ pakcity.org

Attempt any eight parts.

 $8 \times 2 = 16$ 

- (i) Do electrons tend to go to region of high potential or of low potential? Explain.
- (ii) The potential is constant throughout a given region of space. Is the electrical field zero or non-zero in this region? Explain.
- (iii) Define charging and discharging of a capacitor.
- (iv) How sharks locate their prey? Explain briefly.
- (v) Can a charged particle move through a magnetic field without experiencing any magnetic force? If so then how?
- (vi) Why the resistance of an ammeter should be very low?
- (vii) How can you use a magnetic field to separate isotopes of chemical element? Explain.
- (viii) How might a loop of wire carrying a current be used as a compass?

  How could such a compass distinguish between north and south pole?
- (ix) Does the induced emf always act to decrease the magnetic flux through a circuit? Explain.
- (x) Can a transformer be used with D.C? Explain
- (xi) Show that  $\mathcal{E}$  and  $\Delta \phi$  have the same units.
- (xii) Can an emf be produced in a D.C. word? Would it be possible to use motor as a generator or source? Explain.

3. Attempt any eight parts.

 $8 \times 2 = 16$ 

- (i) What is the resistance of a Carbon resistor if its first band is red, second band is green, third band is orange and fourth band is gold?
- (ii) Write name of any two effects of current.
- (iii) Do bends in a wire affect its electrical resistance? Explain.
- (iv) What is Impedance? Write its SI unit.
- (v) At what frequency, will an inductor of inductance 1.0 H have a reactance of  $500\Omega$ ?
- (vi) How many times per second, will an incandescent lamp reach maximum brilliance when connected to a 50 Hz source?
- (vii) Define Elasticity and Plasticity.
- (viii) Distinguish between Crystalline and Amorphous solids and give an example for each.
- (ix) What is meant by Diamagnetic Substances? Give and example.
- (x) Write the truth table of NAND gate.
- (xi) Define open loop gain of an operational amplifier.
- (xii) Why ordinary Silicon diodes do not emit light? Explain.

4. Attempt any six parts.

- (i) Define work function and threshold frequency.
- (ii) Why don't we observe a Compton effect with visible light?
- (iii) When does light behave as a wave? When does it behave as a particle?
- (iv) Write down two properties and two uses of x-rays.
- (v) What do we mean, when we say that the atom is excited?

| (vi)               | Differentiate between mass-defect and binding energy.                                                                                                                                                                 |                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| (vii               | Show that $1 a.m.u = 931 MeV$                                                                                                                                                                                         |                 |
| (vii               | i) What factors make a fusion reaction difficult to achieve?                                                                                                                                                          |                 |
| (ix)               | How can radio activity help in the treatment of cancer?                                                                                                                                                               |                 |
|                    | pakcity.org SECTION-II                                                                                                                                                                                                |                 |
| <b>NOTE:</b> 5.(a) | <ul> <li>Attempt any three questions.</li> <li>What is Rheostat? How can it be used as a variable resistor as well as potential divider?</li> </ul>                                                                   | 8 = 24<br>1 + 4 |
| (b)                | Find the electric field strength required to hold suspended a particle of mass $1.0 \times 10^{-6}$ kg and charge $1.0 \mu C$ between two plates 10.0 cm apart.                                                       | 3               |
| 6.(a)              | Define Electromagnetic Induction. Derive the expression for motional e.m.f.                                                                                                                                           | 1 + 4           |
| (b)                | What shunt resistance must be connected across a galvanometer of $50.0\Omega$ resistance which gives full scale deflection with $2.0\text{mA}$ current, so as to convert it into an ammeter of range $10.0\text{A}$ ? | 3               |
| 7.(a)              | Describe an R – L – C series circuit. Draw its impedance diagram and derive expression for its resonance frequency. Also write down its two properties.  1 + 1 +                                                      | -2 +1           |
| (b)                | Calculate the gain of non-inverting amplifier shown in figure.  40K                                                                                                                                                   | 3               |
|                    |                                                                                                                                                                                                                       |                 |
| 8.(a)              | What is assumption of de-Broglie wavelength? How is it verified experimentally by Daviss and Germer experiment?                                                                                                       | on<br>2+3       |
| (b)                | A 1.25 cm diameter cylinder is subjected to a load of 2500 kg.  Calculate the stress on the bar in mega pascals.                                                                                                      | 3               |
| 9.(a)              | What are isotopes and how isotopes are separated by mass spectrograph? Explain.                                                                                                                                       | 1 + 4           |
| (b)                | Calculate the longest wavelength of radiation for the Paschen series.                                                                                                                                                 | 3               |
|                    | Please visit for more data at: www.pakcity.org                                                                                                                                                                        |                 |

Please visit for more data at: www.pakcity.org

(A) 1 mSv per year

2018 (A)

Roll No:

# INTERMEDIATE PART-II (12th CLASS)

HYSICS PAPER-II (NEW SCHEME)

**GROUP-II** 

TIME ALLOWED: 2.40 Hours

**SUBJECTIVE** 

**MAXIMUM MARKS: 68** 

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I 🌉 pakcity.org

Attempt any eight parts.

 $8 \times 2 = 16$ 

- (i) How can you identify that which plate of a capacitor is negatively charged?
- (ii) Electric lines of force never cross. Why?
- (iii) Prove that  $1eV = 1.6 \times 10^{-19} J$
- (iv) Explain briefly the role of deflection plates in inkjet printers.
- (v) Why does the picture on a T.V screen become distorted when a magnet is brought near it?
- (vi) How can you use a magnetic field to separate isotopes of chemical element?
- (vii) Explain briefly the working of electron gun in CRO.
- (viii) Differentiate between magnetic flux and flux density.
- (ix) Does the induced emf always act to decrease the magnetic flux through a circuit? Explain.
- (x) Is it possible to change both the area of the loop and the magnetic field passing through the loop and still not have an induced emf in the loop? Explain
- (xi) A glass rod of length L' is moving perpendicular to the applied magnetic field B with velocity V. Explain briefly about the inqueed emf in it.
- (xii) Define self inductance. Name any two factors upon which it depends.

3. Attempt any eight parts.

 $8 \times 2 = 16$ 

- (i) Is the filament resistance lower or higher in a 500 W, 220 V light bulb than in a 100W, 220 V bulb?
- (ii) What is Wheatstone bridge? How can it be used to determine an unknown resistance?
- (iii) What is Thermistor? Write its two uses.
- (iv) What is the principle of Metal Detector? Write two uses of metal detector.
- (v) How can you establish the formula for power in A.C circuits? Explain the role of power factor in it.
- (vi) How does doubling of frequency affect the reactance of (a) An inductor (b) A capacitor?
- (vii) Define Polymerization Reaction. Write two examples of Polymeric solids.
- (viii) Define Brittle and Ductile Substances. Give two examples in each case.
- (ix) Why is it impossible to have an isolated north or south pole of magnet? Explain.
- (x) What is the role of potential barrier in a diode? How is it formed in a diode?
- (xi) Describe by a circuit diagram, how current flows in a n-p-n transistor?
- (xii) How is the XOR gate so called? Draw its symbol.

Attempt any six parts.

- Differentiate between Photoelectric Effect and Compton Effect.
- (ii) What are the measurements on which two observers in relative motion will always agree upon? Explain
- (iii) Will bright light eject more electrons from a metal surface than dimmer light of the same colour?
- (iv) Write any two Postulates of Bohr's model of the Hydrogen start
- (v) What do we mean when it for more data at: www.pakcity.org

- A particle which produces more ionization is less penetrating. Explain. (vi) (vii) Why are heavy Nuclei Unstable? Explain. (viii) What is meant by Absorbed Dose? Write its unit. (ix) Define Hadrons and Leptons. 🤏 pakcity.org 🎥  $3 \times 8 = 24$ NOTE: - Attempt any three questions. Define Resistivity. How does it depend upon temperature? Also define temperature 5.(a) 1+3+1=5coefficient of resistance. Determine the electric field at the position  $\vec{r} = (4\hat{i} + 3\hat{j}) m$  caused by a point charge (b)  $q = 5.0 \times 10^{-6} C$  placed at origin. 3 Derive the relation for energy stored in an inductor. 5 6.(a)A power line 10.0 m high carries a current 200 A. Find the magnetic field of (b) 3 the wire at the ground. What is Transistor? Describe the use of transistor as an amplifier. 7.(a) Also calculate its voltage gain. 1+2+2 What is the resonant frequency of a circuit which includes a coil of inductance 2.5 H (b) 3 and a capacitance of  $40\mu F$ ? Define Positron. How Davison and Germer experiment confirms the wave nature of particles? 1+4 8.(a) A 1.25 cm diameter cylinder is subjected to a load of 2500 Kg. (b) Calculate the stress on the bar in mega pascals. 3 1+1+3 Define Spontaneous and Stimulated emissions. Explain the Laser action in detail. 9.(a)
  - (b) A 75 kg person receives a whole body radiation dose of 24 m rad, delivered by α particles for which RBE factor is 12. Calculate (a) The absorbed energy in Joules and
    (b) The acquired at the contract of t
    - (b) The equivalent dose in rem.

3