(C) Stationary waves

Roll No. of Candidate: Gujranwala Board-2024

PHYS	SICS	Intermediate Part-II ,	Class	12 th	(1 st A 424- IV)	Pap	er II	Group – I
Time	: 20 Minutes	OBJECTIVE	••••	Code:	8477			Marks: 17
Note:	fill that circle in front of the circles will result in zero i	each objective type question at question number. Use manark in that question. g circuit is called electrical (B) R.C circuit	rker o	or pen t llator?	o fill the circles. C	Cuttin	ch you t g or filli L.C cir	ng two or more
2.	A charged particle ente (A) remains constant (C) decreases	ers in a strong magnetic fie	(B)	increa		creas	eş-	
3.	Turn ratio of a transfor coil will be (A) 440 V	mer is 50. If 220 volt A.C (B) 4.4 V		plied to 220 V			age in th	
4.	The physical quantity r (A) energy	elated to photon, that does (B) speed		change frequ		terin ₍	g is wavele	ength
5.	In photoelectric effect, (A) wavelength of lig (C) threshold frequen		(B)	intens	s upøn sity of light – t function	g p	akcit	y.org 🐉
6.	Glass is also known as (A) solid	(B) liquid	(C)	solid	liquid	(D)	gas	
7.	(A) V/A	ensity other than NC ⁻¹ is (B) V/m		V/C	200	(D)	N/V	
8.	The unit of \overrightarrow{E} is NC ⁻¹ at (A) ms ⁻²	and that of \vec{B} is $NA^{-l}m^{-l}$, (B) ms		he unit	of E/B is	(D)	ms ⁻¹	
9.	The binding energy per (A) Helium	r nucleon is maximum for (B) Iron	(C)	Polon	ium	(D)	Radiun	n
10.	For holography, we use (A) r – rays	e a beam of (B) x - rays	(C)	β – ra	ys	(D)	Laser	
11.	(A) its forward biasin(C) amount of forwar	dcurrent	(D)	type	everse biasing of semi-conducto			sed •
12.	When current flowing (A) half	through an inductor is dou (B) four times	ibled, (C)	the en	ergy stored in it bourth	(D)	nes double	
13.	The half-life of Radon (A) 3.8 days	gas is (B) 38 days		3.8 m		(D)	38 mo	nths
14.	An ideal voltmeter wor (A) zero resistance	(B) high resistance			te resistance			sistance
15.	A parallel plate capacing plates, then capacitance (A) C	tor with oil having $\varepsilon_r = 21$ e of capacitor becomes (B) $C/2$		capaci C/√2		is re		petween the
16.	The voltage gain of an (A) 2000	n amplifier having $r_{ie} = 1$ (B) 1000	Ω,β: (C)	=100 a 500	nd $R_c = 20 \Omega$ is	(D)	5	
17.	When we accelerate th (A) Mechanical wave	e charge, which type of wes	aves (B)	Trave	duced? elling waves	og 🦱		

(D) Electromagnetic waves

Intermediate Part-II, Class 12th (1st A 424) Paper: II Group - I

Time: 2:40 Hours SUBJECTIVE Marks: 68

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION-I

2. Write short answers to any EIGHT questions.

pakcity.org (2 x 8 = 16)

- i. Define electric field intensity. Also give its mathematical form.
- ii. Define electron volt? Relate electron volt with Joule.
- iii. The time constant of a series RC circuit is, t=RC. Verify that an Ohm times Farad is equal to Second.
- iv. Why the resistance of an ammeter should be very low?
- v. Electric lines of force never cross. Why?
- vi. How can you use a magnetic field to separate isotopes of chemical elements?
- vii. What do you mean by lamp-scale arrangement?
- viii. What is Lorentz force?

PHYSICS

- ix. A particle which produces more ionization is less penetrating. Why?
- x. How can radioactivity help in the treatment of Cancer?
- xi. Differentiate between nuclear fission and nuclear fusion.
- xii. Define isotopes. Write down isotopes of Hydrogen atom.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 - 16)$

- i. Describe a circuit which will give a continuously varying potential.
- ii. What is the difference between the emf and potential difference?
- iii. What is the temperature co-efficient of resistance?
- iv. How the reception of a particular radio station is selected on-your radio set?
- v. What is the principle of metal detector?
- vi. Why power loss in a pure capacitance circuit is zero?
- vii. What is meant by hysteres is loss? How it is used in the construction of a transformer?
- viii. What is meant by Retantivity and Coercivity?
- ix. How can you identify tumors and inflamed tissues using 'MRI'?
- x. Why is the base current in a transistor very small?
- xi. Explain OP-AMP as a comparator.
- xii. What is the voltage gain of transistor?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Name the factors upon which the self-inductance depends.
- ii. Write down the methods to improve the efficiency of a transformer.
- iii. Can a D.C. motor be turned into a D.C. generator? What changes are required to be done?

-2-

- iv. Define work function and threshold frequency.
- v. Calculate the value of Compton wavelength of electron.
- vi. We do not notice a de-Broglie wavelength for a pitched cricket ball. Explain why?
- vii. When does light behave as a wave and when does it behave as a particle?
- viii. Describe the types of spectra and give its example.
- ix. What are advantages of laser over ordinary light?

SECTION - II

	SECTION - II	
5. (a)	How did Millikan calculate the charge on an electron? Explain	(5)
(b)	A rectangular bar of iron is 2.0cm by 2.0cm in cross section and 40cm long. Calculate its resistance if the resistivity of iron is 11×10^{-8} Ω m	(3)
6. (a)	Define galvanometer. Explain its principle, construction and working.	(5)
(b)	The back emf in a motor is 120V when the motor is turning at 1680 rev per min. What is the back emf when the motor turns 3360 rev per min?	(3)
7. (a)	Explain Reverse Biased p-p junction and describe how depletion region increases due to Reverse Biased of p-n junction.	(5)
(b)	Find the value of the current flowing through a capacitor of capacitance 0.5µF, when connected to a source of 150V at 50Hz.	(3)
8. (a)	State and explain photoelectric effect. Write down its experimental results.	(5)
(b)	The length of a steel wire is 1m and its cross-sectional area is $0.03 \times 10^{-4} \text{m}^2$. Calculate the work done in stretching the wire when a force of 100N is applied within the elastic region. Young's modulus of steel is $3.0 \times 10^{11} \text{Nm}^{-2}$.	(3)
9. (a)	Derive the expression for Quantized Energy of Hydrogen atom on the basis of Bohr's atomic model.	(5)
(b)	How much energy is absorbed by a man of mass 80Kg who receives a lethal whole body dose of 400 rem in the form of low energy neutrons for which RBE factor is 10?	(3)

315-1stA 424-40000

	Gujranwala Board-2024					
J	SICS I	ntermediate Part-II , C	Class 12 th (1 st A 424 - III) Paper: II Group - II		
	: 20 Minutes		Code: 8476	Marks: 17		
Note:		each objective type question t question number. Use ma	n as A B C and D. The cho	oice which you think is correct, Cutting or filling two or more		
1. 1.	Using spectroscopy the (A) Earth	helium was identified in (B) Sun	the (C) Stars	(D) all of these		
2.	The induced emf is prin (A) internal energy	narily produced at the cos (B) mechanical energy	st of (C) chemical energy	(D) electrical energy		
3.	(A) 2.5Ω	uctor at 50Hz is 10Ω . Its (B) 5 Ω	(C) 10Ω	(D) 20 Ω		
4.	Threshold wavelength f metal having work func (A) 2λ		ection 40 is λ_0 . What is the (C) $\lambda/2$	e threshold wavelength for (D) λ/4		
5.	(A) $2 \times 10^{-6} \text{ V}$	(B) $8 \times 10^{-6} \text{ V}$	ent changes from 5A to 3A (C) 2V	(D) 8V		
6.	charge density?		equal quantity of charge. (C) both get equal surfa	oresist No.		
7.	The voltage gain of an a (A) 2000	implifier having $r_{ie} = 1 \Omega$ (B) 1000	β = 100, $Rc = 20 Ω$ is (C) 500	(D) 5		
8.	If the length of conductor (A) increased four time (C) become one-half	S	s sectional area is halved, i (B) become one fourth (D) remained un-chang	■ a		
9.	The capacity of condens discharging it fully will (A) 0.02 J	ser is 4×10^{-6} Farad and	spotential is 100 Volt. Th	e energy released on (D) 0.05 J		
10.	Circulation of blood car (A) Sodium – 24	be studied by (B) Strontium – 90	(C) Carbon – 14	(D) Iodine – 131		
11.	If a wire is stretched to (A) zero	double of its length then s (B) 1	strain will be (C) 1/2	(D) double		
12.	Unit of decay constant (A) ms	(B) m^{-1}	(C) m	(D) s ⁻¹		
13.	The term transistor stand (A) transfer of resistand (C) transfer of current	us 101	(B) transfer of voltage (D) all of these			
14.	Force on a current carry (A) IL Sinθ	ing conductor per unit ler (B) ILB	ngth is given by (C) IB	(D) IB Sinθ ●		
15.	For a current carrying so (A) no unit	olenoid the term "n" has t (B) m	unit as (C) m ⁻¹	(D) m ⁻²		
16.	When applied potential	difference is increased; ca	apacitance of parallel plate	capacitor		

16. (D) reduces to zero (B) decreases (C) remains same (A) increases In photoelectric effect the intensity of light made twice than initial value. The maximum K.E of

17. photoelectron becomes (D) four times (C) half

(A) same

(B) double

Please visit for more data at: www.pakcity.org

Gujranwala Board-2024

ACS

Intermediate Part-II, Class 12th (1stA 424)

Paper: II

pakcity.org

Group - II

me: 2:40 Hours

SUBJECTIVE

Marks: 68

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION-I

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. Suppose you follow an electric field line due to a positive point charge. Do electric field and the potential increase or decrease.
- ii. Describe the force or forces on a positive point charge when placed between parallel plates.
 - a) with similar and equal charges
- b) with opposite and equal charges
- iii. State Gauss's Law. Write down its mathematical form.
- iv. Define dielectric constant. Give its mathematical form.
- v. Is it possible to orient a current loop in a uniform magnetic field such that the loop will not tend to rotate? Explain.
- vi. Why the voltmeter should have a very high resistance.
- vii. A sensitive galvanometer cannot be stable. Why?
- viii. What should be the orientation of current carrying coil in a magnetic field so that torque acting on it is
 - a) maximum

- b) minimum
- ix. If a nucleus has a half life of 1 year, does this mean that it will be completely decayed after 2 years? Explain.
- x. What fraction of a radioactive sample decays after two half lives have clapsed?
- xi. What are baryons and mesons? How are they formed?
- xii. Describe principle and working of Mass Spectrograph.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. Describe a circuit which will give continuously varying potential.
- ii. Explain why the terminal potential difference of abattery decreases when the current drawn from it is increased.
- iii. Distinguish between resistance and resistivity. Give units.
- iv. How does doubling the frequency effect the resistance of an (a) Inductor (b) Capacitor
- v. What is meant by A.M and FM?
- vi. Give four characteristics of series resonance circuit.
- vii. What are Para and ferromagnetic substances? Give example.
- viii. What is meant by Hysteresis loss? How is it used in the construction of a transformer?
- ix. What are applications of Superconductors?
- x. Why ordinary silicon diodes do not emit light?
- xi. Why a photodiode is operated in reverse biased state?
- xii. What are the characteristics of operation amplifier?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Does the induced emf always act to decrease the magnetic flux through a circuit?
- ii. How would you position a flat loop of wire in a changing magnetic field so that there is no emf induced in the loop?
- iii. How the "Eddy Currents" are produced? What are their effects on the efficiency of a transformer?
- iv. As a solid is heated and begins to glow, why does it first appear red?

-2-

- v. Can pair production take place in vacuum? Explain.
- vi. Find the relativistic mass of an object moving with speed 0.8C, where 'C' is the speed of light.
- vii. Write down at least four applications of a photocell.
- viii. What are the advantages of laser over ordinary light?
- ix. Write down any two postulates of Bohr's theory of Hydrogen atom.

14.	Write down any two posteriors of Bom 5 theory of Figure Bon and the	
	SECTION – II	
5. (a)	Find the charge on an electron by Millikan's method.	(5)
(b)	A rectangular bar of iron is 2.0cm by 2.0cm in cross-section and 40cm long. Calculate the resistance, if the resistivity of iron is 11×10^{-8} Ω m	(3)
6. (a)	Discuss the principle, construction and working of a Galvanometer.	(5)
(b)	A square coil of side 16cm has 200 turns and rotates in a uniform magnetic field of magnitude 0.05T. If the peak emf is 12V, what is the angular velocity of the coil?	(3)
7. (a)	Discuss the flow of A.C. through a capacitor. Explain phase relationship between current and voltage graphically and also vectorially.	(5)
(b)	The current flowing into the base of a transistor is 100µÅ. Find its collector current I_C , its emitter current I_E and the ratio I_C/I_E if the value of current gain β is 100.	(3)
8. (a)	Define strain energy. Derive its relation for an elastically deformed wire in terms of modulus of elasticity.	(5)
(b)	What is the de-Broglie wavelength of an electron whose Kinetic Energy is 120eV?	(3)
9. (a)	Explain the phenomenon of nuclear transmutation or radioactive decay.	(5)
(b)	The wavelength of K x-ray from copper is 1.377x10 ⁻¹⁰ m. What is the energy difference between the two levels from which transition results?	(3)
	no coitu ora	

316-1stA 424-30000

D-11	No of Condidate :			
PHY	No. of Candidate:	Intermediate Part-II .	Class 12th (1stA 423 - II)	Paper II Group - I
	e: 20 Minutes		Code: 8473	Marks: 17
Note:	You have four choices fo fill that circle in front of t circles will result in zero	hat question number. Use mark in that question.	on as A, B, C and D. The choice arker or pen to fill the circles. C	which you think is correc
2.	(C) any amount of en The circuit used for si (A) resistor	noothing the pulsating volt	(D) infinite energy tage is called (C) rectifier	(D) grid
3.	In reaction ${}_{1}^{2}H + {}_{1}^{3}H -$ (A) proton		(C) neutron	(D) α particle
4.	(A) several mega ohn		(C) infinite	(D) few ohms
5.	(A) β-rays	are not deflected by magne (B) α-rays	(C) γ-rays	(D) cathode rays
6.	(A) holes	(B) protons	ductor causes the production of (C) electrons	(D) positron
7.	The materialization of (A) Photoelectric effet annihilation	fenergy takes place in the pect (B) Compton's ef	fect (C) Pair production	(D) Pair
8.	Work done by magnet (A) FdCosθ	(B) positive	(C) negative	(D) zero
9.	The factor $\frac{h}{m_e c^2}$ has to (A) second square	he unit of (B) second	EDUCATION (C) J.S.	(D) JS ⁻¹
10.			noid, the magnetic field will (C) not change	(D) be uniform
11.	At high frequency, the	current in pure inductor is (B) high	pakcity or g (C) moderate	(D) zero
12.	Semiconductor diode (A) super conductor	is an example of (B) ohmic device	(C) non ohmic devi	(D) ferromagnetic
13.	If the frequency of A.((A) half	C. is doubled then capacitiv (B) two times	(C) four times	(D) one fourth
14.	$\frac{\Delta v}{\Delta r}$ has the unit of	7 0)		
15.		(B) magnetic flux romagnetic in generator are	called	(D) electric field
16.	(A) primary coils Gaussian surface shou		(C) secondary coils	(D) inductors
10	(A) spherical	(B) cubical	(C) circular	(D) close
17.	The expression for end (A) $\frac{1}{2}L^2I$	ergy stored in an inductor is (B) L ² I	$(C) \frac{1}{2}LI^2$	(D) LI ²

314-(II)-1st A 423-34000

PHYSICS Intermediate Part-II, Class 12th (1st A 423) Paper: II Group - I

Time: 2:40 Hours SUBJECTIVE Marks: 68

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION - I

pakcity.org &

2. Write short answers to any EIGHT questions.

i. What is meant by time constant?

- iii. How can you identify that which plate of a capacitor is positively charged?
- iv. If a point charge 'q' of mass 'm' is released in a non-uniform electric field with field pointing in the same direction, will it make a rectilinear motion?
- v. State the Lenz's law and write its expression.
- vi. How can a current loop be used to determine the presence of a magnetic field in a given region of space?
- vii. What should be the orientation of a current carrying coil in a magnetic field so that the torque acting upon the coil is: (i) maximum (ii) minimum
- viii. Is it possible to orient a current loop in a uniform magnetic field such that the loop will not tend to rotate? Explain.
- ix. Describe a brief account of interaction of various types of radiations with matter.
- x. How can radioactivity help in the treatment of cancer?
- xi. Write down nuclear reactions occur in the sun.
- xii. What is meant by half-life, also write down the relation, which exists between decay constant and half-life?

3. Write short answers to any EIGHT questions. ()

 $(2 \times 8 = 16)$

- i. Explain why the terminal potential difference of a battery decreases when the current drawn from it is increased?
- ii. Under what conditions the terminal potential difference of a battery is (a) equal (b) less than, the emf of the battery.
- iii. A potential difference is applied across the ends of a copper wire. What is the effect on the drift velocity of electrons by decreasing the length and temperature of the wires?
- iv. In R-L circuit, will the current lag or lead the voltage? Illustrate your answer by a vector diagram.
- v. What is the three phase A.C. supply? Write down its two uses.
- vi. A sinusidol current has rmS value of 10A. What is the peak value of sinusidol current?
- vii. Describe briefly the feature "coercivity" of magnetic material in the study of hysteresis loop.
- viii. Distinguish between Intrinsic and Extrinsic semiconductors.
- ix. What is "Domains" region which exists in ferromagnetic material?
- x. What is the net charge on a n-type or p-type substance? Explain.
- xi. Write down four uses of operational amplifier.
- xii. Why a photo diode is operated in reverse biased state?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. When an electric motor, such as electric drill, is being used, does it also act as a generator? If so, what is the consequence of this?
- ii. Can a step-up transformer increase the power level?
- iii. In a transformer, there is no transfer of charge from the primary to the secondary. How is, then the power transfer?
- iv. As a solid is heated and begins to glow, why does it first appear red?
- v. Will higher frequency light eject greater number of electrons than low frequency light?
- vi. When a light shines on a surface, is momentum transferred to the metal surface?

vii.	Explain wave-particle duality.	
viii.	Write down two uses of x-rays.	
ix.	Explain, how line spectrum can be used for the identification of elements?	
	(SECTION-II) pakcity.org	
Note:	: Attempt any three (3) questions.	
5. (a)	Derive the relation for energy stored in a capacitor in terms of electric field intensity.	(5)
(b)	A rectangular bar of iron is 2.0 cm by 2.0 cm in cross section and 40 cm long. Calculate the	(3)
	resistance if the resistivity of iron is $11 \times 10^{-8} \Omega m$.	
6. (a)	Define Motional EMF and derive its relation.	(5)
(b)	A coil of 0.1 m × 0.1 m and of 200 turns carrying a current of 1.0 mA is placed in a uniform magnetic field of 0.1 T. Calculate the maximum torque that acts on the coil.	(3)
7. (a)	What is RLC parallel circuit? Find its impedance diagram and resonance frequency. Give its two properties.	(5)
(b)	The current flowing into the base of transistor is $100\mu\text{A}$. Find its collector current Ic, its emitter current I _E and the ratio $\frac{I_c}{I_E}$. The value of current gain β is 100.	(3)
8. (a)	What is meant by strain energy? Derive the relation for strain energy in a deformed material.	(5)
(b)	What is the mass of a 70 kg man in a space traveling at 0.8 c from us to measure from Earth?	(3)
9. (a)	Define laser. Explain laser operation. Give some uses of laser.	(5)
(b)	A 75 kg person receives a whole body radiation dose of 24 m-rad, delivered by α-particles for which RBE factor is 12.	(3)
	Calculate (a) The absorbed energy in joules (b) equivalent dose in rem.	
	314-1 st A 42	23-3400

Rol	ll No	o. of Candidate :		and the cast a constant	D II C II
PHY	YSIC	CS		Class 12 th (1 st A 423 - II)	
		0 Minutes		Code: 8474	Marks: 17
Note	fil	I that circle in front of t	or each objective type question hat question number. Use man mark in that question.	n as A, B, C and D. The choic rker or pen to fill the circles. (ce which you think is correct, Cutting or filling two or more
1.		(A) Alpha rays		(C) Neutrons	(D) Gamma rays
2	2.	Switching time of a p	The state of the s		m> 10-15-
:	3.	Most stable isotope a	(B) 10^{-4} s mong the followings is	(C) 10^{-6} s	(D) 10^{-15} s
		(A) Fe ⁵⁸	(B) U ²³⁵	(C) Pu ²³⁹	(D) Pb ⁸²
4	4.			during a complete AC c	
	5.	(A) 90°	(B) 180° gest wavelength is emitted w	(C) 360°	(D) 45°
	6.	(A) 1	(B) 2 ad in solids is band.		(D) 5
	7.	(A) conduction	(B) forbidden ions emitted from a thermal	(C) conse	(D) valence
	8.	(A) temperature	(B) colour of surface placed parallel to magnetic	(C) size of surface	(D) nature of surface
	9.	(A) zero No inertial frame of r	(B) maximum (B) reference is preferred ever an		(D) infinite
		(A) false	MICO	(B) true	
1	0.	(C) true for static fra When a solenoid con	taining steady current is gent	(D) true for dynamic fram tly pressed, magnetic field in	
1	1.		(B) decreases ce electromagnetic waves.	(C) vanishes	(D) remains same
1	2.		(B) steadily moving rons in metals at room temper		(D) oscillating
		(A) 10^3m/s	(B) 10^8m/s	(C) $10^3 \mathrm{m/s}$	(D) 10^{-3} m/s
1	3.	In a capacitor, voltag	e current by		
		(A) lags, π	(B) leads, $\pi/2$	(C) lags, $\pi/2$	(D) leads, π
1	4.		allic box, electric field intens	- ·	
1	5.		(B) strong mer with many secondary co		(D) variable
1	6.	(A) TV receiver When applied potent		(C) Transistor radio apacitance of parallel plate ca	(D) AC generator apacitor
1	7.	(A) increases Average output power I _o &V _o respectively	(B) decreases er of an AC generator for res	(C) remains same istive load is if peak c	(D) reduces to zero current and voltage are
		(A) $V_o I_o$	(B) $\frac{V_o I_o}{2}$	(C) zero	(D) 2 V _o I _o
					pakcity.org

YSICS

Intermediate Part-II, Class 12th (1stA 423)

Group - II

ime: 2:40 Hours

suвјестive 🦓 pakcity.org 🖁 Marks: 68

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION - I

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- The potential is constant throughout a given region of space. Is the electrical field zero or non-zero in this i. region?
- Describe the force or forces on a positive charged particle when placed between two parallel plates with ii. similar and equal charges.
- Distinguish between conductor and photo-conductor. iii.
- iv. How does a capacitor work in an electrical circuit?
- If a charged particle moves in a straight line through some region of space, can you say that the magnetic ٧. field in the region is zero?
- A loop of wire is suspended between the poles of a magnet with its plane parallel to the pole faces. What vi. happens if a direct current is put through the coil? What happens if an alternating current is used instead?
- How does the beam of electrons is focused and deflected in CRO? vii.
- Differentiate between stable and sensitive galvanometer. viii.
- Write down two interactions of matter with energy. ix.
- If you swallowed an alpha-particle source and β- source which would be the more dangerous to you? x. Explain.
- Explain the working of control rods in nuclear reactor. xi.
- For what purpose alcohol or bromine is mixed with principal gas in GM-tube? xii.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- Describe a circuit which will give continuously varying potential. i.
- How does doubling the frequency affect the reactance of capacitor? ii.
- iii. What is para substance? Give example.
- Why ordinary silicon diodes do not emit light? iv.
- v. Why photodiode is operated in reverse biased state?
- Explain the conditions under which electromagnetic waves are produced from the source? vi.
- vii. Define the term (i) Elastic limit (ii) Ultimate tensile stress from stress strain curve.
- Explain why the terminal potential difference of battery decreases when current drawn from it, is increased? viii.
- What do you mean by tolerance with reference to carbon resistor? ix.
- X. What is power factor in A.C. circuit? Explain.
- Energy dissipated per cycle is more for steel as compared to iron. Why? xi.
- xii. Give two characteristics of op-amplifier.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Does the induced emf in a circuit depends on the resistance of the circuit?
- Show that ε and $\frac{\Delta \varphi}{\Delta t}$ have the same unit. ii.
- iii. Can a step-up transformer increase the power level?
- iv. What do you understand by work function?

- As a solid is heated and begins to glow, why does it first appear red? ν.
- Which photon, red, green or blue carries the most (a) energy and (b) momentum? pakcity.org vi.

- When light shines on a surface, is momentum transferred to the metal surface? vii.
- What is meant by line spectrum? Explain line spectrum can be used for the identification of element. viii.
- Can the electron in the ground state of hydrogen absorb a photon of energy 13.6 ev and greater than 13.6 ev? ix.

SECTION - II

	: Attempt any three (3) questions.	
5. (a)	Define absolute P.E and derive expression of absolute potential due to a point charge.	(5)
(b)	Resistance of an iron wire at 0°C is 1×10 ⁴ ohm. What is the resistance at 500°C if temperature co-efficient of resistance of iron is \$2.2.10 ³ K ⁻¹ .	(3)
6. (a)	Derive an expression for torque on current carrying coil in uniform magnetic field.	(5)
(b)	The back emf in a motor is 120V when the motor is turning at 1680 rev/min. What is the back emf when the motor turns 3360 rev/min?	(3)
7. (a)	What is operational amplifier? How does it work as inverting amplifier and also find its gain?	(5)
(b)	Find the value of current and inductive reactance when A.C. voltage of 220 V at 50 Hz is passed through an inductor of 10 H.	(3)
8. (a)	Define intrinsic and extrinsic semiconductor. How N-type and P-type substances are formed?	(5)
(b)	What is the maximum wavelength of the two photons produced when a positron annihilates an electron? The rest mass energy of each particle is 0.51 MeV.	(3)
9. (a)	Write Bohr's second postulate and find out formula for Bohr quantized radii.	(5)
(b)	Find the mass defect and binding energy of the deuteron nucleus. The experimental mass of deuteron is $3.3435 \times 10^{-27} \mathrm{kg}$.	(3)

315-1stA 423-34000

D all M	o. of Candidate:	Gujranwala	Board-2022	
PHYSIC			, Class 12 th) 422 - (II)	Paper II (Group – II)
Time:	20 Minutes	OBJECTIVE .	Code: 8474	Marks: 17
Note: Y	ou have four choices for ea	ch objective type question	as A, B, C and D. The choice	which you think is correct
ci		rk in that question. Attem	ker or pen to fill the circles. Cu pt as many questions as give	n in objective type question
	•		ve the shortest wavelength?	Report
1. 1.	(A) radio waves		(C) ultraviolet waves	(D) micro waves
2.	Automatic function of str			(D) Infere waves
2.	(A) inductor		(C) transistor	(D) capacitor
3.	` '		as output zero if .	(D) capacitor
5.	(A) B is zero	with hipat At and B the	(B) A is zero	
	(C) both A and B inputs	are zero	(D) both inputs A and	I R are one
4.	The shortest wavelength		` . ·	i D are one
٦.	107 L	(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		
	(A) $\frac{2}{3}R_{H}$	(B) $\frac{4}{9}R_{H}$	(C) $\frac{1}{R_{vr}}$	(D) R _H
5.	The notential difference l	haturaan turo plates is 100	volts and separation of the	alates 5 cm
٥.		-	voits and separation of the p	places 5 cm
	then potential gradient is (A) 2000 NC ⁻¹	(B) 20 NC ⁻¹	(C) 5000 NC	(D) 2 NC ⁻¹
6.			en energy radiated per second	` '
0.	(A) 32 times	(B) 16 times	64 times	(D) 4 times
7.	` '	thyroid cancer treatment		(D) 4 times
7.	(A) and we 24	(D) inding 121		(D) coholt 60
0	(A) sodium – 24	(B) lodine – Loj	(C) carbon – 14	(D) cobalt - 60
8.			oil, then the voltage develope	eu across
	secondary coil is		(0) 10 14-	(D) 2 lt
0	(A) 5 volts	CHOO C in a simulation	(C) 10 volts time 50 seconds. The current	(D) 2 voits
9.	11	(B) 8 A	(C) 20 A	
10	(A) 2 A	• •	Annual of RANCE AND	(D) 200 A
10.	110 100 100 100 100 100 100 100 100 100	s not needed in fast nucle		(D) hast such as a
11	(A) moderator	(B) control rods	(C) turbine	(D) heat exchanger
11.		s not present in A.C gene		(D)
10	(A) split rings	` '	(C) magnetic field	(D) armature
12.	The same of the sa	s not accurate measuring		(D) notantiameter
12		(B) cathode rays oscill		(D) potentiometer
13.			n discharge through 1 K Ω re	sistance
		d through resistor is		(D) 100 KI
1.4	(A) 5 KJ	(B) 10 KJ	(C) 2 KJ	(D) 100 KJ
14.	The length contraction h		(D) -1	
	(A) perpendicular to direction		(B) along the direction	
15	(C) opposite to directio		(D) along any directi	ion
15.		resonance frequency, the		(D) !=6=!+=
16	(A) zero	(B) minimum	(C) maximum	(D) infinite
16.		ing is not semiconductor		(D. c-11)
17	(A) germanium	(B) silicon	(C) aluminium	(D gallium arsenide
17.			peed 106 m/sec perpendicula	r to the
		th 1 web m ⁻² is		(D) 1 (1 0-23) 7
	(A) $1.6 \times 10^{-19} \text{ N}$	(B) $1.6 \times 10^{-13} \text{ N}$	(C) zero	(D) $1.6 \times 10^{-23} \text{ N}$

314-(II)-422-42000 Please visit for more data at: www.pakcity.org

Rol	Il No. of Candidate:				
PHY	YSICS	(Intermediate Part-I)	I, Class 12 th) 422 - (II)	Paper II	
	ie: 20 Minutes	OBJECTIVE	Code: 8473		Marks: 17
Note	 You have four choices for eac fill that circle in front of that quericles will result in zero mark paper and leave others blank. To construct a step down to the construct as the construct as the down to the construct as the construct	uestion number. Use mar k in that question. Atten	npt as many questions as g	iven in object	illig two or more
1. 1	. To construct a step down t	ransformer	9	(D) M	- 10 N
	$(A) N_S > N_P$	(B) $N_S = N_P$	(C) $N_S < N_P$	(D) N ₃	$_{\rm S}$ = 10 $N_{\rm P}$
2				(D) 1	
		()	(C) 0.5	(D) 1	
3				(D) CS	,_1 *
	(A) ampere		(C) no unit	(D) CS	,
4			(6) 1.0 1 1	(D) 6	: C di
	(A) ultraviolet region	The state of the s		(D) far-	infrared region
5.			—	(70)	O
	(/	(B) x-ray production	(C) inkjet printer	(D) A.	C generator
6.				(D)	11:-1-4
	• •	(B) gamma-ray	x-ray	(D) red	ilight
7.				(D)	
120	` '	(B) photon	(C) positron	(D) pro	oton
8.			3	(D) -II	-64
		(B) Nm (A-2)	(C) tesla	(D) all	of these
9.	. Magnitude of drift velocity	is of the order of	(C) 10^3mS^{-1}	(D) 10°	-3 c - 1
	(A) 10 ⁻⁶ mS ⁻¹	10°mS-1	(C) 10°mS	(D) 10	ms .
10.				(F) 00	<i>-</i>
			The state of the s	(D) 23.	5 minutes
11.				·	0.1
	` ' '	(B) inductor	(C) thermistor	(D) all	of these
12.				-	
		(B) ammeter	(C) galvanometer	(D) vo	
13.					
		(B) 16 N	(C) 1 N	(D) zer	ю
14.			(0) 1. 11.01.	~	
		(B) infrared light	(C) ultraviolet light	(D) Visi	ible light
15.				<i>(</i> 2) 40	
		(B) 14.1 A	(C) 20 A	(D) 28.	2 A
16.					
		B) brittle	(C) elastic	(D) all	of these
17.	_				
	(A) straight conductor	(B) single wire loop	(C) a bar magnet	(D) all	of these

313-(II)-422-42000

ranwala Board-2022 Inter. (Part-11)-A-2022 Roll No. to be filled in by the Candidate Physics (Essay Type) (For All Sessions) Marks: 68 Time: 2:40 Hours Group-II Note: Section 1 is compulsory. Attempt any THREE (3) questions from Section II. SECTION - I $(2 \times 8 = 16)$ pakcity.org 2. Write short answers to any EIGHT questions. Define electron volt (ev). Show that $1 \text{ ev} = 1.6 \times 10^{-19} \text{ J}$. i. Show that $\frac{1 \text{ volt}}{1 \text{ meter}} = \frac{1 \text{ newton}}{1 \text{ coulomb}}$. ii. Is E necessarily zero inside a charged rubber balloon, if balloon is spherical? Assume that charge is iii. uniformly distributed over the surface. Prove that ohm x farad = second. iv. How can a galvanometer is made more sensitive? Explain briefly. ٧, Suppose that a charge q is moving in a uniform magnetic field with a velocity v. Why is there no work done vi. by magnetic force that acts on charge q? Draw a circuit diagram of current measuring part of avometer. vii. Is it possible to orient a current loop in a uniform magnetic field such that the loop will not tend to rotate? viii. Explain. What do you understand by back ground radiations? State any two sources of radiation. ix. How can radioactivity help in the treatment of cancer? x. Differentiate between mass defect and binding energy. xi. Define nuclear fission and nuclear fusion. xii. $(2 \times 8 = 16)$ 3. Write short answers to any ElGHT questions. Describe a circuit which will give a continuously varying potential. i, A wire of length 10 m has resistance 100 \O. If the wire is stretched to increase its length ii. three times. What will be its new resistance? What is meant by an electromotive force (cmf)? Give its unit. iii. Explain the condition under which electromagnetic waves are produced from a source. iv. What is meant by phase difference? ٧. vi. Write four properties of parallel resonance circuit. Differentiate between paramagnetic and ferromagnetic substances. vii, Define modulus of clasticity. Write down its three kinds. viii. Why a photo diode is operated in reverse biased state? ix. Distinguish between soft magnetic material and hard magnetic material. x. What is solar cell? Give its uses. xi. Draw the symbol of pap and appropriations six parts. xii, 4. Write short answers to any SIX questions. i. Does the induced cmf always act to decrease the magnetic flux through a circuit? $(2 \times 6 = 12)$ Can a D.C motor be turned into a D.C generator? What changes are required to be done? ii. How fluctuations of the output can be reduced in D.C generator? iii. What is meant by efficiency of transformer? Write few steps to improve the efficiency. iv. Which has the lower energy quanta? Radio waves or x - rays. V. Why don't we observe a Compton effect with visible light? vi. Find the mass m of a moving object with speed 0.8 C.Dakcity.org vii. Find the speed of electron in the first Bohr orbit. viii. Is energy conserved when an atom emits a photon of light? SECTION - II Note: Attempt any THREE (3) questions from Section II. 5. (a) Define electric potential. Derive the relation of an electric potential at a point due to point charge. (5) (b) A platinum wire has resistance of 10 ohm at 0°C and 20 ohm at 273 °C. Find the value of temperature (3) co-efficient of resistance of platinum. 6. (a) What is transformer? How does it work? Explain its use in transmission of electric load to long (5)(b) What current should pass through a solenoid that is 0.5 m long with 10,000 turns of Copper wire so that (3) it will have a magnetic field of 0.4 T? 7. (a) What is comparator circuit? How can it be used as a night switch? (5)(b) A 10 mH, 20 Ω coil is connected across 240 v and $\frac{180}{\pi}$ Hz source. How much power does it dissipate? (3) 8. (a) What is meant by strain energy? How can it be determined from the force extension graph? (b) Assuming you radiate as does a black body at your body temperature about 37 °C, at what wavelength do you emit the most energy? 9. (a) What is LASER? Describe its working, population inversion and laser action. (b) Find the mass defect and the binding energy for tritium, if the atomic mass of tritium is 3.016049 u.

632-12-S-15380

		No. of Candidate : ICS	(INT	ERMEDIATE P	ART-II) 421 - (IV)	Paper II	(Group-I)
Ti	me:	20 Minutes	0	BJECTIVE	<u>Cod</u>	le: 8477		Marks: 17
No	f	You have four choices for ea fill that circle in front of that circles will result in zero man paper and leave others blan	questic ark in t	on number. Use man hat question. Atten	ker or pe	n to fill the circlery questions a	les. Cutting or	filling two or more
1.	1.	Electrons are (A) hadrons	(B)	pakcity leptons	(C)	quarks	(D)	baryons
	2.	The amount of energy early (A) 9.315 Mev	quivale	•		931.5 Mev		211.5 Mev
	3.	Normally an electron ca (A) 10 ⁻⁸ s		e in metastable sta 10 ⁻⁶ s	te for ab	out 10 ⁻⁴ s	(D)	10 ⁻³ s
	4.	The energy required for (A) 0.51 Mev	pair pr			2.04 Mev		3.06 Mev
	5.	Compton wavelength is			` '		. ,	$\frac{hc^2}{m_o}$
	6.					h m _o c	(D)	m _o
	7.	A photodiode can turn i (A) 10 ⁻³ s The relation for the gain	(B)	4.5.6		10 ⁻⁹ s	(D)	10 ⁻¹² s
		(A) $G = \frac{R_1}{R_2}$		$G = \frac{R_2}{R_1}$		$G = \frac{-R_2}{R_1}$	(D)	$G = \frac{-R_1}{R_2}$
	8.	Substances which break (A) brittle	just af		t is reach		subst	ances.
	9.	In R-L series circuit, ph			8	300		
		(A) $\theta = \tan^{-1}(\omega RL)$	T.			$\theta = \tan^{-1} \left(\frac{R}{\omega} \right)$	~ / .	
		(A) $\theta = \tan^{-1}(\omega RL)$ (C) $\theta = \tan^{-1}(\frac{\omega L}{R})$	1/2)		Annual I	$\theta = \tan^{-1}\left(\frac{1}{\omega}\right)$	ICL)	
	10.	with an inductor of 5 m	Lific	nstruct a resonanc 5.09 μF				5 00 VE
1	11.	(A) 5.09 PF A device which convert	s mech	anical energy into	electrica	al energy is cal	led	5.09 KF
	12.	(A) D.C. generator The relation for self-inc	luctanc		S	A.C. generato		transformer
	13.	(A) $L = \mu_o n A \ell$ The brightness of spot of		* Control of			(D)	$L = \mu_{o} N^2 A \ell$
		(A) filament	(B)	cathode		anode	(D)	grid
	14.	The relation $\sum_{r=1}^{N} (\vec{B}.\Delta \vec{L})$ (A) Faraday's law			(C)	Ampere's lay	v (D)	Gauss's law
	15.	In colour code for carbo (A) ±20%	on resis		fourth ba		nce is) ±4%
	16.	The formula for electric	field	as potential gradie	nt is			
		(A) $E = \frac{-\Delta v}{\Delta r}$		Δι	(C)	$E = \frac{-\Delta U}{\Delta r}$	(D	$E = \frac{-\Delta U}{\Delta t}$
	17.	The SI unit of electric p (A) Kg m ² s ⁻¹ c	potenti (B)	al is Kg m² s ⁻² c	(C)) Kg $m^2 s^{-2} c^{-1}$	1 (D) $\text{Kg m}^{-2} \text{s}^2 \text{c}^{-1}$

Paper II

(Group - I)

: 2:40 Hours

SUBJECTIVE Gujranwala Board-2021 Marks: 68

e: Section I is compulsory. Attempt any three (3) questions from Section II.

(SECTION - I)

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- A particle carrying a charge of 2e falls through a potential difference of 3.0 V. i. Calculate the energy acquired by it. ⊸∰ pakcity.org 🎇⊳
- ii. Define electron volt.
- iii. Define electric flux. Also write down its unit.
- How can you identify that which plate of a capacitor is positively charged? iv.
- Why does the picture on a T.V screen become distorted when a magnet is brought ٧. near the screen?
- How can you use a magnetic field to separate isotopes of chemical element? vi.
- A plane conducting loop is located in a uniform magnetic field that is directed along vii. the x-axis. For what orientation of the loop, is the flux a maximum? For what orientation is the flux a minimum?
- If a charged particle moves in a straight line through some region of space, can you say viii. that the magnetic field in the region is zero?
- Does the induced emf in a circuit depend on the resistance of the circuit? ix. Does the induced current depend on the resistance of the circuit?
- Does the induced emf always act to decrease the magnetic flux through a circuit? X.
- Is it possible to change both the area of the loop and the magnetic field passing through the xi. loop and still not have an induced emf in the loop?

Show that ε and $\frac{\Delta \varphi}{\Delta t}$ have the same units? xii.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- Is the filament resistance lower or higher in a 500 W, 220 V light bulb than in a 100 W, 220 V bulb. i.
- ii. Describe a circuit which will give a continuously varying potential.
- iii. What are thermistors? Write down their applications.
- How many times per second will an incandescent lamp reach maximum brilliance when iv. connected to a 50 Hz source?
- In a R-L circuit, will the current lag or lead the voltage? Illustrate your answer by a vector diagram. ٧.
- vi. A 100 µF capacitor is connected to an alternating voltage of 24 V and frequency 50 Hz. What will be the reactance of the capacitor?
- Define stress and strain. What are their SI units? vii.
- What is meant by hysteresis loss? How is it used in the construction of transformer? viii.
- Define modulus of elasticity. Show that the units of modulus of elasticity and stress are the same. ix.
- X. Why a photo diode is operated in reverse biased state?
- xi. Why is the base current in a transistor very small?
- xii. Define open loop gain and write down its relation.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Define pair production and write down its equation.
- What happens to total radiation from a black body if the absolute temperature is doubled? ii.
- Which photon red, green or blue carries the most (a) Energy and (b) Momentum? iii.
- iv. Write down two uses of Laser in Medicine.
- ٧. What do we mean when we say that the atom is excited?
- vi. What do we mean by the term critical mass?
- vii. Describe a brief account of interaction of various types of radiations with matter.
- viii. Define half-life of a radioactive element, write down its expression.
- What is radioactivity? ix.

5. (a)	What is a wheatstone bridge? How is it used to determine an unknown resistance?	5
(b)	Compare magnitudes of electrical and gravitational forces exerted on an object (mass = 10.0 g, charge = 20.0 μ C) by an identical object that is placed 10.0 cm	3
	from the first. $(G=6.67\times10^{-11} \text{ Nm}^2 \text{ kg}^{-2})$	
6. (a)	Discuss the principle, construction and working of an alternating current generator.	5
	Also find expression for induced emf and current.	
(b)	Find the radius of an orbit of an electron moving at a rate of 2.0x107 ms ⁻¹ in a uniform	3
	magnetic field 1.20 x 10 ⁻³ T.	
7. (a)	Explain R-L-C series resonance circuit. Draw its impedance diagram and also write down	5
	its properties.	
(b)	In a certain circuit, the transistor has a collector current of 10 mA and base current of	3
	40 μ A. What is the current gain of the transistor?	
8. (a)	What are radiation detectors? Describe the principle, construction and working of	5
	Wilson Cloud Chamber for detecting nuclear radiation.	
(b)	The length of a steel wire is 1.0 m and its cross-sectional area is $0.03 \times 10^{-4} \mathrm{m}^2$.	3
	Calculate the work done in stretching the wire when a force of 100 N is applied within	
	the elastic region. Young's modulus for steel is $3.0 \times 10^{11} \text{Nm}^{-2}$.	
9. (a)	What is LASER? Describe its principle and operation.	5.
(b)	An electron is placed in a box about the size of an atom that is about 1.0×10^{-10} m.	3
	What is the velocity of the electron?	

315-421-34000

Roll No. of Candidate :PHYSICS			(IN	(INTERMEDIATE PART-II) 421 - (I)			Paper II	(Group - II)
Ti	ne	: 20 Minutes	9	DBJECTIVE	Cod	le: 8472		Marks: 17
Not		You have four choices fo fill that circle in front of t circles will result in zero paper and leave others bla	hat quest mark in	ion number. Use marker	or pe	n to fill the circle my questions as	s. Cutting of given in ob	or filling two or more
1.	1.	Electric flux through	a closed	surface depends upon	**************************************	pakcity.c	org 🖔	
		(A) charge	(B)	medium	(C)	geometry	(D) (charge and medium
	2.	Coulomb per volt is c	alled					
		(A) farad	(B)	ampere	(C)	joulé	(D)	henry
	3.	The substance having	negative	temperature co-efficie	nt of	reșistance		
		(A) silver	(B)	gold	(C)	carbon	(D)	tungsten
	4.	One Tesla is equal to						
		(A) 1 N ⁻¹ Am	(B)	1 NAm	(C)	$1 \text{ NA}^{-1}\text{m}^2$	(D)	1 NA ⁻¹ m ⁻¹
	5.	Magnetic flux density	at a poir	nt due to current carryñ	ng coi	l is determined	by	
		(A) Ampere's law	(B)	Gauss's law	(C)	Faraday s law	(D)	Lenz's law
(6.	Mutual induction has	a practica	al role in the performar	ice of	the		
		(A) radio choke	(B)	transformer		A.C generator	(D)	D.C generator
7	7.	The self-induced emf	is someti	mes called	yr)			
		(A) motional	(B)	constant	(C)	back	(D)	variable
8	3.	Power dissipated in a	pure indu	ictor is		7 90		
		(A) large	(B)	small of	(C)	infinite	(D)	zero
9).	At resonance frequence	y the im	edance of RLC paralle	el circ	uit is		
		(A) zero	CEX.	infinite	(C)	minimum	(D)	maximum
10).	Above the curie tempe	ratione iro	on is				
		(A) paramagnetic		diamagnetic	(C)	ferromagnetic	(D)	remain same
11		A P-n junction cannot	be used a	as				
		(A) amplifier	(B)	rectifier	(C)	detector	(D)	LED
12		The width of central re	gion of a	transistor is				
		(A) 10^{-4} m	(B)	10 ⁻⁶ m	(C)	10 ⁻³ m	(D)	10 ⁻⁹ m
13		When platinum wire is	heated i	t becomes orange at			, ,	
		(A) 500 °C	(B)	900 °C	(C)	1100 °C	(D)	1300 °C
14		The value of plank's co	nstant h	is			()	
		(A) $6.63 \times 10^{-34} \text{ JS}$	(B)	6.63x10 ⁻³⁴ JS ⁻¹	(C)	$6.63 \times 10^{-34} \text{JS}^2$	(D)	$6.63 \times 10^{-34} \text{JS}^{-2}$
15.		Helium - Neon Laser d	ischarge	tube Contain Neon			(-)	J.O. J.D
		(A) 85%	(B)	80%	(C)	30%	(D)	15%
16.		A pair of quark and ant	iquark m	akes a	, ,		(2)	
		(A) meson	(B)	hadron	(C)	lepton	(D)	baryon
17.		A device that shows the	visible	path of ionizing particl	e is c	alled	(D)	Jaryon
		(A) G.M. counter		solid detector		scalar	(D) Wilso	n Cloud Chamber
							1037 (5.77)	

316-(I)-421-34000

HYSICS

(INTERMEDIATE PART-II) 421

Paper II

(Group - II)

 $(2 \times 8 = 16)$

Marks: 68

Time: 2:40 Hours

SUBJECTIVE

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

akcity.org (SECTION - I)

2. Write short answers to any EIGHT questions.

i. Define electron volt and prove that $1 \text{ ev} = 1.6 \times 10^{-19} \text{J}$.

- ii. Give a comparison between electric force and gravitational force.
- Upon what factors electric flux does depend? iii.
- Do electrons tend to go to region of high potential or of low potential? iv.
- ٧. State Ampere's law and write down its formula.
- vi. Define magnetic flux and flux density.
- A plane conducting loop is located in a uniform magnetic field that is directed along the x-axis. vii. For what orientation of the loop, is the flux a maximum? For what orientation is the flux a mininum?
- Why does the picture on a TV screen become distorted, when a magnet is brought near the screen? viii.
- Does the induced emf in a circuit depend on the resistance of the circuit? Does the induced current ix. depend on the resistance of the circuit.
- Does the induced emf always act to decrease the magnetic flux through a circuit? X.
- Define motional emf and write down its formula. xi.
- Upon what factors self-inductance does depend? xii.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- Define the temperature co-efficient of resistance. Write down an expression for temperature co-efficient of resistance in terms of resistivity.
- Do bends in a wire affect the electrical resistance? Explain. ii.
- Explain why the terminal potential difference of a battery decreases when the current drawn iii. from it is increased?
- iv. Define impedance and write down its SI units.
- What is the main advantage of three phase A.C supply? v.
- A circuit contains an iron-cored inductor, a switch and a D.C. source, arranged in series. The switch is vi. Closed and after an interval reopened. Explain why a spark jumps across he switch contacts?
- Draw a stress-strain curve for a metallic wire and mention the points representing proportional limit, vii. elastic limit, UTS or nominal strength and fracture stress.
- Define modulus of elasticity. Also discuss its three kinds. viii.
- What is meant by hysteresis loss? How is it used in the construction of a transformer? ix.
- What is photovoltaic cell? X.
- What does it mean when we say that output of an amplifier is 180° out of phase with its input? xi.
- What is the net charge on an n-type or a p-type substance? xii.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- What advantages an electron microscope has over an optical microscope? i.
- Write down some important results of photoelectric effect. ii.
- If the following particles have the same energy, which has the shortest wavelength? Electron, alpha iii. Particle, neutron, proton.
- iv. What do we mean when we say that atom is excited?
- Explain de-Broglie's interpretation of Bohr's orbits. ν.
- vi. Why are heavy nuclei unstable?
- What factors make a fusion reaction difficult to achieve? vii.
- viii. Write down the name of basic forces of nature.
- Differentiate between mass defect and binding energy. ix.

State Gauss's law. Find electric field intensity between two oppositely charged parallel plates.	5
A platinum wire has resistance of $10~\Omega$ at 0° C and $20~\Omega$ at 273° C. Find the value of temperature	3
co-efficient of resistance of platinum.	
State Faraday's law of electromagnetic induction and also derive the relation for induced emf.	5
A solenoid 15.0 cm long has 300 turns of wire. A current of 5.0 Aprilows through it. What is the	3
magnitude of magnetic field inside the solenoid.	
How can we use a transistor as an amplifier?	5
A 10 mH, 20 Ω coil is connected across 240 Wand $\frac{180}{\pi}$ Hz source. How much power does	3
it dissipate?	
Differentiate between insulators conductors and semi-conductors on the basis of energy band theory.	5
Find the mass defect and binding energy of the deuteron nucleus. The experimental mass	3
of deuteron is 3.3435×10^{-27} kg, and that of proton and neutron 1.6726×10^{-27} kg and	
1.6749×10^{-27} kg respectively.	
What is photoelectric effect? What is the effect of frequency of light on photoelectric current?	5
Derive the Einstein's photoelectric equation.	
Electrons in an x-ray tube are accelerated through a potential difference of 3000 V. If these	3
Electrons were slowed in a target, what will be the minimum wavelength of x-rays produced?	
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	A platinum wire has resistance of 10 Ω at 0°C and 20 Ω at 273°C. Find the value of temperature co-efficient of resistance of platinum. State Faraday's law of electromagnetic induction and also derive the relation for induced emf. A solenoid 15.0 cm long has 300 turns of wire. A current of 5.0 A, the vs through it. What is the magnitude of magnetic field inside the solenoid. How can we use a transistor as an amplifier? A 10 mH, 20 Ω coil is connected across 240 V and 180 Hz source. How much power does it dissipate? Differentiate between insulators conductors and semi-conductors on the basis of energy band theory. Find the mass defect and binding energy of the deuteron nucleus. The experimental mass of deuteron is 3.3435 × 10 ⁻²⁷ kg, and that of proton and neutron 1.6726 × 10 ⁻²⁷ kg and 1.6749 × 10 ⁻²⁷ kg respectively. What is photoelectric effect? What is the effect of frequency of light on photoelectric current? Derive the Einstein's photoelectric equation. Electrons in an x-ray tube are accelerated through a potential difference of 3000 V. If these

316-421-34000

Coll N	Vo. o	f Candidate:	Doard-2015		
		Minutes OB.	ART-II) 419-(I) JECTIVE de: 8471	Group: I	Paper: II Marks: 17
lote:	that circ	have four choices for each objective type que circle in front of that question number. Use les will result in zero mark in that question. At leave other blank.	estion as A, B, C and D. The marker or pen to fill the	circles. Cutting or f	illing two or more
	1.	Due to polarization, electric field E (A) increases (C) first increases then decreases	in a capacitor: (B) decrease (D) remains		ity.org
	2.	If time constant in RC circuit is small (A) slowly (B) rapidly	ll, then capacitor is ch (C) at consta		ed: ermittently
	3.	Kirchhoff's second rule is based on: (A) law of conservation of energy (C) law of conservation of charge	(B) law of co	onscrvation of mass	
	4.	S.I unit of magnetic permeability is: (A) Wb A ⁻¹ m ⁻¹ (B) Wb m ²	(C) Wb mA-1	(D) W	o Am ⁻¹
	5.	When ohmmeter gives full scale defl (A) zero resistance (B) infinite resi	[2018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018] [1018]	sistance (D) ver	y high resistance
	6.	Lenz's law deals with the: (A) magnitude of induced current (C) direction of induced current		of induced emf	
	7.	When current flowing through an inc (A) half (B) four times	luctor doubled, ther (C) one four		
	8.	In a capacitive circuit of A.C. quanti (A) minimum (B) maximum	ity, when $q = 0$, the s (C) zero	slope of q-t cur (D) neg	
	9.	When A.C passes through an induction (A) 0° (B) 45°	tor, voltage leads the (C) 90°	current by an angl (D) 18	
	10.	In extrinsic semi-conductors, doping (A) 1 atom to 10^4 (B) 1 atom to		o 10 ¹⁶ (D) 1	atom to 10 ⁶
	11.	The Boolean equation for exclusive (A) $X = A.B + B.A$ (B) $X = \overline{A.\overline{B} + \overline{B}}$			$A. \overline{B} + \overline{B}. A$
	12.	The potential barrier for silicon at roc (A) 0.7 volt (B) 0.5 volt	om-temperature is (C) 0.3 volt	(D) 0.9	9 volt
	13.	The unit of work function is: (A) volt (B) joule	(C) watt	(D) far	ad
	14.	An electron in II-atom is excited from possible in this case? (A) 3 (B) 4	m ground state to $n =$ (C) 5	4 , how many sp (D) 6	ectral lines are
	15.	Metastable state is than (A) 10 ⁻⁵ times larger (B) 10 ⁻⁸ times sn			⁵ times larger
	16.	A pair of quark and antiquark make a (A) meson (B) hadron	(C) lepton	(D) ba	ryon
	17.	The force which is responsible for the (A) strong nuclear force (C) electromagnetic force	e breaking up of the ra (B) gravitation (D) weak nucl	nal force	ts is:

Physics (New Scheme) Time: 2:40 Hours (INTER PART-II) 419-(I) SUBJECTIVE Group: I

pakcity.org (2 × 8 = 16)

Paper: II Marks: 68

Note: section I is compulsory. Attempt any THREE (3) questions from Section II.

(SECTION - I)

2. Write short answers to any EIGHT questions.

Write any two properties of electric field lines.

ii. Differentiate between electric potential and electric potential difference.

- iii. Describe the force or forces on a positive point charge when placed between parallel plates with similar and equal charges.
- iv. A particle having a charge of 20 electrons on it falls through a potential difference of 100 v. calculate the energy acquired by it in electron volts (ev).
- v. What is the function of grid in case of cathode ray oscilloscope?
- vi. How can you prefer potentiometer over voltmeter?
- vii. Why does the picture on a TV screen become distorted when a magnet is brought near the screen?
- viii. A plane conducting loop is located in a uniform magnetic field that is directed along the x-axis. For what orientation of the loop is the flux a maximum? For what orientation is the flux a minimum?
- ix. A metal rod of length 25cm is moving at a speed of 0.5ms⁻¹ in a direction perpendicular to a 0.25 T magnetic field. Find the emf produced in the rod.

x. State Lenz's Law and write its formula.

xi. How would you position a flat loop of wire in a changing magnetic field so that there is no emf induced in the loop?

xii. Four unmarked wires emerge from a transformer. What steps would you take to determine the turns ratio?

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. Do bends in a wire effect its electrical resistance? Explain.
- ii. Define wheatstone bridge. Draw its circuit diagram.

iii. Distinguish between cmf and terminal potential.

iv. Write the advantages and disadvantages of FM over AM.

- v. A sinusoidal current has rms value of 10 A. What is the maximum or peak value?
- vi. How does doubling the frequency affect the reactance of
 - a) An inductor
 - b) A capacitor
- vii. Distinguish between elastic deformation and plastic deformation.
- viii. Define stress and strain. What are their units?
- ix. What is meant by strain energy? Write its formula.
- x. How does the motion of an electron in an n-type substance differ from the motion of holes in a p-type substance?
- xi. Why is the base current in a transistor very small?
- xii. What is meant by a current gain of a transistor? Write its formula.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- If the speed of light were infinite, what would the equations of special theory of relativity reduce to.
- ii. Can pair production take place in vacuum? Explain.
- iii. What are black body radiations?
- iv. Bohr's theory of hydrogen atom is based upon several assumptions. Do any of these assumptions contradict classical physics?
- v. Explain why laser action cannot occur without population inversion between atomic levels?
- vi. What are isotopes? What do they have in common and what are their differences?
- vii. How can radioactivity help in the treatment of cancer?
- viii. Define mass defect and binding energy.
- ix. What are leptons? Give an example.

- 2 -

♠ pakcity.org

■ pakcity.org

(SECTION - II) Define electric potential. Calculate the electric potential at the point due a point 4+1 (a) 5. charge. The resistance of an iron wire at 0° C is $1 \times 10^{4}\Omega$. What is the resistance at 500 °C 3 (b) if the temperature coefficient of resistance of iron is 5.2×10^{-3} K? State Ampere's law. Apply it to calculate the magnetic field due to current flowing 5 (a) 6. through a solenoid. A coil of 10 turns and 35cm² area is in a perpendicular magnetic field of 0.5T. 3 (b) The coil is pulled out of the field in 1.05 Find the induced cmf in the coil as it is pulled out of the field. Describe and explain the principle of generation, transmission and reception of 5 (a) 7. electromagnetic waves. The current flowing into the base of a transistor is 100 µA. Find its 3 (b) collector current I_{c} at semitter current I_{E} and the ratio $\frac{I_{C}}{I_{E}}$, if the value of current gain s 100. 5 Define modulus of elasticity. Discuss its different types. Also give stress-strain 8. (a) curve of elastic limit and yield strength. 3 Find the mass of a moving object with speed 0.8c. (b) 1+4 What is inner shell transition? Explain the production of x-rays. (a) 9. Find the mass defect and the binding energy for tritium, if the atomic mass of 3 (b) tritium is 3.016049 u. 317-419-27000

pakcity.org Roll No. of Candidate: Physics (New Scheme) (INTER PART-II) 419-(I) Group: II Paper: II **OBJECTIVE** Time: 20 Minutes Marks: 17 Code: 8472 Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave other blank. Selenium is a 1. B) insulator C) photoconductor A) conductor D) semi-conductor The electron volt (eV) is the unit of 2. A) electric current B) electric energy C) electric potential D) electric flux The drift velocity of electrons is of the order of B) 10-3 m/s A) $10^{-2} \, m/s$ 103 m/c D) 106 m/s If a charge is at rest in a magnetic field then the force on charge is B) q V B sinθ A) $q(\vec{V} \times \vec{B})$ C) q V B D) zero 5. The SI unit of magnetic induction is A) weber B) henry D) guass Emf is induced due to change in A) electric flux B) magnetic flux D) electric current 7. Mutual induction has a practical role in the performance of the C) choke B) generator, D) transformer In RLC series circuit, the current at resonance frequency is B) makimum A) minimum C) zero D) infinite At high frequency, the value of reactance of capacitor will be B) small C) zero D) infinite 10. Which one of the following is a polymeric solid A) glass B) nylon C) copper D) zinc 11. In P-type substances, the minority charge carriers are B) protons A) holes D) neutrons 12. The output resistance of an operational amplifier is B) low A) high C) zero D) equal to input resistance 13. Wave nature of light appears in A) pair production B) compton effect C) photoelectric effect D) interference 14. The unit of Plank's constant is C) JS-1 A) Volt B) JS D) eV 15. Balmer series lies in the region of electromagnetic spectrum A) infra-red B) visible C) ultraviolet D) far infrared 16. The S.I unit of radiation dose is A) roentgen B) curie C) grey D) rem 17. The binding energy per nucleon is maximum for A) uranium B) platinum C) hydrogen D) iron 318-(I)-419-25000

Physics (New Scheme)

(INTER PART-II) 419-(I)

Group: II

Paper: II Marks: 68

Time: 2:40 Hours

SUBJECTIVE

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

(SECTION - I) Application participation part

2. Write short answers to any EIGHT questions.

- If a point charge q of mass m is released in a non-uniform electric field with field lines pointing in the same direction, will it make rectilinear motion.
- Electric lines of force never cross; why? ii.
- Prove that: $E = -\frac{\Delta V}{\Delta r}$ iii.
- Find electric intensity of field inside a hollow charged sphere. iv.
- Why the voltmeter should have a very high resistance? v.
- How can you use a magnetic field to separate isotopes of chemical element? vi.
- vii. How can we increase the sensitivity of galvanometer?
- viii. What is the function of 'X' and 'Y' plates in C.R.O?
- Can an electric motor be used to drive an electric generator with the output from the generator ix. being used to operate the motor?

How would you position a flat loop of wire in a changing magnetic field so that there is no X. emf induced in the loop?

What is the function of the commutator in D.C motor? xi.

Discuss the relation: $V = \varepsilon + IR$ XII.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

Define Kirchhoff's Second Rule. i.

Why does the resistance of a conductor rise with temperature? ii.

- A potential difference is applied across the ends of a copper wire. What is the effect on the iii. drift velocity of free electrons by decreasing the length and the temperature of the wire?
- iv. At what frequency will an inductor of 1.0 H have a reactance of 500 Ω ?
- Explain the conditions under which electromagnetic waves are produced from a source. v.
- In a R-L circuit, will the current lag on lead the voltage? Illustrate your answer by a vector vi. diagram.
- vii. What is meant by paramagnetic and diamagnetic substances? Give example for each.
- viii. What is meant by hysteresis loss? How is it used in the construction of a transformer?
- ix. Define intrinsic and extrinsic semiconductor, akcity.org
- X. How gates are used in controlling systems?
- xi. Why ordinary silicon diodes do not emit light?
- xii. What is the net charge on an n-type or a p-type substance?

Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Write two postulates of special theory of relativity.
- What are the measurements on which two observers in relative motion will always agree upon? ii.
- iii. Why do not we observe a "Compton Effect" with visible light?
- Write postulates of Bohr's Model of the hydrogen atom. iv. v. What do we mean when we say that the atom is excited?
- vi. Define the term "Isotopes" and give one example.
- Differentiate between "Mass Defect" and "Binding Energy".
- viii. Why are heavy nuclei unstable?
- ix. What do we mean by the term "Critical Mass"?

-2-

(SECTION - II)

- What is a capacitor and capacitance of a capacitor? Give S.I unit of capacitance. 44-1 5. (a) Derive the expression for energy stored in capacitor. How many electrons pass through an electric bulb in one minute if the 3 (b) 300 mA current is passing through it. What is Ampere's Law. By applying Ampere's law, find the magnetic field inside 5 6. (a) the current carrying solenoid. 3 A circular coil has 15 turns of radius 2 cm each. The plane of the coil lies at 40° (b) to a uniform magnetic field of 0.2 T. If the field is increased by 0.5 T in 0.2 S, then find the magnitude of induced emf. Describe the behaviour of A.C through Receives circuit. 5 7. (a) Calculate the impedance and phase angle of R-C series circuit. 3 (b) Calculate the gain of non-inverting amplifier shown in the figure: 40 KQ
- What is de-Broglie's hypothesis? How did Davisson and Germer verify it? Explain 5 8. (a) 3
 - What stress would cause a wire to increase in length by 0.01% if the young's (b) modulus of the wire is 12×10^{10} Pa. What force would produce this stress if the diameter of the wire is 0.56 mm?
- 9. (a) Explain the principle, construction and working of Geiger Muller counter. 1+4
 - (b) The wavelength of K x-rays from copper is 1.377×10^{-10} m. What is the energy difference between the two levels from which this transition results?

318-419-25000

3

Physics (New Scheme)

(INTER PART-II) 418 - (I)

Paper II

Time: 20 Minutes

pakcity.org

Note: You have four choices for each objective type question as A. B. C and D. The choice which you think is connect. fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more

	pape	les will result in zero mark in that question. Attemp er and leave others blank.	t as many questions as give	en in objective type questi			
١.	1,	When some dielectric is inserted between the plates of a capacitor, then capacitance.					
		(A) decreases (B) increases	(C) becomes zero	(D) becomes infinity			
	2.	Intensity of field inside a hollow charged sphere will be					
		(A) negative (B) unaffected	(C) zero	(D) maximum			
	3.	5A of current flows through a conductor in 2 minutes, charge in the wire is					
		(A) 500 C (B) 600 C	(C) 400 C	(D) 10 C			
	4.	The resistance of a conductor of length L, cross-sectional area 'A' and resistivity 'p' is given by					
		(A) $R = \frac{\rho}{AL}$ (B) $R = \rho AL$	(C) $R = \rho \frac{L}{A}$	(D) $R = o \frac{A}{L}$			
	5.	Two parallel wires carrying current in the opposi	te directions				
		(A) may repel or attract each other	(B) attract each other				
		(C) have no effect on each other	(D) repel each other				
	6.	The SI unit of flux density is	(Company				
		(A) $Nm^{-1}A^{-2}$ (B) $NA^{-1}m^{-1}$	(C) NAme	(D) NA ⁻¹ m			
	7.	Energy stored per unit volume is called					
		(A) surface charge density	power density				
		(C) energy density	(D) induction				
	8.						
		If V_0 is the peak value of A.C. voltage its ents value (A) $V_{\text{rms}} = \sqrt{2} V_0$ (B) $V_{\text{rms}} = \frac{\sqrt{2} V_0}{2}$	(C) $V_{\text{rms}} = \sqrt{2}$	(D) $V_{rms} = \frac{V_u}{\sqrt{2}}$			
	is given by						
		The inductive reactance X_L of coil of inductance (A) $X_L = \frac{1}{2\pi \Gamma L}$ (B) $X_L = \frac{2\pi \Gamma}{L}$	(C) $X_{i_n} = \frac{1}{\pi f I_n}$	(D) $X_L = 2 \pi f I$.			
	10.	Conductors have conductivities of the order of					
		(A) $10^{-6}(\Omega m)^{-1}$ (B) $10^{7}(\Omega m)^{-1}$	$(C) 10^9 (\Omega m)^{-1}$	(D) $10^3 (\Omega m)^{-1}$			
	11.	Curie temperature for iron is					
		(A) 780 °C (B) 750 °C	(C) 730°C	(D) 710 °C			
	12.	In n-type substance, minority charge carries are	March	The state of the s			

(A) electrons

(B) holes

(C) protons

(D) neutrons

13. Conversion of only one half of A.C. into D.C. is called

(A) half wave amplification (C) hall wave electrification

(B) wave amplification (D) half wave rectification

By modern system of NAVSTAR, the speed anywhere on the earth can be determined to accuracy about 14.

(A) 20 ms⁻¹

(B) 10 ms⁻¹

(C) 2 Cms⁻¹

(D) 2 ms'

15. The value of plank's constant is

(A) $8.85 \times 10^{-34} JS$

(B) 1.6 x 10⁻¹⁹ JS

(C) $6.63 \times 10^{-34} JS$

(D) 6.62 x 10 15

16. Paschen series lie in the

(A) far-ultraviolet region (B) visible region

(C) infrared region

(D) ultraviolet region

17. The charge number of Ba is

(A) 197

(B) 141

(C) 85

(D) 56

Physics (New Scheme) Time: 2:40 Hours

(INTER PART-II) 418 SUBJECTIVE

Paper II Marks: 68

pakcity.org 🥞

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

(SECTION - I)

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. How can you identify that which plate of capacitor is positively charged?
- ii. Derive relation for potential gradient.
- iii. Write down any two properties of electric field lines.
- iv. Do electrons tend to go to region of high potential or of low potential? Give its reason.
- v. What is the difference between magnetic flux and magnetic flux density? Give the units of both quantities.
- vi. How the beam of electron is focused on the screen of CRO? Show it with diagram.
- vii. If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in the region is zero or non-zero.
- viii. Why the resistance of an ammeter should be very low?
- ix. What is meant by mutual inductance? Give its units.
- x. Draw and label the diagram of a D.C motor.
- xi. Can an electric motor be used to drive an electric generator with the output from the generator being used to operate the motor.
- xii. How would you position a flat loop of wire in a changing magnetic field, so that there is no emf induced in the loop?

3. Write short answers to any EIGHT questions

 $(2 \times 8 = 16)$

- i. Do bends in a wire affect its electrical resistance? Explain.
- ii. Describe a circuit which will give a continuously varying potential.
- iii. Briefly describe the current through a metallic conductor and drift velocity.
- iv. An A.C. voltmeter reads 250 What is its peak value?
- A 100 μF capacitor is connected to an alternating voltage of 24 V and frequency 50 Hz.
 Calculate the current in the circuit.
- vi. How does doubling the frequency affect the reactance of?
 - a) an inductor b) a capacitor
- vii. Write a note on super conductors.
- viii. What is meant by ferromagnetic substances?
- ix. What is meant by strain energy?
- x. What is meant by forward biasing and reverse biasing of P-n junction?
- xi. Write a note on LED.
- xii. Write down the applications of photo-diode.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Define Compton effect and pair production.
- ii. What advantages an electron microscope has over an optical microscope?
- iii. Which has the lower energy quanta? Radio waves or x-rays.
- iv. Define spectroscopy, holography.
- v. What are the advantages of laser over an ordinary light?
- vi. Why are heavy nuclei unstable?
- vii. A particle which produces more ionization is less penetrating. Why?
- viii. How can radioactivity help in the treatment of cancer?
- ix. Define Hadrons and Leptons.

(SECTION - II)

- 5. (a) What is potentiometer? How can it be used as
 - i) Potential divider
 - ii) Measuring of emf of a cell.
 - (b) Two point charges $q_1 = -1.0 \times 10^{-6}$ C and $q_2 = 4.0 \times 10^{-6}$ C are separated by a distance of 3.0 m. Find and justify the zero-field location.

- 6. (a) What is A.C. generator? Give its principle, construction and working of A.C. generator.
 - (b) A power line 10 m high carries a current of 200 A. Find the magnetic field of wire at the ground.
- 7. (a) Explain the RLC series resonance circuit. Determine the value of resonant frequency and write down its properties.
 - (b) The current flowing into the base of transistor is 100 μ A. Find its collector current I_C . Its emitter current I_E and the ratio $\frac{I_C}{I}$, if the value of current gain β is 100.
- 8. (a) What is meant by strain energy? Draw force extension graph for a vertically suspended wire stretched by a variable weight at the other end and by its graph derive a relation to calculate its value.
 - (b) An electron accelerated through a potential difference of 50 V. Calculate its de Broglie wavelength.
- 9. (a) What is nuclear reactor? Describe its principle, construction and working.
 - (b) Compute the shortest wavelength of radiation in the Balmer series. What value of 'n' must be used?

324-418-42000