

x - intercept of the line

2x + 5y - 1 = 0 is:

Slope of y - axis is:

19.

20.

Rawalpindi Board-2024

Roll No AVESTo be filled in by the candidate

HSSC-(P-II)- A-2024

Paper Code 8

9 5

Mathematics (Objective)

(For All Sessions)
(GROUP-I)

Time: 30 Minutes

 $\frac{1}{2}$

-1

1

5

(D) Undefined

(D)

Marks: 20

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

1.1	Midpoint of $A(2,0)$, $B(0,2)$ is:	(A)	(0, 2)	(B)	(2,0)	(C)	(2,2)	(D)	(1, 1)
2.	The point satisfies $x + 2y < 6$	(A)	(4, 1)	(B)	(3,1)	(C)	(1,3)	(D)	(1, 4)
3.	In a conic, the ratio of the distance from a fixed point to the distance from a fixed line is:	(A)	Focus	(B)	Vertex	(C)	Ecentricity	(D)	Centre
4.	Standard equation of Parabola is:	(A)	$y^2 = 4ax$	(B)	$x^2 + y^2 = a^2$	(C)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(D)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
5.	Equation of tangent to circle $x^2 + y^2 = a^2$ at $P(x_1, y_1)$ is:	(A)	$xx_1 + yy_1 = a^2$	(B)	$xx_1-yy_1=a^2$	(C)	$xy_1 + yx_1 = a^2$	(D)	$xy_1 - yx_1 = a^2$
6.	The volume of parallelopiped =	(A) ($(\underline{u} \times \underline{v}).\underline{\omega}$	(B)	$(\underline{u} \times \underline{v}) \times \underline{\omega}$	(C)	$\underline{u} \times (\underline{v} \times \underline{\omega})$	(D)	<u>u</u> × (<u>u</u> × <u>v</u>)
7.	The non-zero vectors are perpendicular when:	(A)	<u>u</u> . <u>v</u> = 1	(B)	$ \underline{u},\underline{v} =1$	(C)	$\underline{u}.\underline{v}=0$	(D)	$\underline{u}.\underline{v} \neq 0$
8.	<u>j</u> × <u>k</u> =	(A)	<u>i</u>	(B)	<u>-</u> <u><u>í</u></u>	(C)	0	(D)	<u>k</u>
9.	The range of $f(x) = 2 + \sqrt{x-1}$ is:	(A)	[1,+∞)	(B)	● [2, +∞)	(C)	(1,+∞)	(D)	(2,+∞)
10.	The perimeter P of square as a function of its area A:	(A)	3√A	(B)	 4√A 		\sqrt{A}	(D)	$2\sqrt{A}$
11.	If $f(x) = \frac{1}{x^2}$ then $f(3) = \frac{1}{x^2}$.	(A)	1 9	(B)	A START	(C)		(D)	1 27
12.	If $f(c) = 0 \& f''(c) > 0$ then C is point of:	(A)	Maxima	3	Minima	(C)	Inflection	(D)	Constant
13.	$\frac{d}{dx}(\log_a x) = \underline{\hspace{1cm}}.$	(A)	xlna	(B)	$\frac{lna}{x}$	(C) ·	$\frac{1}{x}$	(D)	$\frac{-1}{xlna}$
14.	$\frac{d}{dx}(\cot ax) = \underline{\hspace{1cm}}.$	M	cosec ² ax	(B)	a cosec²ax	(C)	−a cosec²ax	(D)	-a cosec ax
15.	$\int \frac{1}{\sqrt{1-x^2}} dx = \underline{\qquad}.$.(A)		(8)	$Cos^{-1}x + c$	(C)	$-Sin^{-1}x + c$	(D)	$-Cos^{-1}x + c$
16.	$\int \frac{1}{x} dx = \underline{\qquad}.$	(A)	lnx + c	(B)	$ak(\frac{1}{x^2}+c)rg$	(C)	$-\frac{1}{x^2}+c$	(D)	$\frac{1}{x} + c$
	J x								
17.	The solution of differential equation $\frac{dy}{dx} = -y \text{ is:}$	(A)	$y = xe^{-x}$	(B)	$y = ce^{-x}$	(C)	$y = e^x$	(D)	$y = ce^x$

(B)

3

1

· (C)

(C)

2

0

(A)

(A)

Roll No to be filled in by the candidate

Mathematics (Subjective)

HSSC-(P-II)-A/2024 (For All Sessions)

(GROUP-I) SECTION-I

pakcity.org §

(8x2=16)

Marks: 80

Time: 2:30 hours

Write short answers of any eight parts from the following: 2.

- If f(x) = 2x + 1, then find $f \circ f(x)$.
- Evaluate $\lim_{h\to 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$ iii.
- Differentiate $\left(\sqrt{x} \frac{1}{\sqrt{x}}\right)^2 w. r. t x$
- Differentiate $x^2 sec4xw.r.tx$ vii.
- Find f(x) if $f(x) = e^x(1 + lnx)$ ix.
- Prove that $ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{2} \frac{x^4}{4} + \cdots$ χi.

- Express the area A of a circle as a function of its circumference C.
- iv. Define continuous function.
- vi. Find $\frac{dy}{dx}$ if $y^2 xy x^2 + 4 = 0$
- viii. Differentiate sin²xw.r.t. cos⁴x
- x. Find y_2 if $y = ln(x^2 9)$
- xii. Determine the interval in which f(x) = cosx is decreasing; $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Write short answers of any eight parts from the following: 3.

(8x2=16)

- Solve the differential equation $sec^2 x tan y dx + sec^2 y tan x dy = 0$
- Find the area between x axis and the curve $y = x^2 + 1$ from x = 1 to x = 2ii.
- iii. $\int x \ln x \, dx$

iv. Evaluate the integral $\int \frac{-2x}{\sqrt{4-x^2}} dx$

Evaluate: $\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx$

- vi. Evaluate the integral $\int (a + 2x)^{3/2} dx$
- Find the approximate change in the volume of a cube if length of its each edge changes from 5 to 5.02. νii.
- Show that the points A(0, 2), $B(\sqrt{3}, -1)$ and C(0, -2) are vertices of a right triangle. Viii.
- Convert the equation of line 4x + 7y 2 = 0 into normal form. ix.
- Fine the angle from the line with slope $\frac{-7}{3}$ to the line with slope $\frac{5}{2}$. X.
- Find the pair of lines represented by $3x^2 + 7xy + 2y^2 = 0$. χi.
- Find the point of intersection of lines 3x + y + 12 = 0 and x + 2y 1 = 0. xii.

4. Write short answers of any nine parts from the following:

(9x2=18)

Define feasible region. ĺ.

- Graph the solution set of in-equality $3x + 7y \ge 21$.
- iii. Find equation of circle with ends of diameter at (-3, 2) and (5, -6).
- Write down equation of tangent to the circle $x^2 + y^2 = 25$ at $(5 \cos\theta, 5 \sin\theta)$ İ۷.
- Find focus and vertex of Parabola $x^2 = 4(y 1)$ vi. Find equation of ellipse with data Foci (± 3 , 0) Minor axis of length 10. ٧.
- Find center of hyperbola $x^2 y^2 + 8x 2y 10 = 0$ VII.

Find \propto , so that $|\propto \underline{i} + (\propto +1)j + 2\underline{k}|=3$ X.

xii. If
$$\underline{v}$$
 is a vector for which \underline{v} . $\underline{i} = 0\underline{v}$. $\underline{j} = 0\underline{v}$. $\underline{k} = 0$, find \underline{v}

Find the area of triangle determined by the points P(0,0,0) Q(2,3,2) and R(-1,1,4)Χij.

Find the value of $2\hat{\imath} \times 2\hat{\jmath}$. \hat{k} xiii.

SECTION-II

Attempt any three questions. Each question carries equal marks: Note

(10x3=30)

(05)

(05)

Find the values of m and n, so that given function f 5. (a) is continuous at x = 3 when

$$f(x) = \begin{cases} mx, & \text{if } x < 3\\ n, & \text{if } x = 3\\ -2x + 9, & \text{if } x > 3 \end{cases}$$

(b) Find
$$\frac{dy}{dx}$$
, when $x = \frac{a(1-t^2)}{1+t^2}$, $y = \frac{2bt}{1+t^2}$

6. (a)

(05)

(05)

If $y = (cos^{-1}x)^2$, prove that $(1-x^2)y_2 - xy_1 - 2 = 0$.

Evaluate the integral $\int e^x \sin x \cos x \, dx$.

Solve the differential equation $y - x \frac{dy}{dx} = 3(1+x \frac{dy}{dx})$.

Graph the feasible region and corner a 7. (a)

(b)

(05)

$$2x + y \leq 10$$

$$x + 4y \le 12; x + 2y \le 10$$

 $2x + y \le 10; \qquad x + 4y \le 12; x + 2y \le 10;$ Show that the circles: $x^2 + y^2 + 2x - 8 = 0$; $x^2 + y^2 - 6x + 6y - 46 = 0$ touch internally. (05)8. (a)

(05)

Using vector method, for any triangle ABC, prove that: $c^2 = a^2 + b^2 - 2ab \cos C$. (b)

Find the focus, vertex and directrix of the Parabola; $x^2 = 4(y-1)$ 9. (a)

(05)

Find the lines represented by $3x^2 + 7xy + 2y^2 = 0$ and also find measure of the angle between them. (05)(b)

Roll No

HSSC-(P-II)- A-2024 (For All Sessions)

Paper Code	8	1	9	4

Mathematics (Objective)

(GROUP-II)

Time: 30 Minutes

Marks: 20

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer										
you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.										
1.1	If $r = 0$, the circle is called:	(A)	Unit circle	(B)	Circle	(C)	Ellipse	(D) Po	int circle	

you o	onsider correct, in the corresponding circle	, n, D,	O Of D giver in mone o	1 cac	ar question with marke	1011	of the difference and the offer	or bio	ridou.
1.1	If $r=0$, the circle is called:	(A)	Unit circle	(8)	Circle	(C)	Ellipse	(D)	Point circle
2.	[i i k]=	(A)	<u>i</u>	(8)	- <u>i</u>	(C)	ì	(D)	• 0
3.	If $\underline{u} = 2\underline{i} - \underline{j} + \underline{k}$, $\underline{v} = 4\underline{i} + 2\underline{j} - \underline{k}$ then $\underline{u} \times \underline{u} =$	(A)	u ²	(B)	• 0	(C)	1	(D)	2
4.	If \underline{u} , \underline{v} are two non-zero vectors, then area of parallelogram =	(A)	$ \underline{u} \times \underline{v} $	(B)	$\frac{1}{2} \underline{u}\times\underline{v} $	(C)	$\frac{1}{6} \underline{u}\times\underline{v} $	(D)	$\frac{1}{2}(\underline{u}\times\underline{v})$
5.	If k is any real number, $\lim_{x \to a} [kf(x)] =$	(A)	$\lim_{x\to a}f(x)$	(B)	$\lim_{\kappa \to a} k$	(C)	$\bullet \ k \lim_{x \to a} f(x)$	(D)	f(x)
6.	If $(fx) = x + 3$ then: $\lim_{x \to \tilde{3}} f(x) =$	(A)	6	(B)	0	(C)	-3	(D)	3
7,	If $y = e^{f(x)}$ then $\frac{dy}{dx} =$	(A)	e ^{f(x)}	(B)	$f(x)e^{f(x)}$	(C)	$f(x)e^{f(x)}$	(D)	
8.	Derivative of $x\sqrt{x^2+3} w.r.tx$ is:	(A)		(B)	$\frac{3x}{2\sqrt{x^2+3}}$	(Ć)	$\frac{3x^2+3}{x\sqrt{x^2+3}}$	(D)	$\frac{3x^2+3}{2x\sqrt{x^2+3}}$
9	Derivative of $tanh(x^2)$ is:	(A)	2x sech ² x	(B)	2 sech ² x ²	760	2x sech ² x ²	(D)	sech ² x ²
10.	Derivative of "x" w.r.t "x" is:	(A)	x ²	(B)	2 (0)	(C)	0	(B)	1
11.	In integration, substitution of $\sqrt{4-x^2}$ is:	(A)	$x = sin\theta$	(B)	=2 sinθ	(C)	$x = \sin 2\theta$	(D)	$x = 2 \cos\theta$
12.	$\int Tan x dx =$	(A)	ln cos x + c	,	$\frac{1}{\ln \cos x} + c$	(0)	$-ln \cos x +c$	(D)	$Sec^2x + c$
13.	Solution of differential equation: $(e^* +$	· e ^{-x})	$\frac{dy}{dx} = e^x - e^x \text{ is:}$			3			
	(A) $-ln(e^x + e^{-x}) + c$ (B)	N	$\ln\left(e^{x}-e^{-x}\right)+c$	Ē	$(0)^{\circ}$ In $(e^x +$	e-x)	+ c (D)	(e ^x	$\frac{+e^{-x})^2}{2}$
14.	$\int SinxCos \ x \ dx =$	(A)	$\frac{Sin^2x}{2} + c$	(B)	$\frac{\cos^2 x}{2} + c$	(C)	-Sin x + c	(D)	Cosx + c
15.	The line: $ay + b = 0$ is	(A)	Parallel to y-axis	(B)	Parallel to x-axis	(C)	Passing through origin	(D)	Lies in Quad. I
16.	The slope of line joining the points $(-2,4)$; $(5,11)$ is:	(A)*	1	(B)	pakc <u>i</u> ty.org	(C)	45°	(D)	45°
17.	The location of the plane of the point $P(x, y)$ for which $y = 0$ at:	(A)	Origin	(8)	y – axis	(C)P		(D)	Ist Quad
18.	The maximum and minimum values occur at:	(A)	Corner point	(B)	Any point	(C)	Convex region	(D)	Corner points of feasible region
19.	The line intersect the circle at:	(A)	One point	(B)	Two points	(C)	Infinite points	(D)	More than two points
20.	Diameter of circle: $x^2 + y^2 = 16$ is:	(A)	8	(B)	4	(C)	16	(D)	32

to be filled in by the candidate Roll No

Mathematics (Subjective)

HSSC-(P-II)-A/2024

(GROUP-II)

Marks: 80

SECTION-I

Write short answers of any eight parts from the following: 2.

(8x2=16)

- Define even function with example.
- Evaluate: $\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2}$ iii.
- Find $\frac{dy}{dx}$ from first principles if $y = \frac{1}{\sqrt{x+a}}$.
- Find $\frac{dy}{dx}$ if $x^2 4xy 5y = 0$. vii.
- Find f(x) if $f(x) = x^3 e^{1/x}$.
- Apply Maclaurin Series expansion to prove that: $cosx = 1 - \frac{x^2}{2i} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$

- Find $f \circ g(x)$ if f(x) = 2x + 1, $g(x) = \frac{3}{x-1}$, $x \neq 1$.
- Prove that Sinh2x = 2 Sinhx Coshx. iv.
- Differentiate w. r. t x; $\frac{(x^2+1)^2}{x^2-1}$ vi.
- Differentiate w.r.t θ ; $tan^3\theta sec^2\theta$. viii.
 - Find y_2 if $y = 2x^5 3x^4 + 4x^3 + x 2$.
- Find extreme values for $f(x) = 3x^2$ χij.

Write short answers of any eight parts from the following: 3.

(8x2=16)

- i. Evaluate $\int x\sqrt{x^2-1} dx$
- Evaluate: $\int \frac{x}{\sqrt{4+x^2}} dx$ iii.
- Evaluate: $\int_{-\infty}^{\infty} \frac{x}{x^2 + 2} dx$
- Solve the differential equation $\frac{1}{x}\frac{dy}{dx} = \frac{1}{2}(1+y^2)$ vii.
- Use differentials to approximate the value of (31)5
- iv. Evaluate the integral $\int \frac{e^{m \tan^{-1}x}}{x^{1+x^2}} dx$
- Find the area between x = ax and the curve $y = 4x x^2$
- The points A(-5, -2) and B(5, -4) are ends of a diameter of a circle. Find the centre and radius of circle. viii.
- The coordinates of a point p are (-6, 9). The axes are translated through the point O(-3, 2). Find the coordinates ix. of p referred to the new axes.
- Check whether the origin and the point p(5, -8) lies on the same side or on the opposite sides of the line 3x + 7y + 15 = 0X.
- By means of slopes, show that the following points lie on the same line (-4,6); (3,8); (10,10). xi.
- Determine the value of p such that the lines 2x 3y 1 = 0, 3x y 5 = 0 and 3x + py + 8 = 0 meet at a point. χij.

Write short answers of any nine parts from the following: 4.

(9x2=18)

- Graph the solution set of $3y 4 \le 0$ in xy plane. i.
- ii. Define convex region.
- Find an equation of circle of radius a and lying in the second quadrant tangent to both the axes. iii.
- Find center and radius of circle $5x^2 + 5y^2 + 24x + 36y + 10 = 0$. i٧.
- Write down equation of normal to the circle $x^2 + y^2 = 25$ at (4, 3). ٧.
- Find vertex and directrix of the parabola $y^2 = -12x$. νi.
- Find the point of intersection of conics $x^2 + y^2 = 8$ and $x^2 y^2 = 1$. vii.
- Find center and foci of hyperbola $\frac{y^2}{4} x^2 = 1$. viii.
- ix. Find a vector of magnitude 4 and is parallel to $2\underline{i} 3j + 6\underline{k}$.
- Find direction cosines of \overrightarrow{PQ} where P = (2, 1, 5) and Q = (1, 3, 1).
- Find volume of parallelopiped whose edges are $\underline{u} = \underline{i} 2\underline{j} + 3\underline{k}$, $\underline{v} = 2\underline{i} j \underline{k}$ and $\underline{w} = \underline{j} + \underline{k}$ χi.
- xiii. Find \propto so that $\underline{u} = \propto \underline{i} + 2 \propto \underline{j} \underline{k}$ and $\underline{v} = \underline{i} + \propto \underline{j} + 3\underline{k}$ are perpendicular. Find the value of $\begin{bmatrix} \underline{k} & \underline{i} & j \end{bmatrix}$. XII.

SECTION-II

Note Attempt any three questions. Each question carries equal marks:

(10x3=30)

5. (a) Evaluate:
$$\lim_{\theta \to o} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$$

(b) Differentiate
$$\cos \sqrt{x}$$
 from the first principle. (5+5)

6. (a) Show that
$$y = \frac{mx}{x}$$
 has maximum value at $x = e$

(b) Evaluate:
$$\int x^3 \cos x \, dx$$
 (5+5)

7. (a)
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x \, dx}{\sin x \, (2 + \sin x)} \, dx$$

(b) Minimize
$$z = 2x + y$$
 subject to constraints $(5+5)$
 $x + y \ge 3$ $7x + 5y \le 35$
 $x \ge 0$ $y \ge 0$

- 8. (a) Find the coordinates of the points of intersection of the line x + 2y from the circle: $x^2 + y^2 2x 2y 39 = 0$ (5)
 - (b) If $\underline{a} = 4\underline{i} + 3\underline{j} + \underline{k}$ and $\underline{b} = 2\underline{i} \underline{j} + 2\underline{k}$. Find a unit vector perpendicular to both \underline{a} and \underline{b} . Also find the sine of the angle between them.
- 9. (a) Find the focus, vertex and directrix of the Parabola $x + 8 y^2 + 2y = 0$ (5)
 - (b) Find coordinates of the circumcenter of the triangle whose vertices are A(-2,3), B(-4,1) and C(3,5). (5)

Repart Part of the second seco

Rawalpindi Board-2023

HSSC-(P-II)-A/2023

Paper Code

Roll No

to be filled in by the candidate

(For All Sessions)

(Group-I)

Time: 30 Minutes

Marks : 20

Mathematics (Objective)

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

1.1
$$\lim_{x \to 0} \frac{e^{2x} - 1}{x} = ?$$

(C)

(C)

2x

Jndefined

$$-2$$

2.x

1/2

2

2.
$$\cos hx + \sin hx = ?$$

$$\frac{(D)}{ln2}$$

$$3. \quad \frac{a}{dx}[\ln(2^x)] = ?$$

0

1

 e^{-x}

(D)

$$4. \quad \frac{d}{dx}(\cos hx) = ?$$

(A)
$$-\sin hx$$

1

5. If
$$f(x) = \sqrt{x}$$
, then $f^{1}(0) = ?$

 $\frac{d}{dx}(\sin^{-1}x + \cos^{-1}x) = ?$

(Q)

7.
$$\int odx = ?$$

(A)

(B)

(D)

(D)

$$8. \int e^x(x+1) dx = ?$$

(A)
$$xe^x + c$$

(C)

$$\rightarrow$$

9.
$$\int_{0}^{\infty} \cos x \, dx = ?$$
10.
$$\int_{0}^{\infty} \sin 2x \, dx$$

$$\frac{\sin 2x}{\sin x} dx = ?$$

(C)
$$\frac{1}{2}sinx + c$$

(D)
$$\frac{1}{2}\cos x + c$$

11. The slope of a line
$$x = 5$$
 is:

TAS

(C)
$$(-2, -2)$$

(D)
$$(0,-1)$$

(A)
$$\sqrt{73}$$

-1

(1, 5)

e > 1

 $\sqrt{43}$

73

14. The solution of inequality
$$x + 2y < 6$$
 is:

15. Equation of Tangent to
$$x^2 +$$

$$y^2 = 4$$
 at (2, 0) is:

(À)

2

2

$$y = 1$$

$$y = 2$$

(D)
$$x = 2$$

$$y^2 = 4ax \text{ at } (a, 2a) \text{ is:}$$

1/2

 $\sqrt{41}$

18.

(A)
$$e = 0$$

(B)

$$e = 1$$

(C)

19. If
$$P := (2,3), Q = (6,-2),$$

then |PQ| is

then $\cos \beta =:?$

Radius of a circle $x^2 + y^2 = 2$ is:

(A)

$$\sqrt{40}$$

3

(D)

(D)

For a vector
$$\hat{V} = 2\hat{\imath} + 3\hat{\jmath} - 6\hat{k}$$
, (A)

$$\frac{2}{7}$$

 $\sqrt{42}$

621-12-A-

Time: 2:30 hours

Rawalpindi Board-2023 SECTION-I

2. Write short answers of any eight parts from the following:

(8x2=16)

Express perimeter P of a square as a function of its area A.

Evaluate lim_{x→0}

Define even function with example. iii.

iv. If
$$y = x^4 + 2x^2 + 2$$
, prove that $\frac{dy}{dx} = 4x\sqrt{y-1}$

V. Find derivative by definition
$$\frac{1}{\sqrt{x}}$$

Vi. Find
$$\frac{dy}{dx}$$
; $xy + y^2 = 2$

vii. Differentiate w.r.t
$$x$$
, $y = x^2 sec4x$

viii. Differentiate w.r.t x,
$$y = cot^{-1} \left(\frac{x}{a}\right)$$

ix. Find
$$\frac{dy}{dx}$$
 if $y = x\sqrt{\ln x}$

No. Apply the Maclaurin series to prove that:
$$e^{2x} = 1 + 2x + \frac{4x^2}{2!} + \frac{8x^3}{3!} + \cdots$$

$$dx$$

$$4x^2 + 8x^3 + \cdots$$

xi. Graph the solution set of
$$2x + y \le 6$$
.

xii. Define feasible region.

Write short answers of any eight parts from the following: 3.

(8x2=16)

Evaluate $\int tan^2xdx$. i.

Evaluate $\int \frac{(a-b)x}{(x-a)(x-b)} dx$

Evaluate $\int x \sin x dx$. iii.

Evaluate $\int_{\pi/3}^{\pi/3} \cos t \ dt$

Solve the differential equation y dx + x dy = 0

Find the areas between the x - axis and the curve $y = x^2 + 1$ from, x = 1 to xVII.

Find a unit vector in the direction of $V = \frac{1}{2} \cdot \frac{1}{1} + \frac{\sqrt{3}}{2} \cdot \frac{1}{2}$ viii.

Find direction cosines of V = 4i - 5j

Find α , so that vector $\underline{u} = 2$ $\alpha (\underline{i} + \underline{j} - \underline{k})$, $\underline{v} = \underline{i} + \alpha \underline{j} + \underline{4} \underline{k}$ are perpendicular. Χ.

Find the area of parallelogram whose vertices are: A(0,0,0) B(1,2,3) C(2,-1,1) D(3,1,4)xi.

A force $\vec{F} = 7i + 4j - 3k$ is applied at $p(1, -2\sqrt{3})$. Find its amount about the point Q(2,1,1)χij.

Write short answers of any nine parts from the following: 4.

(9x2=18)

Is $(\sqrt{176}, \pi)$ at a distance of 15 units from the drigh? İ,

By means of slopes, show that the print (-4,6) (3,8); (10,10) lie on the same line. ii.

Find K/so that the line joining A(7,3); B(k,-6) and the line joining C(-4,5), D(-6,4) are parallel. III.

Find the equation of the hide having y - intercept - 7 and slope - 5. iv.

Find the point of intersection of the lines x - 2y + 1 = 0 and 2x - y + 2 = 0٧.

Find equation of lines represented by $2x^2 + 3xy - 5y^2 = 0$ ٧i.

Find the measure of the angle between the lines represented by $9x^2 + 24xy + 16y^2 = 0$ νii.

Find an equation of the circle with ends of diameter at (-3, 2) and (5, -6)viii.

Show that the line 2x + 3y - 1 = 0 is tangent to the circle $x^2 + y^2 + 6x - 4y = 0$ ix.

Check the position of the point (5.6) with respect to the circle $x^2 + y^2 = 81$. Х.

Find focus and directrix of the parabola $x^2 = -16y$ xi.

Find an equation of ellipse if foci $(-3\sqrt{3}, 0)$ and vertices $(\pm 6, 0)$. XII.

Find equation of hyperbola with given data foci $(0, \pm 9)$, directrices $y = \pm 4$ xiii.

SECTION-II

Attempt any three questions. Each question carries equal marks:

(10x3=30)

Evaluate: 5. (a)

Please visit for more data at: www.pakcity.org

$$\lim_{x\to 0} \frac{Secx - Cosx}{x}$$

(b) If
$$y = \tan (2 \tan^{-1} \frac{x}{2})$$
, then show that $\frac{dy}{dx} = 4(\frac{1+y^2}{4+x^2})$

6. (a) Evaluate:

$$\int \frac{dx}{\frac{1}{2}Sinx + \frac{\sqrt{3}}{2}Cosx}$$

(b) Find equation of line through intersection of
$$x + 2y + 3 = 0$$
, $3x + 4y + 7 = 0$ and making equal intercepts on the axes.

Find the area bounded by the curve $f(x) = x^3 - 2x^2 + 1$ and x - axis in the 1st quadrant. 7. (a)

Minimize Z = 3x + y subject to the constraints $3x + 5y \ge 15$ $x + 6y \ge 9$ (b)

If $y = a \cos(\ln x) + b \sin(\ln x)$ prove that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$ 8. (a)

Find the coordinates of the points of intersection of the line 2x + y = 5 and the circle $x^2 + y^2 + 2x - 9 = 0$, also find the length of intercepted clord.

Find the centre foci , accentricity and vertices of the ellipse 9.(a) $v^2 + 16x + 4v^2 - 16v + 76 = 0$

22	55		D	eec m	TEV 4/2022		- T			
	l No to be filled in by the	e candi		34	-II)-A/2023	Pap	er Code	8 1	9	6
L	athematics (Obje				Sessions)	7	l'ime: 30 Min	iutes	Mark	s: 20
Note	e: Write Answers to the Questions on the ver you consider correct, fill the correspondent	e obiec	tive answer shee	t provided	I. Four possible an	nswers A, with Mar	B, C and D to ear	ach question	on are give	n. Which
1.1	Midpoint of $A(1,2) \& B(3,8)$ is:	(A)	(2,5)	(B)	(4, 10)	(C)	(2, 6)	(D)	(2,	
2.	(1, -3) is in the solution of	(A)	$x + y \ge 1$	L (B)	$x + y \le 0$	(C)	x + y = 0		x-y	
3.	Centre of circle $x^2 + y^2 - 6x + 4y + 13 = 0$	(A)	(3, 2)	(B)	(-3,2)	(C)	(3, -2)	(D)	(-3,	-2)
4.	Focus of parabola $x^2 = 4ay$ is:	(A)	(-a, o)	(B)	(o, -a)	(C)	(a, o)	(D)	(o,	a)
5.	Eccentricity e for hyperbola is:	(A)	e = 1	(B)	e = 0	(C)	e < 1	(D)	e >	0
6.	Length of major axis of $\frac{x^2}{9} + \frac{y^2}{4} = 1$	(A)	03	(B)	06	ICX	02	(D)	0	4
7.	Which one is not scalar quantity:	(A)	Work	(B)	Time	300	Magnetic field	(D)	\$pe	eø
8.	[<u>k i j</u>]	(A)	2	(B)	2000	(c)	1	(0))]	/ 1
9.	$\lim_{x \to 2} \sqrt{x^3 + 1} - \sqrt{x^2 + 5}$	(A)	-1 (NEC	0	>(c)	2	(D)	-:	2
10.	Area of circle of unit radius is:	(A)	TI-VE	(B)	2π	(C)	π^{\aleph}	(D)	2π	2
11.	$\frac{d}{dx}(3^x) = \underline{\hspace{1cm}}$	(A)	Burnx	(B)	3*ln2	(C)	3*ln3	(D)	x 3 ^x	-1
12.	Lagrange used notation for derivative.	P (A)	D f(x)	(B)	$\int_{f}^{1}(x)$	(C)	$\frac{d}{dx}f(x)$	(D)	Ġ(χ	:)
13.	$\frac{d}{dx}\cos 7x =$	(A)	7 Sin 7x	(B)	-7 Sin 7x	(C)	7 Cos 7x	(D)	-7 Co	s 7x
14.	Minimum value of function $f(x) = x^2 + 2x - 3$ is at $x = $	(A)	-3	(B)	kc <u>ity</u> .or	9 (C)	0	(D)	-1	L .
15.	$\int \frac{1}{1+x^2} dx = \underline{\hspace{1cm}}.$	(A)	$Sin^{-1}x + c$: (B)	$Cos^{-1}x + c$	(C)	$Tan^{-1}x + c$	(D)·	Cot-12	c + c
16.	$\int \frac{1}{x^2} dx =$)(A)	$-\frac{1}{x}+c$	(B)	$\frac{1}{x} + c$	(C)	$\frac{2}{x} + c$	(D)	$\frac{-2}{x}$ +	- c
17.	Solution of $\frac{dy}{dx} = 1$ is	(A)	$y = x^2 + c$	(B)	$y = e^x + c$	(C)	y = lnx + c	: (D)	y = x	+ c
18.	$\int_0^1 3x^2 dx = \underline{\qquad}.$	(A)	3	(B)	1	(C)	2.	(D)	0	
19.	Equation of line through origin with slope 2:	(A)	2x - y = 0	(B)	2x + y = 0	(C)	x + 2y = 0	(D)	x-2y	= 0
20.	Slope of line parallel to y-axis:	(A)	-1	(B)	0	(C)	∞	(D)	1	

Rawalpindi Board-2023 (8x2-(0)

ii. If $f(x) = (-x + 9)^3$, find $f^{-1}(x)$

iv. Differentiate w.r.t "x" $(\sqrt{x} - \frac{1}{\sqrt{x}})^2$

vi. Find $\frac{dy}{dx}$ if x = y Siny

Evaluate

Write short answers of any eight parts from the following:

Express perimeter P of a square as a function of its area A.

 $\lim_{x\to 0}\frac{1-\cos 2x}{x^2}$ iii.

v. If
$$y = \sqrt{x + \sqrt{x}}$$
 find $\frac{dy}{dx}$

vii. Find
$$f(x)$$
 if $f(x) = x^3 \cdot e^{1/x}$

ix. If
$$y = Sin h^{-1}\left(\frac{x}{2}\right)$$
, Find $\frac{dy}{dx}$

- Apply the Maclaurin series to prove that: $\sqrt{1+x} = 1 + \frac{x}{2} \frac{x^2}{8} + \dots$
- Graph the solution set of linear inequality in xy plane, $2x + y \le 6$ Xİ.
- What is a feasible solution? XII.

Write short answers of any eight parts from the following: 3.

Evaluate: $\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$ Using differentials find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ for $x^2 + 2y^2 = 16$ Evaluate: ∫ tan xdx

iii. Evaluate:
$$\int \frac{x+2}{\sqrt{x+3}} dx$$

Please visit for more data at: www.pakcity.org

V. Evaluate:
$$\int \frac{5x+8}{(x+3)(2x-1)} dx$$

Solve the differential equation $\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$ νii.

- Find sum of \overline{AB} and \overline{CD} where A(1,-1), B(2,0), C(-1,3) and B(-2,2)Vili
- Find direction Cosines of vector $\underline{V} = 3\underline{i} \underline{j} + 2\underline{k}$ ix.
- Find \propto so that $U=2\propto\underline{i}+\underline{j}-\underline{k}$ and $\underline{V}=\underline{i}+\infty$ and perpendicular. X.
- Compute $\underline{a} \times \underline{b}$ and $\underline{b} \times \underline{a}$ for $\underline{b} = \underline{i} + \underline{j}$. χi.
- Find volume of parallelopiped determined by w = i + 2j k, w = i 2j + 3k and w = i 7j 4kxii.
- Write short answers of any nine parts from the following: 4.
 - The point C(-5,3) is the center of the circle and P(7,2) lies on the circle. What is the radius of the circle. i.
 - Show, that the points A(0,2), $B(\sqrt{3},-1)$ and C(0,-2) are vertices of a right triangle.
- ii. The points P(-2,6) and O(-3,2) are given in xy - coordinate system. Find the XY - Coordinate of P iii. referred to the translated axes QX and OY.
- Find an equation of the line through (-5, -3) and (9, -1). İ٧.
- Convert 4x + 7y 2 = 0 in slope-intercept form. ٧.
- Find the lines represented by $3x^2 + 7xy + 2y^2 = 0$ pakeity.org
- ٧i. Find the point of intersection of the lines 3x + y + 12 = 0 and x + 2y - 1 = 0
- VII. Find center and radius of circle $5x^2 + 5y^2 + 14x + 12y - 10 = 0$ viii.
- Find focus and vertex of parabola $y^2 = -12x$ ix.
- Find foci of an ellipse $9x^2 + y^2 = 18$ Х.
- Find eccentricity of hyperbola, $\frac{y^2}{4} x^2 = 1$ Xi.
- Write parametric equations of hyperbola. XII.
- Write down equation of tangent to the circle $x^2 + y^2 = 25$ at (4, 3). xiii.

Attempt any three questions. Each question carries equal marks: Note

(b) Find $\frac{dy}{dx}$ if $x\sqrt{1+y} + y\sqrt{1+x} = 0$.

- Evaluate: 5. (a) Evaluate: 6. (a)
- (b) Find equation of the line through (5, -8) and perpendicular to the join of A(-15, -8) and B(10, 7).
- Solve the differential equation $\left(y x \frac{dy}{dx}\right) = 2\left(y^2 + \frac{dy}{dx}\right)$ 7. (a)
 - Graph the feasible region of the following system of linear inequalities and find the corner points. $2x + y \le 10, x + 4y \le 12, x + 2y \le 10$ $x \ge 0, y \ge 0$
- Show that $y = \frac{\ln x}{x}$ has maximum value at x = e.
 - Write an equation of the circle that passes through the given points A(4,5), B(-4,-3), C(8,-3)
 - the focus vertex and directrix of the parabola $x^2 4x 8y + 4 = 0$

(8x2=16)

(10x3=30)

(C) xdy + ydx

(D) xdy - ydx

(B) (x + y)dx

(A) xdx + ydy

MATHEMATICS (Essay Type)

(For All Sessions)

Time: 2:30 Hours

pakcity.org

SUBJECTIVE

Marks: 80

2. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- Search the domain and range from the real numbers of $g(x) = \sqrt{x^2 4}$
- The real valued functions f and g are defined below. Find (a) $f^2(x)$ (b) $g^2(x)$,

$$f(x) = \frac{1}{\sqrt{x-1}}$$
; $x \ne 1$, $g(x) = (x^2+1)^2$

iii- Evaluate Lim
$$x \to \infty$$
 $\frac{5x^4 - 10x^2 + 1}{-3x^3 + 10x^2 + 50}$

iv- Evaluate
$$\begin{array}{cc} \text{Lim} & \tan \theta - \sin \theta \\ \theta \to 0 & \sin^3 \theta \end{array}$$

- Give any example and sketch graphically discontinuous function.
- Differentiate w.r. to 'x'; $\frac{(1+\sqrt{x})(x-x^{\frac{3}{2}})}{\sqrt{x}}$

vii- Find
$$\frac{dy}{dx}$$
 if $y = \sqrt{\frac{a^2 + x^2}{a^2 - x^2}}$

viii- Find the derivative w.r.t. variable involved $\cos \sqrt{x} + \sin x$

ix- Find f'(x) if f(x) =
$$\ell \ln(\sqrt{e^{2x} + e^{-2x}})$$

- x- Produce y_2 from $y = e^{ax} \sin bx$
- x- Produce y₂ from y = e^{-x} sin bx xi- Determine the intervals in which f is increasing or decreasing;

$$f(x) = \cos x$$
 $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

xii- The perimeter of a triangle is 16 centimeters. If one side is of length 6 cm, what are lengths of the other sides for maximum area of the triangle?

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

i- Use differential find
$$\frac{dy}{dx}$$
; $x^4 + y^2 = xy^2$

ii- Evaluate
$$\int \frac{e^{2x} + e^{x}}{e^{x}} dx$$

iv- Evaluate
$$\int \sin^{-1} x \, dx$$

v- Evaluate
$$\int e^{x} \left(\frac{1}{x} + \ell n x \right) dx$$

vi- Evaluate
$$\int \frac{5x+8}{(x+3)(2x-1)} dx$$

vii- Evaluate
$$\int_{1}^{2} \frac{x}{x^2 + 2} dx$$

- Find the area between the x-axis and the curve $y = \sin 2x$ from x = 0 to $x = \frac{\pi}{2}$
- Show that the points A (-1, 2); B(7, 5) and C(2, -6) are vertices of a right triangle.
- Find an equation of vertical line through (-5, 3)
- Convert 15y 8x + 3 = 0 in slope-intercept form.
- Find the lines represented by; $x^2 2xy \sec \alpha + y^2 = 0$

4. Write short answers to any NINE questions:

→ pakcity.org

- i- Indicate the solution set of inequality $3x 2y \ge 6$
- What is objective function?
- Write an equation of circle with centre at $(\sqrt{2}, -3\sqrt{3})$ and radius $2\sqrt{2}$ iii-
- Check the position of the point (5, 6) with respect to the circle $x^2 + y^2 = 81$
- Find an equation of parabola with focus (-3, 1) and directrix x = 3
- Determine the equation of ellipse having foci (±3,0) and minor axis of length 10.
- Calculate the eccentricity of $\frac{y^2}{16} \frac{x^2}{40} = 1$
- Find an equation of the normal line to $y^2 = 4ax$ at $(at^2, 2at)$
- ix- If O is origin and $\overrightarrow{OP} = \overrightarrow{AB}$, find the point P when A and B are (-3, 7) and (1, 0) Respectively
- x- Write the direction cosines of $\underline{\mathbf{v}} = 2\underline{\mathbf{i}} + 3\underline{\mathbf{j}} + 4\underline{\mathbf{k}}$
- Prove that in any triangle ABC, $a^2 = b^2 + c^2 2bc \cos A$
- xii- If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$
- xiii- A force $\vec{F} = 3\underline{i} + 2\underline{j} 4\underline{k}$ is applied at a point (1, -1, 2). Find the moment of \vec{F} about the point (2, -1, 3)

Note: Attempt any three questions from the following:

 $10 \times 3 = 30$

- (a) Show that $\lim_{x \to 0} \frac{a^x 1}{x} = \log_e a$ 5-
 - (b) Show that $y = x^x$ has maximum value at $x = \frac{1}{e}$ (a) Integrate $\int \frac{4 + 7x}{(1+x)^2(2+3x)} dx$
- - (b) Find the point which is equidistant from the point A(5,3), B(-2,2) and C(4,2). What is radius of circumcircle of triangle ABC.
- (a) Find $\int_{0}^{\pi/4} \cos^2\theta \cot^2\theta d\theta$ 7-
 - (b) Minimize Z = 2x + y subject to constraints $x + y \ge 3$, $7x + 5y \le 35$, $x \ge 0$, $y \ge 0$
- 8-(a) Find the area of the triangular region. Whose vertices are A(5, 3), B(-2, 2), C(4, 2)
 - (b) Find the length of the chord cut off from the line 2x + 3y = 13 by the circle $x^2 + y^2 = 26$
- (a) Find equations of the common tangents to the two conics $\frac{x^2}{16} + \frac{y^2}{25} = 1$ and $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 9-
 - (b) Use vectors, prove that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and half as long.

622-12-S-25670

Inter-(Part-II) -A-2021

 $Roll\ No._$ _to be filled in by the candidate.

(For all sessions)

Paper Code	8	1	9	1
	1			

Mathematics (Objective Type)

Time: 30 Minutes

Marks:20

NOTE: Write answers to the questions on objective answer sheet provided. Four possible answers A,B,C & D to each question are given. Which answer you consider correct, fill the corresponding circle A,B,C or D given in front of each question with Marker or pen ink on the answer sheet provided. - 🍇 pakcity.org

$$D = x^3$$

2.
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta}$$
 equals.

3. The derivative of
$$\sqrt{x}$$
 at $x = 1$ is:

(A)
$$\frac{1}{2}$$

(D)
$$\frac{-1}{2}$$

4.
$$\frac{d}{dx} \left[\frac{1}{g(x)} \right]$$
 equals.

(A)
$$\frac{1}{g^2(x)}$$

(B)
$$\frac{-g'(x)}{(g(x))^2}$$

$$(c)$$
 $-g(x)$

(D)
$$\frac{1}{g(x)}$$

5. If $y = 5e^x$ then y_3 equals.

6. If
$$f(x+h) = \cos(x+h)$$
 then $f'(x)$ equals.

(A)
$$\cos x$$

(B)
$$-\cos x$$

$$(c) - \sin x$$

(D)
$$\sin x$$

7. Inverse of \intdx is:

(A)
$$\frac{d}{dy}$$

(B)
$$\frac{d}{dx}$$

(C)
$$\frac{dy}{dx}$$

(D)
$$\frac{dx}{dy}$$

8.
$$\int_{a}^{b} f(x) dx$$
 equals:

$$(A)$$
 $-\int_{a}^{a} f(x) dx$ (B) $\int_{-b}^{a} f(x) dx$

(B)
$$\int_{-b}^{a} f(x) dx$$

(C)
$$\int_{b}^{-a} f(x) dx$$

(D)
$$\int_{a}^{-b} f(x) dx$$

9. The general solution of $\frac{dy}{dx} = \frac{-y}{x}$ is: (A) xy = c (B) x^2v^2

$$(A)$$
 $xy = c$

$$(B) \quad x^2y^2 = c$$

(C)
$$\frac{x}{y} = c$$

(D)
$$\frac{y}{x} = c$$

10. $\int e^{-e} (\cos x - \sin x) dx$ equals: (B) $\bar{e}^x \cos x + c$ (A) $-\bar{e}^x \sin x + c$ (A) 3

(C) $\bar{e}^x + c$

(D) $\bar{e}^x \sin x + c$

11. The distance of point (3,7) from x-axis is:

(B) 7

(C) -3

(D) -7

12. Slope of Y-axis is:

(A) zero

(B) 1

(C) 2

(D) undefined

13. Equation of horizontal line through (7,-9) is:

(A) y = -9

(B) y = 7

(C) x = -9

(D) x = 7

14. (0,2) is solution of inequality.

(x) 3x + 5y > 7

(B) 3x + 5y < 7

(D) x > 0

15. Centre of circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is:

(A) (g,f)

(B) (-g, f)

(0,0)

(D) (-g,-f)

16. Equation of Latus rectum of parabola $x^2 = 4$

(A) y = -a

(D) x = a

(A) $(0,\pm 4)$

(c) $(\pm 4,0)$

(D) (±5,0)

18. The non zero vectors \underline{a} and \underline{b} are parallel if $\underline{a} \times \underline{b}$ is:

(A) zero

(E) 1

(C) 2

(D) 3

19. $\cos \theta$ equals:

(A) $\underline{a}.\underline{b}$

(B) $\underline{a} \times \underline{b}$

(c) $|\underline{a} \times \underline{b}|$

(D) $\hat{a}.\hat{b}$

20. If any two vectors of scalar triple product are equal then its value is:

(A) -1

(B) zero

(C) 1

(D) 2

Inter - (Part-II) -A-2021

Roll No._____to be filled in by the candidate.

(For all sessions)

Mathematics (Essay Type)

Time: 2:30 Hours

2. Write short answers of any eight parts from the following.

2x8=16

Marks: 80

i. If
$$f(x) = x^2 - x$$
, find (a). $f(-2)$ (b). $f(x-1)$

ii. Find
$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 + x - 6}$$
.

iii. Find
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin \theta}$$

iv. Differentiate w.r.t "
$$x$$
". $\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$.

v. Find
$$\frac{dy}{dx}$$
 if $3x + 4y + 7 = 0$

vi. Differentiate w.r.t "x"
$$\cos \sqrt{x} + \sqrt{\sin x}$$

vii. Differentiate w.r.t"
$$x$$
" $\cot^{-1}\left(\frac{x}{a}\right)$.

viii. If
$$y = log_{10}(ax^2 + bx + c)$$
, then find $\frac{dy}{dx}$

ix. If
$$y = x^2 . \bar{e}^x$$
, then find $\frac{d^2 y}{dx^2}$.

viii. Differentiate w.r.t"x" $\cot^{-1}\left(\frac{x}{a}\right)$. viii. If $y = log_{10}\left(ax^2 + bx + c\right)$, then find $\frac{dy}{dx}$. ix. If $y = x^2.\bar{e}^x$, then find $\frac{d^2y}{dx^2}$.

xi. If
$$f(x) = \sqrt{x+1}$$
 and $g(x) = \frac{1}{x^2}$, then find (a) $(gg)(x)$ (b) $(gof)(x)$

$$\inf f(x) = \cos x, \quad x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

xii. Find the intervals in which f(x) is increasing or decreasing $f(x) = \cos x$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

3. Write short answers of any eight parts from the following.

2x8=16

i. Using differential find
$$\frac{dy}{dx}$$
, $(x^2 + 2y^2)^2 = 16$

ii. Evaluate
$$\int x\sqrt{x^2-1} \ dx$$

iii. Evaluate
$$\int \frac{\left(1-\sqrt{x}\right)^2}{\sqrt{x}} dx$$
.

iv. Evaluate
$$\int \sin^2 x \, dx$$

v. Evaluate
$$\int \frac{ax+b}{ax^2+2bx+c} dx$$

pakeity.org
vi. Evaluate
$$\int_{0}^{3x} \left(\frac{3\sin x - \cos x}{\sin^2 x} \right) dx$$

vii. Sove
$$\frac{dy}{dx} = \frac{y^2 + 1}{\bar{e}^x}$$
.

viii. Find an equation of the vertical line through (-5,3).

ix. Find an equation of the line through (-5,-3),(9,-1)

x. Convert 4x+7y-2=0 in normal form.

xi. Find the area below the curve $y = 3\sqrt{x}$ and above the x-axis between x = 1 and x = 4.

xii. Find the mid point of the line segment joining the points A(3,1), B(-2,-4).

Write short answers of any nine parts from the following.

2x9 = 18

i. Graph the solution set by shading of inequality $5x-4y \le 20$.

ii. Find equation of circle with centre at $(\sqrt{2}, -3\sqrt{3})$ and radius $2\sqrt{2}$

iii. Write equation of tangent to the circle $3x^2 + 3y^2 + 5x - 13y + 2 = 0$ at $\left(1, \frac{10}{3}\right)$.

- iv. Find vertex of $x^2 4x 8y + 4 = 0$
- v. Find point of intersection of conics $3x^3 4y^2 = 12$ and $3y^2 2x^2 = 7$
- vi. Find equation of parabola whose focus is F(-3,4) and directrix is 3x-4y+5=0
- vii. Find the unit vector in the same direction of vector $\underline{V} = [3, -4]$.
- viii. If $\overrightarrow{AB} = \overrightarrow{CD}$ find the co-ordinate of the point A when points B,C,D are (1,2)(-2,5) and (4,11) respectively
- ix. Find $3\underline{v} + \underline{w}$ if $\underline{u} = \underline{i} + 2\underline{j} \underline{k}$, $\underline{v} = 3\underline{i} 2\underline{j} + 2\underline{k}$, $\underline{w} = 5\underline{i} \underline{j} + 3\underline{k}$.
- x. Find a vector of length 5 in the direction opposite that of $\underline{v} = \underline{i} 2\underline{j} + 3\underline{k}$.
- xi. Compute $\underline{b} \times \underline{a}$ if $\underline{b} = \underline{i} \underline{j} + \underline{k}$, $\underline{a} = 2\underline{i} + \underline{j} \underline{k}$.
- xii. Find the work done if the point at which the constant force $\overline{F} = 4\underline{i} + 3\underline{j} + 5\underline{k}$ is applied to an object, moves from $p_1(3,1,-2)$ to $p_2(2,4,6)$.
- xiii. If $\underline{a} + \underline{b} + \underline{c} = 0$ then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$.

10x3=30

- Section -II

 5. (a) If $f(x) = \begin{cases} 3x-1 & \text{if } x < 1 \\ 4 & \text{if } x = 1 \\ 2x & \text{if } x > 1 \end{cases}$, then show f(x) is continuous at x = 1.

 (b) If $x = \frac{a(1-t^2)}{1+t^2}$, $y = \frac{2bt}{1+t^2}$, then find $\frac{dy}{dx}$.

 5. (a) Find the approximate $\frac{dy}{dx}$.
- 6. (a) Find the approximate increase in the volume of a cube of the length of its each edge changes from 5 to 5.02.
 - (b) Determine the value of P such that the lines 2x-3y-1=0, 3x-y-5=0 and 3x+py+8=0 meet at a point.
- 7. (a) Evaluate $\int_{1}^{3} \left(x \frac{1}{x}\right)^2 dx$
 - (b) Minimize z = 2x + y subject to the constraints $x + y \ge 3$, $7x + 5y \le 35$, $x \ge 0$, $y \ge 0$.
- 8. (a) Write equations of two tangents from (2,3) to the circle $x^2 + y^2 = 9$
 - (b) Prove by vector method $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$
- 9. (a) Show that $\cos(x+h) = \cos x h \sin x \frac{h^2}{2!} \cos x + \frac{h^3}{3!} \sin x + \dots$
 - (b) Show that an equation of the parabola with focus at $(a\cos\alpha, a\sin\alpha)$ and

directrix $x \cos \alpha + y \sin \alpha + a = 0$ is $(x \sin \alpha - y \cos \alpha)^2 = 4a(x \cos \alpha + y \sin \alpha)$

Roll No._____ to be filled in by the candidate.

(For all sessions)

Paper Code

1

Mathematics (Objective Type)

Time: 30 Minutes Marks: 20

NOTE: Write answers to the questions on objective answer sheet provided. Four possible answers A,B,C & D to each question are given. Which answer you consider correct, fill the corresponding circle A,B,C or D given in front of each question with Marker or pen ink on the answer sheet provided.

- **1-1.** The domain of g(x) = 2x 5 is:
 - (A) IR

(B) the set of positive No.

(C) The set of negative real No.

(D) The set of non-negative real No.

$$2. \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{\frac{n}{2}} =$$

(D) e^3

3.
$$\frac{d}{dx}(x-5)(3-x) =$$

- (A) 2x + 8

(D) x + 8

4. If
$$3x + 4y + 7 = 0$$
, then $\frac{dy}{dx} =$

- (A) $\frac{3}{4}$
- $\frac{1}{2x-8}$

5.
$$\frac{d}{dx}(\sec x) =$$

- (A) sec x tan x
- (B) secx
- (C) co sec x
- (D) $-\sec x \tan x$

- 6. If $f(x) = \sin x$, then f'(0) =
 - (A) 0
- (B) 1

- (C) -1
- (D) 2

- Differential of y is denoted by:
 - (A) dy'
- (B) $\frac{dy}{dx}$

- (C) dy
- (D) dx

- 8. $\int \frac{1}{1+x^2} e^{\tan^{-1}x} dx =$
 - (A) est + c

$$9. \int_{0}^{x} \ln x \, dx =$$

(A) -1

(B) 0

(C) 1

(D) e

10. The order of differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 3x = 0$ is:

(A) 2

(B) 1

(C) 0

(D) 3

11. If a line " ℓ " is parallel to x-axis, then inclination=

(A) 90°

(B) 0^{0}

(C) 30°

(D) 45⁰

12. If a line " ℓ " intersect x-axis at (a,0), then "a" is called _____ of line " ℓ ".

(A) y-intercept

(B) x-intercept

(C) slope

(D) inclination

13. y = mx + c is _____form of equation of line:

(A) point slope

(B) intercept

(D) slope intercept

(D) 2x-1<0

(B) x = -y(C)

15. x = 0 is the solution of the inequality.

(A) 2x+1>0(B) 2x+1>016. The centre of circle $(x+1)^{2}$

(A) (1,2)

(B) (-1,2)

(D) (1,-2)

17. The equation of directrix of the parabola $x^2 = 4ay$ is:

(D) y = a

18. The centre of Ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 16$ is:

(B) (1.4)

(C) (-1,4)

(D) (0.0)

ig if a sign, vector then gr

(D) U.U

20 If $2\underline{i} + \alpha \underline{j} + 5\underline{k}$ and $3\underline{i} - \underline{j} - \alpha + \underline{k}$ are perpendicular, then $\alpha =$

(C) -1

(D) 2

621-012-A-*

Roll No.

(For all sessions)

Paper Code

Mathematics (Objective Type)

Time: 30 Minutes

Marks: 20

NOTE: Write answers to the questions on objective answer sheet provided. Four possible answers A,B,C & D to each question are given. Which answer you consider correct, fill the corresponding circle A,B,C or D given in front of each question with Marker or pen ink on the answer sheet provided.

1-1. If
$$f(x) = \sqrt{x+4}$$
, then $f(x^2+4)$ is equal to:

(A)
$$x^2 - 8$$

(B)
$$\sqrt{x^2-8}$$

(C)
$$\sqrt{x^2+8}$$

(D)
$$x^2 + 8$$

2.
$$\lim_{x \to 0} \frac{\sin 7x}{x}$$
 is equal to:

(C)
$$\frac{1}{7}$$

3.
$$\frac{d}{dx}\cos^2 x$$
 is equal to:

$$(A) - \sin^2 x$$

$$2\sin x$$

(D)
$$-2\cos x \sin x$$

2.
$$\lim_{x\to 0} \frac{\sin 7x}{x}$$
 is equal to:

(A) 1 (B) 7 (C) $\frac{1}{7}$

3. $\frac{d}{dx}\cos^2 x$ is equal to:

(A) $-\sin^2 x$ (B) $2\sin x$ (C) $2\sin x\cos x$

4. $1+x+\frac{x^2}{\lfloor 2}+\frac{x^3}{\lfloor 3}+\frac{x^4}{\lfloor 4}+\cdots$ is Maclauria series of:

(A) e^x (B) $\sin x$ (C) $\cos x$

5. If $x=at^2$, $y=2at$, then $\frac{dy}{dx}$ is equal to:

(D)
$$\ell n(1+x)$$

5. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx}$ is equal to:

(B)
$$\frac{1}{\ell}$$

(C)

(D)
$$\frac{1}{t^2}$$

6.
$$\frac{d}{dx} \left(\frac{1}{ax+b} \right)$$
 is equal to:

(A)
$$ax+b$$

(B)
$$\frac{-1}{(ax+b)^2}$$

(C)
$$\frac{-a}{(ax+b)^2}$$

(D)
$$\ln(ax+b)$$

7. If $y = \sin 3x$, then y_2 is equal to:

(A)
$$9\sin 3x$$

(B)
$$-9\sin 3x$$

(C)
$$9\cos 3x$$

$$-9\cos 3x$$

8.
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx$$
 is equal to:

(A)
$$\frac{\pi}{2}$$

(B)
$$\frac{\pi}{3}$$

(C)
$$\frac{\pi}{4}$$

(D)
$$\frac{\pi}{6}$$

- 9. Solution of the differential equation $\frac{dy}{dx} = \cos x$, is:
 - (A) $y = \sin x + c$
- (B) $y = -\sin x + c$
- (C) $y = \cos x + c$
- (D) $y = ln(\sin x) + c$

10. $\int e^{\tan x} (\sec^2 x) dx$ is equal to:

- (A) $e^{\tan x} + c$ (B) $e^x \cdot \tan x + c$
- (C) $e^x \cdot \sec x + c$
- (D) $e^{\cot x} + c$

- 11. $\int_{1}^{2} (x^2 + 1) dx$ is equal to:
 - (A) $\frac{3}{10}$

(C) $\frac{5}{3}$

(D) $\frac{8}{3}$

- 12. Point of concurrency of medians of a triangle is called:
 - (A) orthocentre
- (B) in-centre
- (C) ex-centre
- (D) centroid
- 13. The lines represented by $ax^2 + 2hxy + by^2 = 0$, are real and coincident if:
 - (A) $h^2 > ab$
- (B) $h^2 \neq ab$
- (D) $h^2 = a + b$

- 14. Equation of the line bisecting the first and third quadrant is:
- (B) y = -x
- (D) xy = c
- 15. Slope of the line which is perpendicular to the line 2x 4y + 11 = 0 is:

(D) -2

- 16. Point (1, 2), satisfies the inequality.
 - (A) 2x + y > 5
- (B) $2x + y \ge 5$
- (D) 2x + y < 5

- 17. The centre of the circle $(x+\beta)^2 + (y-2)^2 = 16$, equals.

- (C) (3,2)
- (D) (-3,-2)

- 18. The eccentricity of $\frac{y^2}{4} x^2 = 1$, equals.
- (B) $\sqrt{5}$

(c) $\frac{\sqrt{5}}{2}$

(D) $\frac{-\sqrt{5}}{2}$

- 19. $2i.(3j \times k)$ is equal to:
 - (A) 0

(B) 2

(C) 4

(D) 6

- $20. \cos \theta$ equals to:
 - (A) $\hat{a} \cdot \hat{b}$
- (B) $|\bar{a} \times \bar{b}|$

- (C) $\hat{a} \times \hat{b}$

Inter - (Part-II) -A-2018

Roll No.______to be filled in by the candidate.

(For all sessions)

Mathematics (Essay Type)

Time: 2:30 Hours

Marks: 80

Section -I

2. Write short answers of any eight parts from the following.

i. Prove the identity $\sec h^2 x = 1 - \tanh^2 x$.

ii. Find
$$f(x)$$
 if $f(x) = 3x^3 + 7$.

iii. Evaluate $\lim_{x \to \pi} \frac{\sin x}{\pi - x}$.

iv. Differentiate w.r.t
$$x$$
, $y = \frac{2x-1}{\sqrt{x^2+1}}$.

v. Find $\frac{dy}{dx}$, if $xy + y^2 = 2$.

vi. Differentiate $\sin^2 x$ w.r.t $\cos^4 x$.

vii. Differentiate $\cos^{-1} \left(\frac{x}{a} \right)$ w,r.t x

viii. Differentiate $(\ell nx)^x$ w.r.t x.

ix. Find f'(x) if $f(x) = x^3 e^{\frac{1}{x}}$.

x. Find $\frac{dy}{dx}$ if $\int x \sqrt{\ell nx}$.

xi. Find
$$y_2$$
, if $y = \sqrt{x} + \frac{1}{\sqrt{x}}$

xii. Determine the interval in which function is increasing or decreasing

for the mentioned domain. $f(x) = \cos x : x \in (-\pi/2, \pi/2)$

3. Write short answers of any eight parts from the following.

2x8=16

i. Evaluate: $\int x (\sqrt{x} + 1) dx$

ii. Evaluate:
$$\int \frac{1-x^2}{1+x^2} dx$$

iii. Evaluate: $\int \frac{-2x}{4-x^2} dx$.

iv. Evaluate:
$$\int e^x \left(\frac{1}{x} + \ell nx\right) dx$$

v. Evaluate: $\int \frac{2x}{1-\sin x} dx$.

vi. Evaluate:
$$\int_{-1}^{1} \left(x^{\frac{1}{3}} + 1 \right) dx$$

vii. Define the definite integral.

viii. Solve the differential equation ydx + xdy = 0

ix. Define the corner point.

x. Graph the solution set of linear inequality $2x + y \le 6$.

xi. Find δy and dy in $y = x^2 + 2x$, when x changes from 2 to 1.8.

xii. Find the area between the x – axis and the curve $y = x^2 + 1$ from x = 1 to x = 2.

4. Write short answers of any nine parts from the following.

i. Find h such that A(-1,h), B(3,2) and C(7,3) are collinear.

iii. Find an equation of the line through (-5,-3) and (9,-1).

iv. Find the lines represented by the homogeneous equation
$$3x^2 + 7xy + 2y^2 = 0$$

v. Find measure of the angle between the lines represent by $x^2 - xy - 6y^2 = 0$.

vi. Find the equation of circle with centre
$$(\sqrt{2}, -3\sqrt{3})$$
 and radius $2\sqrt{2}$.

vii. Find the condition that the line
$$y = mx + c$$
 may touch the circle $x^2 + y^2 = a^2$.

viii. Derive equation of ellipse in standard form.

'x. Find centre and foci of the
$$x^2 - y^2 = 9$$

x. Let
$$\underline{U} = \underline{i} + 2\underline{j} - \underline{k}$$
 and $\underline{V} = 3\underline{i} - 2\underline{j} + 2\underline{k}$ find $\underline{U} + 2\underline{V}$.

xi. Find
$$\alpha$$
, so that $\left|\alpha \underline{i} + (\alpha + 1)\underline{j} + 2k\right| = 3$.

xiii. Find the value of $2\underline{i} \times 2j.\underline{k}$.

Note: Attempt any three questions from the following.

5. (a) Evaluate:
$$\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$$

(b) Show that
$$\frac{dy}{dx} = \frac{y}{x}$$
 if $\frac{y}{k} = \tan^{-1} \frac{x}{y}$.

6. (a) Evaluate:
$$\int \sqrt{x^2 + 4} dx$$

the angle between/them. $2x^2 + 3xy - 5y^2 = 0$.

7. (a) Evaluate:
$$\int_{1/2}^{1} \frac{\left(x^{\frac{1}{3}} + 2\right)^2}{x^{\frac{2}{3}}} dx$$

(b) Minimize
$$z = \delta x + y$$
 subject to the constraints $3x + 5y \ge 15$, $x + 6y \ge 9$, $x \ge 0$, $y \ge 0$.

8. (a) Find an equation of parabola if focus is
$$(-3,1)$$
, directrix $y=1$.

- (b) Use vectors to prove that the diagonals of a parallelogram bisect each other.
- 9. (a) Find the centre, foci, eccentricity, vertices and directrices of $9x^2 + y^2 = 18$.
 - (b) Prove that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ by using vector method.

2x9=18

10x3=30