_	er Code		2024 (1 st -A)	4 (1 st -A)					
_	ber: 4193	INTERMED	IATE PART-II (1	2 th Class)	Roll No:				
	MATHEMATICS PAPER-II GROUP-I								
	TIME ALLOWED: 30 Minutes OBJECTIVE MAXIMUM MARKS: 20								
Q.M	Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the								
			more bubbles will						
S.#	QUEST	TIONS	A	В	C	D			
1	Length of latus rac	ctum of ellipse	$2a^2$	a^2	b^2	$\frac{2b^2}{}$			
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is:		$\frac{2a^2}{b}$	$\frac{a^2}{b}$	${a}$	a			
	$\frac{1}{a^2} + \frac{1}{b^2} = 1$ is:		_						
2	Equation of tanger	nt to circle	$xx_1 + yy_1 = a^2$	$xx_1 - vy_1 = a^2$	$xy_1 + x_1y = a^2$	$xy_1 - x_1y = a^2$			
	$x^2 + y^2 = a^2$ at (x		• • • • • • • • • • • • • • • • • • • •						
3	If α , β , γ are dire								
	of a vector then		3	1 •	2	0			
	$\cos^2 \alpha + \cos^2 \beta + c$	$200^2 \times -2$							
1	For what value of	The state of the s	***						
4			-3.	15	-15	3			
	$5\hat{i} - \hat{j} + \hat{k}$ and α	•	-3.			3			
	parallel to each otl			A Comment					
5	If any two vectors		1		200	0 🌘			
	product are equal	then value is:				2			
6	$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{2n} = ?$		e^{-1}	V±V	Alle ²	e^3			
	$\left \begin{array}{c} \lim_{n\to\infty} \left(1+-\right) = ? \end{array}\right $		A	ë (i i					
7		2 . 1	VIA 3						
'	The function $f(x)$	$=\frac{x^2+1}{x^2}$ is	x = 2	x = 0	x = -1	x=1			
		x-1							
8	discontinuous at:	*.1	0		1	c			
0	Derivative of x^0 w	vith			1				
	respect to 'x' is:		CIT ()]		f![=(-)]=!(-)	f[a(w)]a'(w)			
9	$\frac{d}{dx}[fog(x)]=?$	An area constitution	f'[g(x)]	3 (XX)	f'[g(x)]g'(x)	f[g(x)]g'(x)			
10				Cli	Classes	Clampof			
10	Geometrically dy	means.	Tangent of	Slope of line	Slope of	Slope of tangent			
	Geometrically $\frac{dy}{dx}$	incaus.			x – axis				
11	$\lim_{h \to \infty} \frac{f(a+h) - f}{h}$	$(a)_{-2}$	95(a)	f'(x)	f'(a+h)	f(a)			
	$\lim_{h\to 0} \frac{h\to 0}{h\to 0}$	—=:		30/					
12	c f'(x)		$\ell n x +c$	$\ln f(x) + c$	$\ln f'(x) + c$	f(x)			
	$\int \frac{f'(x)}{f(x)} dx = ?$				ا ارده) داده				
13	3 (3399)	re n C	Construction of the second	$(ax+b)^{n+1}$	$(ax+b)^{n+1}$	$\frac{(ax+b)^{n+1}}{a+c}$			
1.5	$\int (ax + b) dx \text{ whe}$		+c	$\frac{(ax+b)^{n+1}}{a}+c$	$\frac{(ax+b)^{n+1}}{a(n+1)}+c$	+ c			
	Villa .	AND.	n+1	Las Monterios	u(// 1)	"			
14	(21.4. 2)		$x2^{x-1} + c$	$2^{x} \ln 2 + c$	2x+l	2×			
1-7	$\int 2^x dx = ?$		12 +0	2 112+6	$\frac{2^{x+1}}{x+1} + c$	$\frac{2^x}{\ell n 2} + c \bullet$			
	N.		pak	city.org	x+1	ln2			
15	When expression	Va ² 2X	w = a sin 0	W = 0 20 = 0	x = a ta= 0	$x = \sin \theta$			
	involve in integrat	ion, we	$x = a \sin \theta$	$x = a \sec \theta$	$x = a \tan \theta$	$\lambda = \sin \theta$			
	substitute:								
16	All points (x, y) v	with $x < 0$, $y < 0$	I	II	III	IV.			
	lies in quadrant:	e glove			_				
17	Slope of line passi	ing through	x_2-x_1	$y_2 + y_1$	y_2-x_2	$y_2 - y_1$			
	points $A(x_1, y_1)$ a	and	$\frac{z}{y_2-y_1}$		$\frac{y_1-x_1}{y_1-x_1}$	$\frac{y_2 - y_1}{x_2 - x_1} \bullet$			
	$B(x_2, y_2)$ is:		F2 F1	$x_2 + x_1$	71 21				
18	Equation of vertic	al line through	y=-5	y=5	x=3	x=-3			
	points $(3, -5)$ is:				•				
19	Which of the follo	wing ordered	(1, 1)	(3, 0)	(-2, 1)	(0, 0)			
1,7	pair does not satis		(1, 1)	(3, 0)	2, 2)	(3, 5)			
20	-		5	25	T _E	5			
20	Radius of circle x	$+y^{-} = 5 18$:	3	23	√5	$\frac{5}{2}$			
				A A	224/1 St A2 15000	1			

INTERMEDIATE PART-II (12th Class)				24 (1 st -A)		Roll No:		
	HEMATICS PAPER-II GROUP-I		CVID IE CVEIVE			NA A SYNDAYINA NA A DYZG. OO		
	E ALLOWED: 2.30 Hours					MAXIMUM MARKS: 80		
NOTE: Write same question number and its parts number on answer book, as given in the question paper. SECTION-I								
2. At		tan		ard-20	24	8 × 2 = 16		
(i)	Discuss continuity of $g(x) = \frac{x^2 - 9}{x - 3}$, $x \ne 3$ at $x \ne 3$					* * *		
(iii)	Define Constant Function. Give one example a	lso.	(iv)			when $f(x) = \frac{2x+1}{x-1}$ where $x > 1$		
(v)	Differentiate $\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$ w.r.t 'x'.		(vi)	Find 6	$\frac{dy}{dx}$, if y	$y^2 + x^2 - 4x = 5$		
(vii)	Find derivative of $x^2 - \frac{1}{x^2}$ w.r.t. x^4		(viii	Prove	that $\frac{d}{dx}$	at $\frac{d}{dx}[\cot^{-1}x] = -\frac{1}{1+x^2}, x \in R$ aylor series expansion of function f		
(ix)	Determine the values of x for which f defined	as	(x)	Define at x =		series expansion of function f		
(xi)	$f(x) = x^2 + 2x - 3 \text{ is increasing.}$ Find y_2 , if $y = \ln\left(\frac{2x + 3}{3x + 2}\right)$		(xii		$\frac{dy}{dx}$, if y	- Ya sin x		
	(3x+2)		1	Find -	$\frac{dx}{dx}$, "	The second secon		
	tempt any eight parts.					8 × 2 = 16		
(i)	Find dy if $y=x^2+2x$ and x changes from 2 to 1.8.	(i	i)	Evaluate	$\int \frac{dx}{\sqrt{x}(\sqrt{x})}$	+1)		
(iii)	Evaluate $\int \cos 3x \sin 2x dx$	(i	v)	Evaluate	$\int \sec x$	dx		
(v)	Evaluate $\int x^2 \ln x \ dx$	(v	ri)	Evaluate	$\int_{0}^{\pi/4} \sec x (s)$	dx = cx + tan x) dx		
(vii)	Solve the differential equation $\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$ (viii) Show that the points $A(3, 1)$, $B(-2, -3)$ and $C(2, 2)$ are vertices of an isosceles triangle.							
(ix)								
(x)								
(xi)								
(xii)	Find the angle from the line with slope $\frac{-7}{3}$ to	he li	ne wit	h slope 5.				
4. At	tempt any nine parts.		2			9 × 2 = 18		
(i)	What are Decision Variables?	N	(ii)	Draw the	graph o	f inequality $2x + 3y \le 12$		
(iii)	Find the centre and radius of the circle $x^2 + 3b^2$	×6×	+4y	+13 = 0				
(iv)	Check the position of the point (5, 6) with res	ect t	o the	circle x ² +	$y^2 = 81$			
(v)	Find the focus and directix of the parabola x^2				-			
(vi)	Write an equation of the ellipse with centre (0,	-		(3.), ve	rtex (0,	4).		
(vii)	Find foci and eccentricity of $x^2 - y^2 = 9$	j E	DI.	GAIR	JN			
(viii)	Find the length of the tangent drawn from the p	oint	P(-5	, 10) to the	circle 5	$5x^2 + 5y^2 + 14x + 12y - 10 = 0$		
(ix)	Write the direction cosines of $\underline{v} = 2\underline{i} + 3\underline{j} + 4\underline{k}$			East atolism (a) Layria				
(x)	Find a vector whose magnitude is 4 and paralle	l to 2	2i-3j	+ 6 <u>k</u>	TV5	//		
(xi)	Find $\underline{b} \times \underline{a}$ where $\underline{a} = 3\underline{i} - 2\underline{j} + \underline{k}$, $\underline{b} = \underline{i}$	+ <u>j</u>	pak	city.or	g			
(xii)	Find the value of $3\underline{i} \cdot \underline{k} \times \underline{i}$		(xiii)		$+\underline{c}=0$,	then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c}$		
NOTE		CTI	ON-I	<u> </u>		3 × 10 = 30		
5.(a)	1 (1)	If	v=0.0	ος ³ θ - 11-	-h sin ³	θ , show that: $a\frac{dy}{dt} + b \tan \theta = 0$		
6.(a)	Show that $\lim_{x \to 0} \frac{a^2 - 1}{x} = \log_e a$ If $y = (\cos^{-1} x)^2$, prove that					ax		
	1					$\frac{a^2}{2}\sin^{-1}\frac{x}{a} + \frac{x}{2}\sqrt{a^2 - x^2} + c$		
7.(a)	$(1-x^{2})y_{2} - xy_{1} - 2 = 0$ Evaluate $\int_{0}^{\sqrt{3}} \frac{x^{3} + 9x + 1}{x^{2} + 9} dx$ (b)					$5y$ subject to the constraints $x \ge 0$, $y \ge 0$		
8.(a)	Write an equation of the circle that passes thro	ıgh	A(-7)	7, 7), B(5)	(6, -1), (6, -1)	C(10, 0)		
(b)	Prove that in any triangle ABC $a = b \cos C$							
9.(a)	Find the focus, vertex and directix of the parab					akcity.org		
	The midpoints of the sides of a triangle are (1, find coordinates of the vertices of the triangle.	-1),	(-4,	-3) and (-1, 1).	% harron 1 a see		

2024 (1st-A) Paper Code Roll No: Multan Board-2024 INTERMEDIATE PART-II (12th Class) Number: 4196 MATHEMATICS PAPER-II **GROUP-II MAXIMUM MARKS: 20 OBJECTIVE TIME ALLOWED: 30 Minutes** Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. S.# **QUESTIONS** y - 4 = 0The equation of directix of the parabola x + 4 = 0x - 4 = 0 $x^2 = -16y$ is: 2 The eccentricity of $\frac{y^2}{4} - x^2 = 1$ is: 2 $\sqrt{5}$ $3\hat{i}\cdot(2\hat{j}\times\hat{k})=?$ 6 3 $Cos \theta$ equal to: $\hat{a} \times \hat{b}$ $\hat{a} \times \hat{b}$ $\underline{a} \times \underline{b}$ 4 2 The length of the vector $2\hat{i} - 2\hat{j} - \hat{k}$ is: 5 The function $x^2 + xy + y^2 = 2$ of x **Explicit** mplicit 6 Constant Even If f(x)=2x-8, then $f^{-1}(x)=?$ 8-2xx+87 x ln3 $3^{x} lnx$ $\frac{d}{dx}(3^x) = ?$ pakcity.org If $y = \cos^{-1} \frac{x}{a}$, then $\frac{dy}{dx} = ?$ $\frac{a}{\sqrt{a^2 - x^2}}$ $\frac{d}{dr}(\cos x) = ?$ sec xsec x $-\sin x$ 11 If $y = \cos^{-1} \frac{x}{a}$, then $\cos y = \frac{x}{a}$ sin y 12 $\int \sin x \, dx = ?$ cosπ 0 1 2 13 $\ln |\sec x| + c$ $\ln |\cot x| + c$ $\ln |\cos ecx| + c$ $\ln |\sin x| + c$ $\int \tan x \, dx = ?$ $\int \frac{e^x}{e^x + 5} dx = 2.$ $e^{2x} + 7 + c$ $e^{2x} + 5$ $\ln(e^x + 5) + c$ $(e^{x}+5)+c$ cosecx + c $\cot x + c$ $\cos x + c$ 15 $\int -\cos e c^2 x \ dx = ?$ Symmetric Two-points If α is the inclination of line ℓ , then Point-slope Normal form 16 $\frac{x-x_1}{\cos\alpha} = \frac{y-y_1}{\sin\alpha} = r(say)$ is called: form form form v = xy = 0Equation of line bisecting first and x = 0third quadrant is: 17 0 3 2 18 The perpendicular distance of line 3x+4y-15=0 from the origin is: Left Half Right Half Upper Half Lower Half 19 The graph of $2x \ge 4$ lies in: Plane Plane Plane Plane 25 Radius of circle $x^2 + y^2 = 5$ is: 5 -520 $\sqrt{5}$ 16(Obj)(公公公)-2024(1⁵¹-A)-12000 (MULTAN)

	<u>tan Board-2024</u> Rmediate Part-II (12 th C	lass)	1	2024	(1 st -A)		Roll No:	
		ROUP-II						
TIME	ALLOWED: 2.30 Hours	<u> </u>	SUBJ	ECTI	VE		MAXIMUM MARKS: 80	
NOTE: Write same question number and its parts number on answer book, as given in the question paper. SECTION-I								
2. Att	empt any eight parts.						8 × 2 = 16	
(i)	Define Implicit Function.	(ii) Wit	hout finding	the inv			n and range of f^{-1} $f(x) = \sqrt{x+2}$	
(iii)	Prove that $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$			(iv)	Evaluate $\lim_{x\to 0} \frac{\sin x^0}{x}$ pakcity.org			
(v)	Find by definition, derivative of 2, with respect to x	$x^2 + 1$		(vi)	Differentiate	with re	espect to 'x' $\frac{x^2+1}{x^2-3}$	
(vii)	Find $\frac{dy}{dx}$ if $y^2 - xy - x^2 + 4 = 0$)		(viii)	Find $\frac{dy}{dx}$ if $x = y \sin y$			
(ix)	Find $f'(x)$ if $f(x) = x^3 e^{\frac{1}{x}}$, x			(x)	Find y_2 if $y = \ln\left(\frac{2x+3}{3x+2}\right)$			
(xi)	By Maclaurin's series, show that			(xii)			interval f' is increasing or	
	$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$		ĺ		_		ain mentioned	
	2! 4! 6!				f(x) = 4 - x	x^2, x	c∈(-2, 2)	
	empt any eight parts.						8 × 2 = 16	
(i)	Find δy and dy in $y = x^2 - 1$	where x	changes fron	n 3 to 3	3.02.			
(ii)	Evaluate the integral $\int \frac{1}{x^2 + 4x + }$	$\frac{1}{13} dx$		(iii)	Evaluate the i	integra	$\int x \ln x dx$	
(iv)	Evaluate $\int_{-2}^{0} \frac{1}{(2x-1)^2} dx$			(v)	Find the area bounded by the curve $y = x^3 + 3x^2$ and the $x - axis$.			
(vi)	Solve the differential equation sin		$\frac{dx}{dx} = 1$	(vii)	Find the general solution of the equation $\frac{1}{dx} - x = xy$			
(viii)	Show that the points $A(3, 1)$, $B(-1)$	-2, -3) an	C(2,2)	are ver	tices of an isoso	celes tr	iangle.	
(ix)	The xy – coordinate axes are rotat	ed about th	e origin thro	ugh the	indicated angl	e and	the new axes are OX and OY .	
	Find the xy - coordinates of P wi				s P(-5, 3);	=30)	6	
(x)	Write down an equation of the stratand parallel to a line passing through				(xi) Fin	d the p +7y:	point of intersection of the lines $= 35$, $3x - 7y = 21$	
(xii)	Find an equation of the line with x	- intercep	t-3 and y	-inter	cept 4.			
	empt any nine parts.		1 (2//	~ ·		9 2 = 18	
(i)	Define Feasible Solution.				the inequality	x+2	<i>y</i> < 6	
(iii)	Find the equation of the circle with	centre at	√200 3√3) and r	adius $2\sqrt{2}$.			
(iv)	Find focus and directix of the paral	bola $\chi^2 = \frac{1}{2}$	-8(x-3)					
(v)	Find length of tangent from the poi	int (-5, 10) to the circl	$e 5x^2$	$+5y^2 + 14x$	+12y	-10 = 0	
(vi)	Find the centre and the foci of ellip	$se 9x^2 + v^2$	=18 (vii)	Wri	te equation of h	yperbo	ola with foci (±5,0) and vertex (3,0)	
(viii)							$\overrightarrow{B} = 4\underline{i} - 2\underline{j}$ and B is the point $(-2,5)$.	
(x)	If $\alpha \underline{i} + (\alpha + 1)\underline{j} + 2\underline{k} = 3$. Fin	d the value	of α .		of a Nameton .	1		
(xi)	Show that the vectors $3\underline{i} - 2\underline{j} + \underline{i}$	$\underline{k}, \underline{i} - 3\underline{j}$	+5k and $2k$	<u>i</u> + <u>j</u> -	4k form a right	nt angl	e./	
(xii)	If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove the	at $\underline{a} \times \underline{b} =$	$=\underline{b}\times\underline{c}$					
(xiii)	A force $\underline{F} = 2\underline{i} + \underline{j} - 3\underline{k}$ acting a	at a point A	4(1, -2, 1)	. Find	the moment of	F abo	out the point $B(2, 0, -2)$	
			SECTION	ON-II				
NOTE						(b)	3 × 10 = 30	
5.(a) .	If $f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+1}}{x-2} \\ k, \end{cases}$	$\frac{7}{x}$, $x \neq x = x = x$	2 2			(b)	Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = \tan^{-1} \frac{x}{y}$	
	Find value of 'k' so that 'f' is continuous at $x=3$.							
6.(a)	If $y = e^x \sin x$, show that $\frac{d^2y}{dx^2}$					(b)	Evaluate $\int \sqrt{3-4x^2} dx$	
7.(a)	Evaluate $\int_{0}^{\sqrt{3}} \frac{x^3 + 9x + 1}{x^2 + 9} dx$			(b)	linear inequal	ities an	egion of the following system of and find the corner points. $y \le 10$, $x+4y \le 12$, $x \ge 0$, $y \ge 0$	
8.(a)	Find volume of the tetrahedron wit	h vertices	4(2 1 8) D	(3.2	· · · · · · · · · · · · · · · · · · ·			
(b)						aiu L	(0, 0, 10)	
	Write equations of two tangents fro							
9.(a) (b)	Show that the equation $9x^2 - 18x$ Find an equation of medians of the	•	•		-			

	Paper Code Paper Code INTERMEDIATE PART-II (12th Class) Roll No: Roll No:								
Paper Code Number: 4195 INTERME			20 DIATE	23 (1 st -A) PART-II	I (12th Class)	Roll No:			
	THEMATICS	PAPER-II	G	ROUP-I					
TIM	IE ALLOWED:	30 Minutes		OBJ	ECTIVE	MAXIMUM I	MARKS: 20		
Q.No	is correct, fill t	hat bubble in from	nt of tha	at question	number, on bub	nd D. The choice ble sheet. Use ma n zero mark in tha	rker or pen to		
S.#1	QUEST			A	В	C	D		
1	Slope of line perpetthe line $x + 2y +$			$-\frac{1}{2}$	$\frac{1}{2}$ 2		$\frac{3}{2}$		
2	Distance of the po from x – axis is:	int (3, 2)		2	3	5	6		
3	The lines ℓ_1 , ℓ_2 wand m_2 are parallel		m ₁ +	$m_2 = 0$	$m_1 m_2 = 1$	$m_1m_2=-1$	$m_1 = m_2$		
4	x = 5 is the soluti inequality:	on of		+ 3 < 0	2x - 3 > 0	x + 1 < 0	x < 0		
5	The centre of the $(x+1)^2 + (y+2)^2$		(1	1, 2)	(-1, 2)	(-1:-2)	(1, -2)		
6	An angle in semi-comeasure:	circle is of		30"	45°	Б 0	90°		
7	The parabola $y^2 = 4ax$; $a > 0$ opens towards:			Left ○	Right	Upward	Downward		
8	In an ellipse, the fo	oci lie on:	Maj	dr axis	Minor axis	Directrices y	Centre		
9	Work done by a constant force \vec{F} during displacement \vec{d} is equal to		Ē	8.0	P	T-d	$ar{d} imesar{F}$		
10	If \vec{a} and \vec{b} vectors, the $\vec{a} \times$			ab A	GAD	$\vec{b} \times \vec{a}$	$-\vec{b} \times \vec{a}$		
11	Lim (e)				Ness of a Non-tonic O Law Motion	1	+∞		
12	f(x) = x is a/an:		(Odd	function	Even function	Neither even nor odd	Constant function		
13	If $C \in D_f$ and $f'(C)=0$ or $f'(C)$ does not exist, then the number C is called:			easing alue	Decreasing value	Stationary value	Critical value		
14	$1+x+\frac{x^2}{ 2}+\frac{x^3}{ 3}+$		S	in x	cosx	e ^x	e ^{2x}		
15	$\frac{d}{dx}(a^x) =$			a ^x	a ^x . lna	$\frac{a^x}{\ell na}$	lna a ^x		
16	The notation $f'(x)$ the mathematician		Lag	grange	Newton	Cauchy	Leibniz		
17	$\int \tan x dx =$		ln si	nx + c	$\ell n \cos x + c$	$ln \sec x +c$	$\ell n \tan x + c$		
18	$\int \left(\frac{1}{x} + \frac{\sin 2x}{\sin^2 x}\right) dx$	=	lnsir	12x + c	$\ell n(x\sin^2 x) + c$	$\ell n(x\cos^2 x) + c$	$\ell n(x\sin 2x) + c$		
19	$\int e^{2x} dx =$		2 <i>e</i>	^{2x} + c	$e^{2x}+c$	$2xe^{2x}+c$	$\frac{e^{2x}}{2}+c$		
20	$\int_{0}^{\pi/2} \cos x dx = 2$	pakcity.or		0	1	2	3		

2023 (1st-A) INTERMEDIATE PART-II (12th Class) Multan Board-2023

GROUP-I MATHEMATICS PAPER-II

TIME ALLOWED: 2.30 Hours

MAXIMUM MARKS: 80 **SUBJECTIVE**

NOTE: Write same question number and its parts number on answer book, as given in the question paper.

	SEC	TION-						
2. At	ttempt any eight parts.		$8 \times 2 = 16$					
(i)	What is a function?	(ii)	Prove the identity $\cosh^2 x - \sinh^2 x = 1$					
(iii)	Given that $f(x) = x^3 - 2x^2 + 4x - 1$ find $f\left(\frac{1}{x}\right)$	(iv)	Differentiate w.r.t. $x \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$					
(v)	Find $\frac{dy}{dx}$ if $\sqrt{x+\sqrt{x}}$	(vi)	Find $\frac{dy}{dx}$ if $y = x \cos y$					
(vii)	Differentiate $y = e^{f(x)}$ w.r.t. x	(viii)	Differentiate sin x w.r.t. cot x					
(ix)	Find y_4 if $y = \sin 3x$	(x)	What is a stationary point?					
(xi)	Define problem constraint.	(xii)	Define feasible region and feasible solution.					
3. At	ttempt any eight parts.	,	8 × 2 = 16					
(i)	Find δy and dy , if $y = x^2 - 1$, when x changes from 3 to 3.02.	(ii)	Evaluate $\int \sin(a+b)x dx$					
(iii)	Evaluate $\int \frac{-2x}{\sqrt{4-x^2}} dx$	(iv)	Evaluate $\int x \cdot \ln x dx$					
(v)	Evaluate $\int_{1}^{2} (x^2 + 1) dx$	(vi)	Find the area between the x – axis and the curve $y = \sin 2x$ from $x = 0$ to $x = \frac{\pi}{3}$					
(vii)	Solve $\frac{dy}{dx} = -y$	(viii)	Find the unit vector of $\underline{v} = 2\underline{i} - \underline{j}$					
(ix)	Write direction consines of $\underline{v} = 4\underline{i} - 5\underline{j}$	(x)	Find the cosine of the angle θ between \underline{u} and \underline{v} , $\underline{u} = [2, -3, 1]$, $\underline{v} = [2, 4, 1]$					
(ixi)	Prove that $\underline{a} \times (\underline{b} + \underline{c}) + \underline{b} \times (\underline{c} + \underline{a}) + \underline{c} \times (\underline{a} + \underline{b}) = 0$	(xii)	Find the volume of the parallelepiped for which the given vectors are $ \underline{u} = \underline{i} + 4\underline{j} - \underline{k}; \underline{v} = \underline{i} - \underline{j} - 2\underline{k}; \underline{w} = 2\underline{i} - 3\underline{j} + \underline{k} $ $ 9 \times 2 = 18$					
4. At	ttempt any nine parts.	100						
(i)	Find h such that $A(-1, h)$, $B(3, 2)$ and	(7,3)	are collinear.					
(ii)	The xy - coordinate axes are rotated about the original a point are (5, 7), find its XY - coordinates, where	gin thro	ugh an angle of 30° . If the xy – coordinates of					
(iii)	Find the distance between the parallel lines $2x +$	y+2	= 0 and $6x + 3y - 8 = 0$					
(iv)	Check whether the point (-2,4) lies above or belo							
(v)	Find the area of the region bounded by the triangle with vertices $(a, b+c)$, $(a, b-c)$ and $(-a, c)$							
(vi)	By means of slopes, show that the following points							
(vii)	Find an equation of the line bisecting the first and							
(viii)	Find the centre and radius of the circle with the eq							
(ix)	Find the length of the tangent from the point $P(-5)$	1970, 1770	IV O I TI I O V O					
(x)	Write an equation of the parabola with given element	ents foc	us $(-3, 1)$, directrix $x - 2y - 3 = 0$					
(xi)	Find an equation of the ellipse with vertices $(0, \pm 1)$	5) and	eccentricity $\frac{3}{5}$.					
(xii)	Find an equation of the hyperbola with the given d	ata. Fo	ci $(2 \pm 5\sqrt{2}, -7)$ and length of transverse axis 10.					

		MINE	SECTION-II				
NOTE			3 × 10 = 30				
5.(a)	Evaluate $\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$	(b)	If $x = a\cos^3\theta$, $y = b\sin^3\theta$ then show that $a\frac{dy}{dx} + b\tan\theta = 0$				
6.(a)	Evaluate $\int \frac{dx}{\sqrt{7-6x-x^2}}$	(b)	Find the equation of perpendicular bisector of the segment joining the points $A(3, 5)$ and $B(9, 8)$				
7.(a)	Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos^2 \theta \cot^2 \theta \ d\theta$	(b)	Maximize $f(x, y) = 2x + 3y$ subject to constraints $2x + y \le 8$, $x + 2y \le 14$, $x \ge 0$, $y \ge 0$				
8.(a)	If $y = a\cos(\ln x) + b\sin(\ln x)$, prove that $x^2 \frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$ pakcity.org						
(b)	Find the length of the chord cut from the line $2x + 3y = 13$ by the circle $x^2 + y^2 = 26$						
9.(a)	Show that an equation of the parabola with focus at $(a\cos\alpha, a\sin\alpha)$ and directrix $x\cos\alpha + y\sin\alpha + a = 0$ is $(x\sin\alpha - y\cos\alpha)^2 = 4a(x\cos\alpha + y\sin\alpha)$						

(xiii) Find an equation of the circle with ends of diameter at (-3, 2) and (5, -6)

(b)

Prove that the line segment joining mid points of two sides of a triangle is parallel to third side and half as long.

Paper Code Number: 4196 INTERMEDI			2023 (1 st -A) ATE PART-II	(12th Class)	Roll No:				
	THEMATICS	PAPER-II	GROUP-II						
TIME ALLOWED: 30 Minutes OBJECTIVE MAXIMUM MA									
	Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you think								
	is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question.								
S.#		TIONS	A	В	C .	D			
1		ch is perpendicular	0	1	2	Undefined			
	to y – axis is:	A							
2	y - intercept of th	ne line	2/5	5/2	3/5	5/3			
	2x + 3y - 5 = 0	is:	/3	72	/3	/ 3			
3	The point of inter	section of medians	Incentre	Centroid	Circumcentre	Orthocenter			
	of a triangle is cal			10					
4	(0, 1) is the solu	tion of inequality:	x - 3y > 0	x - 157 100	y + y > 0	x < 0			
5	The end points of		Vertices	Co-vertices	Foci	Eccentricity			
)	ellipse are called i		vertices						
6	The length of latu	s rectum of	-8	4	Author	8			
	parabola $y^2 = -8$	x is:				1			
7	The vertex of the	parabola		(1, -2)	(-1, -2)	(1, 2)			
	$(x+1)^2 = 8(y-2)$					No.			
8	The length of diar	neter of the circle	4	6	8 8	16			
	$x^2 + y^2 = 16$ is:		l d		A DATE OF THE PARTY OF THE PART				
-			90016	Veum orduct	Inner product	Meaningless			
9	$\vec{u} \times (\vec{v}.\vec{w})$ is:		product	To a second	inner product	g.			
10	Tl		-1	0	1	2			
	The value of \hat{i}	1 Min	-80		1	+∞			
11	$\lim_{x\to -\infty} (e^x) =$	93	M						
12	$f(x) = \sin x$ is:		Odd	en function	Constant	Linear function			
		Vinite Vinite	diction	Terri	Tunction	1			
13	If $y = x + \frac{1}{x}$, th	en =	$1 - \frac{1}{2}$	ccity org	$1-\frac{1}{x^2}$	$\frac{1}{x^2} - 1$			
	x		X	tonaxong					
14	If $y = \sinh^{-1} x$, t	hen	1	1	$\frac{-1}{\sqrt{x^2+1}}$	$\frac{-1}{\sqrt{x^2-1}}$			
	,	and the second	$\sqrt{x^2+1}$	$\sqrt{x^2-1}$	$\sqrt{x^2+1}$	$\sqrt{x^2-1}$			
15	Derivative of cos	x w.r.t. cos x is:	$-\sin x$	sin x	0	1			
16	The function $f($	$(x) = 3x^2$ has	-1	0	1	2			
	minimum value a								
17	Tain as de		0	1	2	3			
	$\int_{\pi} \sin x dx =$	$\sin x dx =$							
18	If $y = x^3$, then	dy =	$3x^2$	x^2dx	$3x^2dx$	3xdx			
19) b		((()) 1.	f f(w) du	$\int_{0}^{-b} f(x) dx$	$-\int_{0}^{-b} f(x)dx$			
	$\int_{a} f(x) dx =$		$\int_{b} f(x) dx$	$-\int_{b}f(x)dx$	-a (x)ax	$-\int_{a}^{b} (x) dx$			
20	f'()		$\ell n f(x) + c$	ln f'(x) + c	$\ell n f(x) f'(x) + c$	lnx + c			
20	$\int \frac{f'(x)}{f(x)} dx =$		(1) (1) + 0	(1)	, (, (,				
) (x)								

16(Obj)(★★★)-2023(1st-A)-11000 (MULTAN)

O
_
٠.
-
-
.~
0
\sim
_
w
_
>
2
>
5
5
at:
-
T
10
_
$\boldsymbol{\sigma}$
-
CT.
10
$\boldsymbol{\sigma}$
_
43
Ψ
_
$\stackrel{\smile}{}$
_
0
ģ
-
_
-
CO
.=2
_
-
a)
38
0)
$\boldsymbol{\sigma}$
20
a D
0

INTERMEDIATE PART-II (12 th Class)	2023 (1 st -A)	Roll No:
MATHEMATICS PAPER-II GROUP-I	I	
TIME ALLOWED: 2.30 Hours	SUBJECTIVE	MAXIMUM MARKS: 80
NOTE: Write same question number and its par	rts number on answer be	ook, as given in the question paper.

	attempt any eight parts. Multan Bo	oard-	$8 \times 2 = 16$					
(i)	Define a polynomial function of degree n.	(ii)	Determine whether given function f					
(1)	Donno a polynomia ranous si signi si		is even or odd $f(x) = x^{\frac{2}{3}} + 6$					
(iii)	Free least 2 (, 3) ²ⁿ	(iv)	Find the derivative of $x^{\frac{2}{3}}$ and also calculate					
` '	Evaluate $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^{2n}$		the value of derivative at $x = 8$.					
(v)	Differentiate w.r.t. $x x^{-3} + 2x^{-\frac{3}{2}} + 3$	(vi)	Find $\frac{dy}{dx}$ if $xy + y^2 = 2$					
(vii)	Find $\frac{dy}{dx}$ if $x = y \sin y$	(viii)	Differentiate w.r.t. $x = x^2 \sec 4x$					
(ix)	Find $\frac{dy}{dx}$ if $y = e^{x^2 + 1}$	(x)	State Maclaurin's series expansion.					
(xi)	Define optimal solution.	(xii)	Define the associated emotion of an inequality.					
	ttempt any eight parts.		$8 \times 2 = 16$					
(i)	Find δy and dy for $y = x^2 - 1$, when x changes from 3 to 3.02.	(ii)	Evaluate $\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^{1} dx$					
(iii)	Evaluate $\int \frac{x^2}{4+x^2} dx$	(iv)	Evaluate $\int x^2 \ell nx dx$					
(v)	Evaluate $\int_{1}^{1} (x^{\frac{1}{3}} + 1) dx$	(vi)	Find the area between the x – axis and the curve $y = (x^2 - x^2)$					
(vii)	Solve the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$	(viii)	Find unit vector in the direction of $\underline{v} = 2\underline{i} - \underline{j}$					
(ix)	Find vector whose magnitude is 4 and is parallel to $2\underline{i} - 3\underline{j} + 6\underline{k}$	(X)(Y)	Calculate the projection of $\underline{a} = \underline{i} - \underline{k}$ along $\underline{b} = \underline{j} + \underline{k}$					
(xi)	Find a unit vector perpendicular to the plane containing \underline{a} and \underline{b} , $\underline{a} = \underline{i} + \underline{j}$, $\underline{b} = \underline{i} - \underline{p}_0$	(xii)	Prove that $\underline{i} - 2\underline{j} + 3\underline{k}$, $-2\underline{i} + 3\underline{j} - 4\underline{k}$ and $\underline{i} - 3\underline{j} + 5\underline{k}$ are coplanar.					
4 4		8	$9 \times 2 = 18$					
	ttempt any nine parts. Show that the points $A(3, 1)$, $B(-2, -3)$ and $C(-2, -3)$	2 2) are	vertices of an isosceles triangle.					
(i)	Show that the points $A(3, 1)$, $B(3, 2)$ and $C(6, 1)$	0) are c	collinear.					
(ii)	Find an equation of the straight line if it is perpendic	cular to a	line with slope -6 and its y - intercept is $\frac{4}{3}$.					
(iv)	Write down an equation of the line which cuts to	he $x-a$	xis at $(2, 0)$ and $y - axis$ at $(0, -4)$.					
(v)	Transform the equation $5x - 12y + 39 = 0$ in	to two-i	ntercept form.					
(vi)	Check whether the lines $3x-4y-3=0$, $5x+12$	y+1 = 0	0,32x+4y-17=0 are concurrent or not.					
(vii)	Find the distance between the parallel lines l_1 :	2x - 5v	$+13 = 0$ and $l_2:2x - 5y + 6 = 0$					
(viii)		equation	$n 5x^2 + 5y^2 + 14x + 12y - 10 = 0$					
$\frac{(viii)}{(ix)}$	Find the co- ordinates of the points of intersection of	f the line	$2x+y=5$ and the circle $x^2 + y^2 + 2x - 9 = 0$					
(x)	Write equations of the tangents to the circle $x^2 + y^2$	-4x+6	y+9=0 at the points on the circle whose					
	ordinate is -2.	F(2	4) and directrix is $3x-4y+5=0$					
1.15	Find an equation of the parabola whose focus is $F(-3, 4)$ and directrix is $3x-4y+5=0$							
(xi)	Find an equation of the ellipse having centre at $(0, 0)$, focus at $(0, -3)$ and one vertex at $(0, 4)$.							
(xi) (xii) (xiii)		(0, 0),	decertions (+2 0)					

NOT	E: Attempt any three questions.		BECII		$3 \times 10 = 30$		
5.(a)	Prove that $\lim_{x\to 0} \frac{a^x-1}{x} = \log_e a$			(b)	Find by definition the derivative of $\cos \sqrt{x}$.		
6.(a)	Evaluate $\int \frac{x dx}{x^4 + 2x^2 + 5}$	11 11					
7.(a)	Find the area bounded by the curve $y = x^3 - 4x$ and the x -axis.						
(b)	Maximize $f(x, y) = x + 3y$ subject to constraints $2x + 5y \le 30$, $5x + 4y \le 20$, $x \ge 0$, $y \ge 0$						
8.(a)	Show that $y = x^x$ has minimum value at $x = \frac{1}{e}$						
(b)	Find the equation of the circle passing through the points $A(4, 5)$, $B(-4, -3)$, $C(8, -3)$						
9.(a)	Find the focus, vertex and directrix of parabola $x^2 - 4x - 8y + 4 = 0$						
(b)	Prove that by using vectors method $\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$						

PAPER-II MATHEMATICS

TIME ALLOWED: 30 Minutes

GROUP-I Multan Board-2021

QBJECTIVE

MAXIMUM MARKS: 20

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER.

Q.No.1

Please visit for more data at: www.pakcity.org

(9)

- When the expression $\sqrt{a^2 x^2}$ involves in integration substitute, is: (1)
 - (A) $x = a \sin \theta$
- (C) $a \tan \theta$
- (D) $a = \sin \theta$

- (2)
- $\int_{-\sqrt{9-x^2}}^{3} dx =$ pakcity.org (A) $\frac{2}{\pi}$ (B) $\frac{-2}{\pi}$ (C) $\frac{-\pi}{2}$ (D) $\frac{\pi}{2}$

- Which of the following is not a solution of the system of inequalities (3) $x + 2y \le 8$, $2x - 3y \le 6$, $2x + y \ge 2$
 - (A) (1, 0)
- (B)(8,0)

- (C) (0,4)
- (D) (3,0)
- When axes are translated, the coordinates of the point (-6, 9) are changed into (-3, 7), (4)find the point through which axes are translated:
 - (A) (-3, 2)
- (B) (3, -2)
- (C)(7,-3)
- (D)(-9,6)

- The equation of horizontal line passing through (-5, 3) is: (5)
 - (A) x + 5 = 0
- (B) -5x + 3y = 0
- (C) 3x 5y = 0 (D) y 3 = 0
- A line passes through (1, 5) and (k, 7) has a slope k, the values of k is: (6)
 - (A) -1 and 2
- $\overline{(B)}$, 3 and =2

- The focus of the parabola $y^2 = 4ax$ is: (7)

- (C) (-a, 0) (D) (0, -a) (E) $\frac{2}{\sqrt{5}}$ (D) $\frac{\sqrt{5}}{2}$
- The eccentricity of $\frac{y^2}{4} x^2 = 1$ equals: (8)
 - Conic are the curves obtained by cutting aright circular cone by:
- (A) Sphere (B) A mass, then $\underline{a} \times \underline{b} = \underline{}$ (10) If \underline{a} and \underline{b} are two non-zero vectors, then $\underline{a} \times \underline{b} = \underline{}$ (10)

- (C) A plane

(D) A curve

- (11) Angle between the vectors $\underline{i} + \underline{j}$, $\underline{i} \underline{j}$ is: (A) π (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{4}$

- (D) 0

- Projection of \underline{a} along \underline{b} is:
 - (A) $\hat{a} \cdot \hat{b}$
- (B) $\underline{a} \underline{b}$

- (13) If $f(x) = \sqrt{x+4}$ then $f(x^2+4)$ is equal to: (City.org
- (B) $\sqrt{x^2 8}$
- (C) $\sqrt{x-8}$ (D) x^2-8
- (14) The function $f(x) = \frac{2+3x}{2x}$ is not continuous at: (A) x = -3 (B) $x = -\frac{2}{3}$ (C) x = 1 (D) x = 0
- $\lim_{x \to a} \frac{f(x) f(a)}{x a} =$ (A) f'(x) (B) f'(a) (C) f'(0) (D) f'(x a)(15)

 $f(x) = x^{\frac{2}{3}}$, then f'(8) =(16)

- (A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) $\frac{1}{3}$ (D) 3

The derivative of $\frac{x^3 + 2x^2}{x^3}$ equals: (17)

- (A) $\frac{2}{x^2}$ (B) $\frac{-2}{x^2}$ (C) $\frac{1}{2x^2}$ (D) $\frac{-1}{2x^2}$

- If $f(x) = \tan^{-1} x$, then $f'(\cot x)$ is equal to: (18)
 - (A) $\frac{1}{1+x^2}$
- (B) $\sin^2 x$

- $f(x+\delta x) = \underline{\qquad}$ (B) f(x) f'(x) dx(19)
- (C) f(x) + f'(x) dx

- $\int \frac{a}{x_2\sqrt{x^2-1}} dx = \underline{\hspace{1cm}}$ (20)

 - (A) $a \tan^{-1} x$ (B) $-a \csc^{-1} x + c$
- (C) $-a \sec^{-1} x + c$ (D) $\frac{1}{a} \sec^{-1} x + c$

GROUP-I NOTE: Write same question number and its part number on answer book, Multan Board-2021 as given in the question paper.

SECTION-I

2. Attempt any eight parts.

- $8 \times 2 = 16$
- Determine whether the function $f(x) = \sin x + \cos x$ is even or odd. (i)
- With out finding the inverse, state domain and range of f^{-1} where $f(x) = \frac{x-1}{x-4}$ (ii)
- $\lim_{x \to 2} \frac{x^3 8}{x^2 + x 6}$ by using algebraic techniques. pakcity.org Evaluate the limit (iii)
- $\lim_{x\to 0} (1+2x^2)^{\frac{1}{x^2}} \text{ in terms of } e.$ Express the Limit (iv)
- Find the derivative of $(x+4)^{\frac{1}{3}}$ by definition. (v)
- Differentiate $x^2 \frac{1}{x^2}$ w.r.t x^4 . (vi)
- If $y = \ln (x + \sqrt{x^2 + 1})$ then find $\frac{dy}{dx}$ (vii)
- (viii) If $y = x^2 \cdot e^{-x}$ then find y_2
- If $x = 1 t^2$ and $y = 3t^2 2t^3$ then find $\frac{dx}{dt}$ and $\frac{dy}{dt}$ (ix)
- If $f(x) = 4 x^2$, $x \in (-2, 2)$ then find interval in which f(x) is increasing or decreasing. Prove that $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$ (x)
- (xi)
- (xii)
 - $8 \times 2 = 16$
- If $y = \sin 3x$ then find y_4 Attempt any eight parts. Using differentials find $\frac{dx}{dy}$ if $x^2 + 2y^2 = 16$ (i)
- Evaluate $\int \cos 3x \sin 2x \, dx$ (ii)
- Evaluate $\int \frac{x^2}{4+x^2} dx$ (iii)
- Evaluate $\int x \, \ell nx \, dx$ (iv)
- Evaluate $\int \frac{(a-b)x}{(x-a)(x-b)} dx$, a > b(v)
- Evaluate $\int \frac{dx}{x^2 + 9}$ (vi)
- Solve the differential equation y dx + x dy = 0(vii)
- Evaluate $|\sec x| dx$ (viii)
- Find K so that the line joining A(7,3), B(K,-6) and the line joining C(-4,5), D(-6,4)(ix) are parallel.
- Find whether the given point P(5, 8) lies above or below the line 2x 3y + 6 = 0(x)
- Determine value of P such that the lines 2x 3y 1 = 0, 3x y 5 = 0 and (xi) 3x + Py + 8 = 0 meet at a point.
- Find the lines represented by $3x^2 + 7xy + 2y^2 = 0$ (xii)

- Graph the solution set of linear inequality in xy-plane $3x 2y \ge 6$ (i)
- Find the equation of a circle with ends of a diameter at (-3, 2) and (5, -6)(ii)
- Find the centre and radius of a circle $4x^2 + 4y^2 8x + 12y 25 = 0$ (iii)
- Write down the equation of normal to the circle $x^2 + y^2 = 25$ at (4, 3) (iv)
- Find the vertex and directrix of $x^2 = 4(y-1)$ (v)
- Write the equation of parabola with focus (-3, 1) and directrix x 2y 3 = 0(vi)
- (vii) Find the equation of hyperbola with Foci $(\pm 5, 0)$ and vertex is (3, 0)
- Find the magnitude of vector $\underline{u} = \underline{i} + \underline{j}$ (viii)
- Find a unit vector in the direction of $\underline{v} = \underline{i} + 2\underline{j} \underline{k}$ (ix)
- Find the direction cosines of $\underline{v} = 3\underline{i} \underline{j} + 2\underline{k}$ (x)
- If $\underline{u} = [2, -3, 1]$, $\underline{v} = [2, 4, 1]$ find the cosine of angle θ between \underline{u} and \underline{v} (xi)

$$3 \times 10 = 30$$

- $\frac{\partial k}{\partial x} = \frac{\partial k}{\partial x}$ are coplanar. $3 \times 10 = 30$ x = 2 x = 2 x = 2 x = 2 x = 2 x = 3 x = 2 x = 3 x = 2 x = 3 x =
- 7. (a) Evaluate $\int_{-\cos^2 x}^{\pi/4} \frac{\sin x 1}{\cos^2 x} dx$
 - Maximize f(x, y) = 2x + 5y subject to constraints $2y x \le 8$, $x y \le 4$, $x \ge 0$, $y \ge 0$ (b)
- Write equations of two tangents from (2, 3) to the circle $x^2 + y^2 = 9$ 8. (a)
 - By using vectors prove that $\cos(\alpha + \beta) = \cos\alpha \cos\beta \sin\alpha \sin\beta$ (b)
- If $y = (\cos^{-1} x)^2$, prove that $(1 x^2)y_2 xy_1 2 = 0$ 9.(a)
 - Show that an equation of parabola with focus at $(a\cos\alpha, a\sin\alpha)$ and directrix (b) $x\cos\alpha + y\sin\alpha + a = 0$ is $(x\sin\alpha - y\cos\alpha)^2 = 4a(x\cos\alpha + y\sin\alpha)$

think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER.

Q.No.1

The perimeter P of a square as a function of its area A is: (1)

$$x - 3$$

B)
$$P = 2\sqrt{A}$$

(C)
$$P = 3\sqrt{A}$$

D)
$$P = 4\sqrt{A}$$

$$\lim_{x \to 3} \frac{x-3}{\sqrt{x} - \sqrt{3}}$$

The perimeter
$$P$$
 of a square as a function of its area A is.

(A) $P = \sqrt{A}$

(B) $P = 2\sqrt{A}$

(C) $P = 3\sqrt{A}$

(D) $P = 4\sqrt{A}$

$$\lim_{x \to 3} \frac{x - 3}{\sqrt{x} - \sqrt{3}}$$

(D) $\frac{1}{2\sqrt{3}}$

(B)
$$2\sqrt{3}$$

(C)
$$\frac{1}{\sqrt{3}}$$

(D)
$$\frac{1}{2\sqrt{3}}$$

(3) If
$$3x + 4y - 5 = 0$$
, then $\frac{dy}{dx} =$

(A)
$$\frac{4}{3}$$

(B)
$$-\frac{4}{3}$$

(C)
$$\frac{3}{4}$$

(A)
$$\frac{4}{3}$$
 (B) $-\frac{4}{3}$ (C) $\frac{3}{4}$ (D) $-\frac{3}{4}$

$$(4) \qquad \frac{d}{dx}(\sqrt{\cot x}) =$$

(A)
$$\frac{1}{2\sqrt{\cot x}}$$
 (B) $\frac{\cos ec^2x}{2\sqrt{\cot x}}$ (C) $\frac{-\cos ec^2x}{2\sqrt{\cot x}}$ (D) $\frac{2\cos ec^2x}{\sqrt{\cot x}}$

(B)
$$\frac{\cos ec^2x}{2\sqrt{\cot x}}$$

(C)
$$\frac{-\cos ec^2x}{2\sqrt{\cot x}}$$

$$(D) \frac{2\cos ec^2 x}{\sqrt{\cot x}}$$

(5) If
$$f(x) = \tan^{-1} x$$
, then $f'(\cot x) =$ (A) $\sin^2 x$ (B) $\cos^2 x$ (C) $\sec^2 x$ (D) $\frac{1}{1+x^2}$

(6) $\frac{d}{dx}(-\cot x) =$

(A)
$$\sec^2 x$$
 (B) $\cos ec^2 x$ (C) $-\cos ec^2 x$ (D) $\tan^2 x$

(7)
$$\int a^x dx =$$

(A)
$$a^x + c$$

(B)
$$a^x + \ell na + \epsilon$$

(C)
$$a^x \cdot \ell na + c$$

(A)
$$a^x + c$$
 (B) $a^x + \ell na + c$ (C) $a^x \cdot \ell na + c$ (D) $a^x \cdot \frac{1}{\ell na} + c$

(8) The anti-derivative of
$$\frac{1}{(1+x^2)\tan^{-1}x}$$
 is:

(A)
$$\ln(\tan^{-1}x) + c$$

$$\frac{1}{(x^2)\tan^{-1}x} \text{ is:}$$

$$(B) \ln(1+x^2) + c \qquad (C) 2(\tan^{-1}x)^2 + c \qquad (D) \frac{1}{2}(\tan^{-1}x)^2 + c$$

(D)
$$\frac{1}{2}(\tan^{-1}x)^2 + e^{-1}$$

(9) Suitable substitution for solving
$$\int \frac{1}{x} dx$$
 is:

(A)
$$x = a \sin \theta$$

(B)
$$x = a \tan \theta$$

(C)
$$x = a \sec \theta$$

(D)
$$x = a \cos \theta$$

$$(10) \qquad \int_{-\infty}^{4} \sec^2 x \ dx =$$

Please visit for more data at: www.pakcity.org

(B)
$$x = a \tan \theta$$
 (C) $x = a \sec \theta$

(A) 0 (B) 1 (C) 2

(D)
$$\frac{1}{2}$$

(12) The point
$$(3, -8)$$
 lies in the quadrant. (A) 1^{st} (B) 2^{nd} (C) 3^{rd} (D) 4^{tt}

The lines ℓ_1 and ℓ_2 with slopes m_1 and m_2 respectively, are parallel if: (13)

$$(A) m_1 m_2 = 1$$

(B)
$$m_1 = m_2$$

(B)
$$m_1 = m_2$$
 (C) $m_1 m_2 = -1$

(D)
$$m_1 + m_2 = 0$$

The point (2, 1) is not in the solution of the inequality: (14)

(A)
$$2x + y > 3$$

(B)
$$2x + y > 4$$

(C)
$$2x + v < 3$$

(D)
$$2x + y > 1$$

Centre of the circle $x^2 + y^2 + 7x - 3y = 0$, is: (15)

(A)
$$(7, -3)$$

(B)
$$\left(-\frac{7}{2}, \frac{3}{2}\right)$$
 (C) $\left(-7, 3\right)$

$$(C)(-7,3)$$

(D)
$$(\frac{7}{2}, -\frac{3}{2})$$

The equation of directrix of the parabola $x^2 = 5y$ is: (16)

(A)
$$x + \frac{5}{4} = 0$$

(B)
$$x - \frac{5}{4} = 0$$
 (C) $y + \frac{5}{4} = 0$

(C)
$$y + \frac{3}{4} = 0$$

(D)
$$y - \frac{5}{4} = 0$$

The length of latus-rectum of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$, is: (17)

(A)
$$\frac{a^2}{a^2}$$

(B)
$$\frac{b^2}{2a}$$

(C)
$$\frac{b}{a}$$

(D)
$$\frac{2b^2}{a}$$

If $\underline{u} = 2\alpha \underline{i} + \underline{j} - \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 4\underline{k}$, are perpendicular, then $\alpha =$ (18)

(A)
$$-\frac{4}{3}$$

(B)
$$\frac{4}{3}$$

(C)
$$\frac{3}{2}$$

The vectors u, \underline{v} and \underline{w} are coplanar if: (19)

(A)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 0$$

(B)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 1$$

(C)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 2$$

(D)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 3$$

Work done by a constant force \vec{F} during a displacement \vec{d} is equal to: (20)

(A)
$$\vec{F} \times \vec{d}$$

(B)
$$\vec{d} \times \vec{F}$$

(C)
$$\bar{F} + \bar{d}$$

(D)
$$\vec{F} \cdot \vec{d}$$

NOTE: Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

Multan Board-2021

2. Attempt any eight parts.

> (i) Express perimeter P of a square as a function of its area A.

(ii) If
$$f(x) = \sqrt{x+1}$$
, $g(x) = \frac{1}{x^2}$ find $f \circ g(x)$, $g \circ f(x)$

(iii) Evaluate
$$\lim_{x \to -1} \frac{x^3 - x}{x + 1}$$

(iv) Evaluate
$$\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x}$$

(v) Differentiate
$$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$$
 w.r.t. x

(vi) Find
$$\frac{dy}{dx}$$
 if $x = 1 - t^2$, $y = 3t^2 - 2t^3$

(vii) Prove that
$$\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$$

(viii) Find
$$\frac{dy}{dx}$$
 if $y = x \cos y$

(ix) Find
$$\frac{dy}{dx}$$
 if $y = \frac{x}{\ell nx}$

(x) Find
$$f'(x)$$
 if $f(x) = e^{\sqrt{x}-1}$

(xi) Find
$$y_2$$
 if $y = x^2 e^{-x}$

$$8 \times 2 = 16$$

 $f(x) = e^{\sqrt{x}-1}$ and y_2 if $y = x^2e^{-x}$ Find Maclaurin series for sing.

Attempt any eight parts.

Use differentials to x^{-1} (i) x changes from 2 to 1.8.

(ii) Find
$$\int \frac{1-\sqrt{x}}{\sqrt{x}} dx$$

3.

(iii) Find
$$\int_{-1+x^2}^{1-x^2} dx$$

(iv) Find
$$\int \frac{\cot \sqrt{x}}{\sqrt{x}} dx$$

(v) Find
$$\int \frac{\sqrt{2}}{\sin x + \cos x} dx$$

(vi) Find
$$\int x \, \ell nx \, dx$$

(vii) Solve the differential equation
$$(e^x + e^{-x})\frac{dy}{dx} = e^x - e^{-x}$$

(viii) Find
$$\int_{0}^{\pi/3} \cos^2 \theta \sin \theta \ d\theta$$

- (ix) By means of slope, show that (-1, -3), (1, 5), (2, 9) lie on the same line.
- (x) Check whether the point (-7, 6) lies above or below the line 4x + 3y - 9 = 0
- Check whether the lines 12x + 35y 7 = 0 and 105x 36y + 11 = 0 are parallel or perpendicular. (xi)
- (xii) Express 15y - 8x + 3 = 0 in normal form.

- Graph the solution set of $3x 2y \ge 6$ (i) Multan Board-2021
- Find an equation of the circle with ends of a diameter at (-3, 2) and (5, -6)(ii)
- Find the radius of the circle $5x^2 + 5y^2 + 14x + 12y 10 = 0$ (iii)
- Find the length of the tangent drawn from the point (-5, 4) to the circle (iv) $5x^2 + 5y^2 - 10x + 15y - 131 = 0$
- Find the focus and directrix of the parabola $x^2 = 4(y-1)$ (v)
- Find the foci and eccentricity of $\frac{y^2}{16} \frac{x^2}{9} = 1$ (vi)
- Write down the equation of tangent to $3x^2 + 3y^2 + 5x 13y + 2 = 0$ at $\left(1, \frac{10}{3}\right)$ (vii)
- Find the magnitude of the vector $\vec{u} = \hat{i} + \hat{j}$ (viii)
- Find a unit vector in the direction of $\underline{v} = 2\underline{i} \underline{j}$ (ix)
- Let $\underline{v} = 3\underline{i} 2\underline{j} + 2k$, $\underline{w} = 5\underline{i} \underline{j} + 3\underline{k}$ find $\underline{v} 3\underline{w}$ (x)
- Find α so that $\left| \alpha \underline{i} + (\alpha + 1) \underline{j} + 2\underline{k} \right| = 3$ (xi)
- Find the direction cosines of $\underline{v} = 3\underline{i} j + 2\underline{k}$ (xii)
- Find a vector of lengths 5 in the direction opposite that of $2\underline{j} + 3\underline{k}$ SECTION-II (xiii)

NOTE: Attempt any three questions.

$$3 \times 10 = 30$$

- Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1 t^2}{1 + t^2}$, $y = \frac{1 t^2}{1 + t^2}$ 5.(a)
 - If $f(x) = \begin{cases} \frac{\sqrt{2x+5} \sqrt{x+7}}{x-2}, & x \neq 2 \\ & x = 2 \end{cases}$ find value of K so that f is continuous at x = 2
- Determine value of p such that the lines 2x 3y 1 = 0, 3x y 5 = 0 and 3x + py + 8 = 06.(a)meet at a point.
 - Evaluate $\int x^3 e^{5x} dx$ (b)
- Evaluate $\int (x + |x|) dx$ 7. (a)
 - Minimize z = 2x + y; subject to the constraints $x + y \ge 3$; $7x + 5y \le 35$; $x \ge 0$, $y \ge 0$ (b)
- Show that the circles $x^2 + y^2 + 2x 2y 7 = 0$ and $x^2 + y^2 6x + 4y + 9 = 0$ touch externally. 8. (a)
 - A force of magnitude 6 units acting parallel to $2\underline{i} 2\underline{j} + \underline{k}$, displaces, the point of application from (b) (1, 2, 3) to (5, 3, 7). Find work done. pakcity.org
- A box with a square base and open top is to have a volume of 4 cubic dm. Find the dimensions of 9.(a) the box which will require the least material.
 - Find the centre, foci and vertices of the following $9x^2 12x y^2 2y + 2 = 0$ (b)

aper C	Multan Bo	ard-2021	Roll No		
lumber	4105 INTERNATION			· ———	
	IEMATICS PAPER-II			LLOWED:	30 Minutes
ROU		<u>IVE</u>		UM MARI	
	You have four choices for each objective type				
	correct, fill that bubble in front of that questi or filling two or more bubbles will result in ze				
uestion	ns as given in objective type question paper an	d leave others b	olank. No c	redit will be	awarded in
).No.1	BBLES are not filled. Do not solve questions	on this sheet of	OBJECTI	VE PAPER.	
. 15	2		.D. 0	473.1	(D) 0
(1)	$\int_{1}^{\infty} 2x dx =$	(A) 3	(B) 2	(C) 1	(D) 0
(2)	$\int_{1}^{2} \frac{1}{x} dx = 2$ pakcity.org	(A) 2 <i>lnx</i>	(B) ln2	(C) ln(l)	(D) ln3
(3)	$\int 5^{2x} dx = \tag{A}$	5 ^{2x} (B) 2(5	^{2x}) (C) 5	$2x \ln 5$ (D)	$2(5^{2x}\ell n5)$
(4)	Distance of line $x + 2y + 5 = 0$ from origin is	i- (A) 1	(以) √5	(C) 5 (D)	2
(5)	Length of perpendicular from (1, 1) to the line	e 4x - 3y + 9 =	0 equals:-		
	(A) 2 (B) 4	(C) 3	200/10	9	
(6)	Equation of horizontal line through (2, 3) is:	(A) y = 3) = V (8)	(C) x = 0	3 (D) $x = 2$
(7)	Slope of vertical line is:-	accorded to	(B) I	(C) ∞	(D) 2
(8)	If $3x + 2y \le 6$, point does not satisfy:	(AP) (0, (1)	B)(0,1)	(C)(0,0)	(D)(3,2)
(9)	Radius of circle $x^2 + y^2 - 4x - 6y = 0$	(A) √I	3 (B) √	(C) √5	(D) 13
(10)	Directrix of parabola $x^2 = 20$ js.	(A) $x = 10$	(B) x = 5	(C) $y = -5$	(D) $x = -5$
(14)	Purabola $x^2 = -8y$ organs	EDUCATI	ON		
	(A) Rightwards (B) Leftwards	(C) Upwards	(E) Downward	ls
(12)	Magnitude of vector $6\underline{i} + 3\underline{j} - 2\underline{k}$ is:-	(A) 7	B) 6 (C	3 (1	0) – 2
(13)	Direction cosines of y - axis are:-				
	(A) 0, 0, 1 (B) 1, 0, 0	(C) 0, 1, 0	rg (D	$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},$	$\frac{1}{\sqrt{3}}$
(14)	If $f(x) = x^3 + x$, then $f(x)$ is:				
	(A) Constant function (B) Even function	(C) Odd fund	ction (D) Implicit fu	nction
(15)	$\lim_{x \to 4} \frac{x^2 - 6x + 8}{x - 4} =$	(A) 4	(B) 2 (C) 6	(D) 8
(16)	$x = 3\cos t$, $y = 3\sin t$ represents: (A)	Line (B) Cir	cle (C) E	llipse (D)	Hyperbola
(17)	If $f(x) = \sin x$, then $f''(\frac{\pi}{2}) =$	(A) 0	(B) 1 (C	2) 2 (D) -1
(18)	$\frac{d}{dx}(\coth x) = (A) - \cos e c h^2 x$	(B) cosech ² x	(C) tan h	1 ² x (D) co	th x sec h x

(A) e^{x^2} (B) $2e^{x^2}$ (C) $2xe^{x^2}$ (D) $2e^x$

(19) $\frac{d}{dx}(e^{x^2}) =$

2019 (A) INTERMEDIATE PART-II (12th CLASS)

MATHEMATICS PAPER-II

GROUP-I

SUBJECTIVE

TIME ALLOWED: 2.30 Hours

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.

- Find the domain and range of $f(x) = \sqrt{x^2 4}$ (i)
- If f(x) = 2x + 1, $g(x) = x^2 1$, find $g \circ f(x)$ (ii)
- Evaluate $\lim_{x \to 0} \frac{1 \cos x}{\sin^2 x}$ (iii)
- Differentiate $\frac{x^2+1}{x^2-3}$ w.r.t x (iv)
- If $y = x^4 + 2x^2 + 2$, then show that $\frac{dy}{dx} = 4x\sqrt{y-1}$ (v)
- Find $\frac{dy}{dx}$ if $y^2 xy x^2 + 4 = 0$ (vi)
- Differentiate $x^2 \frac{1}{x^2}$ w.r.t x^4
- dx $x = x \cos y$ Find f'(x) = ?, if $f(x) = ln(e^x + e^{-x})$ Define Critical Value.

 State the Maclaurin's Series.

 Attempt any eight parts.

 Find δy if v = -2(viii) If $y = \sin^2 x$, $u = \sin x$, then find $\frac{dy}{du}$
- (ix)
- (x)
- (XII
- (xii)

3.

- (i)
- Find δy if $y = x^2 + 2x$ when x changes from 2 to 1.8. Evaluate $\int \frac{dx}{\sqrt{x+1}-\sqrt{x}}, \quad x > 0$ (ii)
- Evaluate $\int \sqrt{1-\cos 2x} \ dx$, $1-\cos 2x > 0$ (iii)
- Evaluate $\int \frac{x}{\sqrt{4+r^2}} dx$ (iv)
- Evaluate $\int \frac{dx}{\sqrt{a^2 x^4}} dx$ (v)
- Evaluate $\int (\ln x)^2 dx$ (vi)
- Evaluate $\int_{0}^{2} \frac{x}{x^2 + 2} dx$ (vii)
- (viii) Evaluate $\int \frac{dx}{x^2 + 9}$
- Solve $\sec x + \tan y \frac{dy}{dx} = 0$ (ix)
- Find the area between the x-axis and the curve $y = \cos \frac{x}{2}$ from $x = -\pi$ to π . (x)
- (xi) Draw the graph and shade solution region for $5x - 4y \le 20$
- Define Optimal Solution. (xii)
 - Please visit for more data at: www.pakcity.org

P.T.O.

4. Attempt any nine parts.

- Find the mid point of the line segment joining the points $\left(-\sqrt{5}, -\frac{1}{3}\right)$ and $\left(-3\sqrt{5}, 5\right)$ (i)
- Find 'K' so that line joining the points A(7,3) and B(K,-6) has a slope $\frac{1}{2}$. Pakeity.org (ii)
- Find the equation of line passing through the point (-9, 0) and has a slop -4. (iii)
- Define 'Homogeneous equation' of degree n where 'n' is a positive integer. (iv)
- (v) Find the equation of circle with centre (-3, 5) and radius 7.
- Find the coordinates of vertex and focus of the parabola $x^2 = 4(y-1)$ (vi)
- Find the equation of Ellipse having foci (±3, 0) and minor axis of length 10. (vii)
- Find the coordinates of foci and vertices of Hyperbola $\frac{x^2}{4} \frac{y^2}{6} = 1$ (viii)
- Define "Position Vector" of a point.. (ix)
- If $|\alpha \underline{i} + (\alpha + 1) \underline{j} + 2\underline{k}| = 3$, then find value of '\alpha'. (x)
- Find ' α ' so that the vectors $2\underline{i} + \alpha \underline{j} + 5\underline{k}$ and $3\underline{i} + \underline{j} + \alpha \underline{k}$ are perpendicular. (xi)
- (xii)
- Prove that the vectors $\underline{i} 2\underline{j} + 3\underline{k}$, $-2\underline{i} + 3\underline{j} 4\underline{k}$ and $\underline{i} 3\underline{j} + 5\underline{k}$ are coplanar.

 Attempt any three questions.

 SECTION-H

 ve that $\sin \theta$ (xiii)

NOTE: - Attempt any three questions.

- Prove that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$, θ is measured in radians. Find the extreme values for the function $f(x) = (x-2)^2 (x-1)$ 5.(a)
 - (b)
- Show that $\int \sqrt{a^2 + x^2} dx = \frac{a^2}{2} Sin^{-1} \frac{x}{a} + \frac{x}{2} \sqrt{a^2 x^2} + c$ 6.(a)
 - The points (4, -2), (-2, 4) and (5, 5) are the vertices of a triangle. Find in-centre of the triangle. (b)
- Evaluate $\int_{-\infty}^{\infty} \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx \qquad x \neq 1, -1$
 - (b) Graph the feasible region of the following system of linear inequalities and find the corner points $2x - 3y \le 6$ $2x + 3y \le 12$ $x \ge 0$ $y \ge 0$
- Find an equation of the line through the intersection of the lines x y 4 = 0 and 7x + y + 20 = 08. (a) and parallel to the line 6x + y - 14 = 0
 - Show that the circles $x^2 + y^2 + 2x 2y 7 = 0$ and $x^2 + y^2 6x + 4y + 9 = 0$ touch externally. (b)
- Find an equation of the parabola having focus at (-3, 1) and directrix is x = 3. 9.(a)
 - Prove that the line segment joining the mid points of the sides of a quadrilateral taken in order (b) form a parallelogram.

14-2019(A)-18000 (MULTAN)

<i></i>	Multan Board-2019	
Paper (4102 INTERMEDIATE PART-II (12th CLASS)	
Number	IEMATICS PAPER-II TIME ALLOWED: 30 Minutes	
GROU	IP-II OBJECTIVE MAXIMUM MARKS: 20	
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER. Q.No.1		
(1)	If $f(x) = x^2 + \cos x$, then $f(x)$ is:-	_
	(A) Constant function (B) Even function (C) Odd function (D) Linear function	
(2)	If $f(x) = x^3 - 2x^2 + 4x - 1$, then $f(-2)$: (A) 14 (B) - 14 (C) - 25 (D) 25	
(3)	$\frac{d}{dx}(4x+7)^9 =$	
	(A) $36(4x+7)^8$ (B) $36(4x+7)^9$ (C) $28(4x+7)^8$ (D) $63(4x+7)^8$	
(4)	If $f(x) = 2^{2x}$, then $f'(x) = -2x$	
	(A) 2^{2x-1} (B) $2^{2x} \ell n 2$ (C) $2^{2x+1} \ell n 2$ (D) $\frac{2^{2x}}{\ell n 2}$	
(5)	$\frac{d}{dx}\left(Cos^{-1}\frac{x}{a}\right) =$	
	(A) $\frac{1}{1-x^2}$ (B) $\frac{1}{1+x^2}$ (C) $\frac{1}{\sqrt{a^2-x^2}}$	
(6)	If $f(x) = x^{10}$, then $f''(1) =$ (A) 90 (B) 9 (C) 10 (D) 100	
(7)	$\int \frac{1}{x^2} dx = (A) \ln x + c (B) \ln^2 x + c (C) \frac{-2}{x^3} + c (D) \frac{-1}{x} + c$	
(8)	$\int \tan \frac{\pi}{4} dx' = \qquad (A) \ln \left(\sin \frac{\pi}{4} + c \right) (B) x + c \qquad (C) \sec^2 \frac{\pi}{4} \qquad (D) 1$	
(9).	$\int \tan \frac{A}{4} dx' = $ $\int \sec^2 2x dx = $ $\frac{3\pi}{4} = $ (A) $\ln \sin \frac{A}{4} + c$ (B) $x + c$ (C) $\sec^2 \frac{A}{4}$ (D) 1 $\frac{1}{2} \tan 2x$ (B) $\tan 2x$ (C) $\frac{1}{2} \tan x$ (D) $2 \tan 2x$	
(10)	$\int_{0}^{2} \cos x dx = $ (A) 0 (B) 1 (C) -1 (2) 2	
(11)	Distance of line $5x + 12y + 39 = 0$ from $(0, 0)$ is:- (A) 3 (B) 5 (C) 12 (D) 39	
(12)	Equation of horizontal line through (a, b) is:- (A) $y = a$ (B) $y = b$ (C) $x = a$ (D) $x = b$	
(13)	The line $ax + by + c = 0$ will represent equation of straight line parallel to $y - axis$ if:- (A) $a = 0$ (B) $b = 0$ (C) $c = 0$ (D) $a = b$	
(14)	Point $\left(+\frac{3}{7}, -\frac{5}{7}\right)$ lies in:- (A) I quadrant (B) II quadrant (C) III quadrant (D) IV quadrant	
(15)	The point (1, 2) satisfies the inequality: (A) $x + 2y > 3$ (B) $x - 2y > 3$ (C) $x - 2y > 5$ (D) $x + 2y < 3$	
(16)	Radius of circle $x^2 + y^2 + 4x + 2y - 4 = 0$ is:- (A) 3 (B) 2 (C) 4 (D) 1	
(17)	Latus rectum of parabola $x^2 = 8y$ is:-	
	(A) $y = -2$ (B) $y = 2$ (C) $x = 2$ (D) $x = -2$	
(18)	(A) $y = -2$ (B) $y = 2$ (C) $x = 2$ (D) $x = -2$ Major axis of ellipse $\frac{x^2}{8} + \frac{y^2}{12} = 1$ is:- (A) $2\sqrt{3}$ (B) 8 (C) $4\sqrt{3}$ (D) 5	
(19)	Direction cosines of x - axis are:- (A) 1, 1, 0 (B) 1, 0, 1 (C) 1, 0, 0 (D) 0, 0, 1	
(20)	$[\underline{k} \ \underline{i} \ \underline{j}^{i}] = (A) \ 3 \ (B) \ 0 \ (C) \ -2 \ (D) \ 1$	

INTERMEDIATE PART-II (12th CLASS)

MATHEMATICS PAPER-II

GROUP-II

SUBJECTIVE

TIME ALLOWED: 2.30 Hours

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book,

SECTION-I

2. Attempt any eight parts.

(i) Find the domain and range of
$$f(x) = |x - 3|$$

(ii) If
$$f(x) = 3x^4 - 2x^2$$
, $g(x) = \frac{2}{\sqrt{r}}$, $x \ne 0$, find $gof(x)$

(iii) Evaluate
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin \theta}$$

(iv) Differentiate
$$\frac{2x-3}{2x+1}$$
 w.r.t x.

(v) If
$$y = (x-5)(3-x)$$
, then find $\frac{dy}{dx}$

(vi) If
$$x^2 + y^2 = 4$$
, then show that $\frac{dy}{dx} = \frac{-x}{\sqrt{4 - x^2}}$

(vii) Differentiate
$$(1 + x^2)^n$$
 w.r.t x^2

(viii) If
$$y = \sin x$$
, $u = \cot x$, then find $\frac{dy}{du}$

(ix) Show that
$$\frac{dy}{dx} = \frac{y}{x}$$
, if $\frac{y}{x} = Tan^{-1}\frac{y}{x}$

(x) Find
$$f'(x)$$
, if $f(x) = e^{\sqrt{x} - 1}$

3.

(xii) State the Taylor's Series.

Attempt any eight parts.

(viii) If
$$y = \sin x$$
, $u = \cot x$, then find $\frac{dy}{du}$
(ix) Show that $\frac{dy}{dx} = \frac{y}{x}$, if $\frac{y}{x} = Tan^{-1}\frac{y}{x}$
(x) Find $f'(x)$, if $f(x) = e^{\sqrt{x} - 1}$
(xi) Define Critical Point.
(xii) State the Taylor's Series.
Attempt any eight parts.
(i) Find δy if $y = \sqrt{x}$ when x changes from 4 to 4.41.
(ii) Evaluate
$$\int \frac{3 - \cos 2x}{1 + \cos 2x} dx$$
 ($\cos 2x \neq -1$)

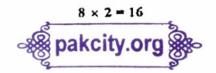
(ii) Evaluate
$$\int \frac{3 - \cos 2x}{1 + \cos 2x}$$

(iii) Evaluate
$$\int \frac{(1+e^x)^3}{e^x} dx$$

(iv) Evaluate
$$\int \frac{\cot \sqrt{x}}{\sqrt{x}} dx$$
, $x > 0$

(v) Evaluate
$$\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$$

(vi) Evaluate
$$\int x \sin x \, dx$$


(vii) Evaluate
$$\int_{-2}^{0} \frac{1}{(2x-1)^2} dx$$

(viii) Evaluate
$$\int_{1}^{2} lnx dx$$

(ix) Solve
$$\sin y \cos ec x \frac{dy}{dx} = 1$$

(x) Find Area bounded by cos function from
$$x = \frac{-\pi}{2}$$
 to $x = \frac{\pi}{2}$

(xi) Graph the Solution Region for
$$3x - 2y \ge 6$$

4. Attempt any nine parts. $9 \times 2 = 18$

- Find the co-ordinates of the point that divides the join of A(-6, 3) and B(5, -2) in the ratio 2:3 (i) internally.
- Convert equation 4x + 7y 2 = 0 into two intercepts form. (ii)
- (iii) Show that the point (-2, 4) lies above the line 4x + 5y - 3 = 0.
- (iv) Define 'Medians' of triangle.
- Find the slope of tangent to circle $x^2 + y^2 = 25$ at point (4, 3). (v)
- Find the co-ordinates of vertex and focus of the parabola $v = 6x^2 1$ (vi)
- Find the equation of the Ellipse with foci $(\pm 3\sqrt{3}, 0)$ and vertices $(\pm 6, 0)$ (vii)
- (viii) Find the equation of the Hyperbola with the centre $\{0,0\}$ Foci $(\pm 6,0)$ and Vertices $(\pm 4,0)$.
- If $\overrightarrow{AB} = \overrightarrow{CD}$. Find the coordinates of the point A when points B, C, D are (1, 2), (-2, 5), (4, 11)(ix) respectively.
- (x) Find a vector of length 5 in the direction opposite that of $\underline{v} = \underline{i} - 2\underline{j} + 3\underline{k}$.
- Find value of ' α ' so that vectors $\alpha \underline{i} + 2\alpha \underline{j} + \underline{k}$ and $\underline{i} + \alpha \underline{j} + 3\underline{k}$ are perpendicular. (xi)
- (xii) Define direction angles of a vector.
- Find $\underline{u} \cdot (\underline{v} \times \underline{w})$ when $\underline{u} = [3, 0, 2]; \underline{v} = [1, 2, 1]$ and $\underline{w} = [0, 0, 2]$ (xiii)

NOTE: - Attempt any three questions.

 $3 \times 10 = 30$

- Evaluate $\lim_{\theta \to 0} \frac{\tan \theta \sin \theta}{\sin^3 \theta}$ 5.(a)
 - If $x = a \cos^3 \theta$, $y = b \sin^3 \theta$ show that $a \frac{dy}{dx}$ (b)
- Evaluate $\int \frac{7x-1}{(x-1)^2 (x-1)} dx \qquad x > 1$ 6.(a)
 - Find equations of the altitudes of the triangle whose vertices are A(-3, 2), B(5, 4), C(3, -8)(b)
- Determine the area bounded by the parabola $y = x^2 + 2x 3$ and the x axis. 7. (a)
 - Graph the feasible region of the following system of linear inequalities (b)

$$3x + 7y \le 21$$
$$x - y \le 3$$

$$y \ge 0$$

- Find the lines represented by $3x^2 + 7xy + 2y^2 = 0$. Also find measure of the angle between them. 8. (a)
 - Find an equation of the circle that passes through A(4,5), B(-4,-3), C(8,-3)(b)

- Show that the equation $9x^2 18x + 4y^2 + 8y 23 = 0$ represents an ellipse. Find its elements. 9.(a)
 - Using vector method, in any triangle ABC prove that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ (b)

16-2019(A)-6000 (MULTAN)

Please visit for more data at: www.pakcity.org

TERMEDIATE PART-II (12th CLASS)

MATHEMATICS PAPER-II

GROUP-I

SUBJECTIVE

TIME ALLOWED: 2.30 Hours

 $8 \times 2 = 16$

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

- 2. Attempt any eight parts.
 - Define explicit function and give an example. Repartity.org (i)

- Find $\frac{f(a+h)-f(a)}{h}$ and simplify where $f(x) = \cos x$ (ii)
- Prove that $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$ (iii)
- Find by definition, the derivative of $2 \sqrt{x}$ w.r.to 'x'. (iv)
- Find $\frac{dy}{dx}$ if $y = \frac{\left(\sqrt{x} + 1\right)\left(x^{\frac{1}{2}} 1\right)}{x^{\frac{1}{2}}}$, $x \ne 1$ (v)
- Differentiate $\left(\sqrt{x} \frac{1}{\sqrt{x}}\right)^2$ w.r.to 'x'. (vi)
- Find $\frac{dy}{dx}$ if $y^2 xy + 4 x^2 = 0$ (vii)
- (viii) Differentiate $tan^3 \theta \sec \theta$ w.r.to '\theta'.
- (ix)

3.

w.r.to ' θ '. $\frac{dx}{dx} \text{ if } x = y \sin y$ Differentiate $(\ell nx)^x$ w.r.to 'x'.

Find f'(x) if $f(x) = x^3 e^{1/x}$, $x \neq 0$ Find y_2 if $x^2 + y^2 = a^2$ Attempt any eight y_2 .

Find $\delta y_2 = 1$ Find δy and dy if $y = \sqrt{x}$ when x changes from 4 to 4.41. (i)

(ii) Evaluate
$$\int \frac{\sin x + \cos^3 x}{\cos^2 x \sin x} dx$$

- Evaluate $\int \frac{1}{x \ln x} dx$ (iii)
- Evaluate $\int x \sin x \, dx$ (iv)
- Evaluate $\int e^{-x} (\cos x \sin x) dx$ (v)
- Evaluate $\int \frac{5x+8}{(x+3)(2x-1)} dx$ (vi)
- (vii) State the fundamental theorem of calculus.
- Evaluate $\int \frac{xdx}{x^2+2}$ (viii)
- Find the area bounded by the curve $y = 4 x^2$ and the x axis. (ix)
- Solve $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$ (x)
- Graph the inequality $3x + 7y \ge 21$ (xi)
- State the Linear Programming Theorem.
 Please visit for more data at: www.pakcity.org (xii)

 $8 \times 2 = 16$

4. Attempt any nine parts.

 $9 \times 2 = 18$

Find "h" such that A(-1, h), B(3, 2) and C(7, 3) are collinear. (i)

- Find an equation of the line passing through (-5, -3) and (9, -1). (ii)
- Find the area of the region bounded by the triangle with vertices A(1, 4), B(2, -3) and C(3, -10)(iii)
- Find value of "p" such that lines 2x 3y 1 = 0, 3x y 5 = 0 and 3x + py + 8 = 0(iv) meet at a point.
- (v) Find the lines represented by $6x^2 - 19xy + 15y^2 = 0$
- Find the focus and vertex of the parabola $x^2 4x 8y + 4 = 0$ (vi)
- Find equation of parabola with focus (2, 5) and directrix y = 1(vii)
- Find foci and vertices of the ellipse $\frac{x^2}{0} + \frac{y^2}{4} = 1$ (viii)
- Find an equation of the ellipse with foci $(\pm 3\sqrt{3}, 0)$ and vertices $(\pm 6, 0)$. (ix)
- Find the direction cosines of vector $\underline{v} = \underline{i} j \underline{k}$ (x)
- Find real number " α " so that the vectors $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 3\underline{k}$ are perpendicular. Find the area of the triangle with vertices A(1, -1, 1), B(2, 1, -1) and C(-1, 1, 2). (xi)
- (xii)
- Prove that the vectors $\underline{i} 2\underline{j} + 3\underline{k}$, $-2\underline{i} + 3\underline{k}$ and $\underline{i} 3\underline{j} + 5\underline{k}$ are coplaner. (xiii)

Attempt any three questions.

 $3 \times 10 = 30$

- If θ is measured in Radian, then prove that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ 5.(a)
 - Show that $2^{x+h} = 2^x \left[1 + (\ln 2)h + \frac{(\ln 2)^2}{2}h^2 + \frac{(\ln 2)^3}{2}h^3 + \cdots \right]$ (b)
- Evaluate the indefinite integral $\int \frac{x^2 + 3x 34}{x^2 + 2x 15} dx$ 6.(a)
 - Find a joint equation of the lines through the origin and perpendicular to the lines $ax^2 + 2hxy + by^2 = 0$ **(b)**
- Evaluate the integral $\int \frac{3x}{\sqrt{4-3x}} dx$ 7. (a)
 - Minimize z = 2x + y subject to the constraints $x + y \ge 3$; $7x + 5y \le 35$; $x \ge 0$; $y \ge 0$ (b)
- Find equations of tangents to the circle $x^2 + y^2 = 2$ which are perpendicular to the line 3x + 2y = 68. (a)
 - Prove that for any triangle $\triangle ABC$ $a^2 = b^2 + c^2 2bc \cos A$ **(b)**
- Discuss and sketch the graph of the equation $25x^2 16y^2 = 400$ 9.(a)
 - Find volume of the tetrahedron with vertices (2, 1, 8), (3, 2, 9), (2, 1, 4) and (3, 3, 10). Please visit for more data at: www.pakcity.org (b)

Paper Code Roll No: Multan Board-2018 2018 (A) INTERMEDIATE PART-II (12th CLASS) 4196 Number: **MATHEMATICS** PAPER-II TIME ALLOWED: 30 Minutes **GROUP-II OBJECTIVE** MAXIMUM MARKS: 20 Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER. Q.No.1 (1) Distance between points (7, 6) and (3, 3) is:-(A) 3 (B) 5 (C) 6 (2)If two lines with slopes m_1 , m_2 are parallel then:-(B) $m_1 = -m_2$ (C) $\frac{m_1}{m_2} = 2$ (A) $\frac{5}{7}$ (B) $\frac{7}{6}$ (C) 35 (D) $\frac{-5}{7}$ (3)Slope of line 5x + 7y = 35 is:-(4) Equation of line with slope -2, y – intercept 3 is:-(A) x - 2y = 3(B) 3x + 2y = 2(C) 2x + y = 3(5) ___ point satisfy x - y < 2. (A)(3, 1)(B)(-1, 1)(C) (1,-1)(D)(0, -2)Centre of circle $x^2 + y^2 - 6x + 4y + 13 = 0$ is:-(6)(A)(3,-2)(B) (-3, -2)Equation of directrix of $y^2 = -4ax$ is:-(7)(A) y = -a(B) y = aFocus of $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is:- (A) (±4, 0) (B) (±5, 0) $2\underline{i} \times 2\underline{j} \cdot \underline{k} =$ (B) 4 For a vector $\underline{v} = 2\underline{i} + 3\underline{j} - 6\underline{k}$, Cos $\underline{s} = \underline{s} = \underline{s}$ Focus of $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is:-(8) (C) $(0, \pm 3)$ (D) $(\pm 3, 0)$ (9) $2\underline{i} \times 2\underline{j} \cdot \underline{k} =$ (A) $\frac{-6}{7}$ (B) $\frac{2}{7}$ (C) $\frac{3}{7}$ (D) $\frac{-3}{7}$ (10)If $g(x) = \frac{3}{x-1}$, then $g(x) = \frac{3}{x-1}$ (11)(B) 1 (C) Undefined (D) 0 (12)(A) 0 (B) Undefined (C) 1 $\frac{d}{dx}(\cos^{-1}3x)=$ (B) $\frac{-3}{\sqrt{1-9x^2}}$ (C) $\frac{1}{\sqrt{1-9x^2}}$ (D) $\frac{-1}{\sqrt{1-9x^2}}$ (13) $\frac{d}{dx} e^{5x-2} =$ (14)(B) $2e^{5x-2}$ $\frac{d^2}{dr^2}(\cos h3x) =$ (A) $3\cos h3x$ (15)(B) $3\sin h3x$ (C) $-9\cos h3x$ (D) $9\cos h3x$ $\frac{d}{dx}\left(\cot^{-1}\frac{x}{a}\right) =$ (A) $\frac{a}{a^2 + r^2}$ (B) $\frac{a^2}{a^2 + r^2}$ (C) $\frac{-a}{a^2 + r^2}$ (D) $\frac{-1}{a^2 + r^2}$ (16) $\int \frac{1}{dx + h} dx = \Re \text{pakcity.org} \Re$ (17)(B) $\frac{1}{a} \ln(ax+b) + c$ (C) $\frac{1}{b} \ln(ax+b) + c$ (D) $a \ln(ax+b) + c$ (A) ln(ax+b)+c $\int e^x \left(\frac{1}{x} + \ell nx \right) dx =$ (A) $e^{x} \ln x + c$ (B) $\frac{1}{x} e^{x} + c$ (C) $e^{x} + c$ (D) $\ln x + c$ $\int Cos x dx =$ (19)(B) 2 (C) 1 (D) 0

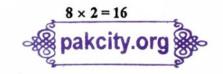
(20) $\int_{2}^{4} \frac{1}{x} dx =$ (A) $\ln x$ (B) 2 (C) 1 (D) 0 (20) $\int_{2}^{4} \frac{1}{x} dx =$ (A) $\ln x$ (B) 4 (C) $\ln x$ (D) 2

INTERMEDIATE PART-II (12th CLASS)

MATHEMATICS PAPER-II

GROUP-II

SUBJECTIVE


TIME ALLOWED: 2.30 Hours MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.

(i) Evaluate
$$\lim_{x \to 0} \frac{\sqrt{x+a} - \sqrt{a}}{x}$$

Express $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^{2n}$ in terms of number "e". (ii)

- Give three conditions for a function f(x) to be continuous at a number 'C'. (iii)
- Write any two different notations for the derivative of a function f(x). (iv)
- Find derivative of $\frac{1}{(az-b)^7}$ w.r.t. z using power rule. (v)
- Differentiate $\frac{x^2+1}{x^2-2}$ w.r.t. x (vi)
- If $y = \sqrt{x} \frac{1}{\sqrt{x}}$. Show that $2x \frac{dy}{dx} + y = 2\sqrt{x}$ (vii)
- Find the first derivative of implicit function $y^2 + x^2 4x = 5$ (viii)
- Differentiate x and y w.r.t. t' if $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2b}{1+t^2}$ Differentiate Sin^2x w.r.t. Cos^4x If $x = aCos^3\theta$, $y = bSin^3\theta$, then show that $a\frac{dy}{dx} + b\tan\theta = 0$ (ix)
- (x)
- (xi)
- Find $\frac{dy}{dx}$ if $y = \ln(\tanh x)$ Attempt any eight parts

3.

 $8 \times 2 = 16$

- Find δy and dy when $y = x^2 + 2x$ when x changes from 2 to 1.8. (i)
- Evaluate $\int \frac{e^{2x} + e^x}{e^x} dx$ (ii)
- Evaluate $\int \frac{ax+b}{ax^2+2bx+c} dx$ (iii)
- Evaluate $\int \frac{x}{\sqrt{4+x^2}} dx$ (iv)
- Evaluate $\int \frac{1}{x \ln x} dx$ (v)
- Evaluate $\int x \cos x \, dx$ (vi)
- (vii) Evaluate $\int_{-\infty}^{\infty} \ell n x \, dx$
- (viii) Evaluate $\int e^x (Cosx + Sinx) dx$
- Evaluate $\int Tan^{-1}x \ dx$ (ix)
- Find the area bounded by the curve $y = x^3 + 3x^2$ and the x-axis. (x)
- Define feasible solution set. (xi)
- Graph the inequality x + 2y < 6Please visit for more data at: www.pakcity.org (xii)

Attempt any nine parts. 4.

- $9 \times 2 = 18$
- Prove that A(3,1), B(-2,-3) and C(2,2) are vertices of an isosceles triangle. (i)
- If origin is translated to O'(-3, 2) find new coordinates of P(-2, 6). pakeity.org (ii)
- Find the distance of P(6, -1) from the line 6x 4y + 9 = 0(iii)
- Find equation of line whose slope is -4 and x-intercept is -9. (iv)
- Find equation of each line represented by $20x^2 + 17xy 24y^2 = 0$ (v)
- Find focus, directrix of parabola $y = 6x^2 1$ (vi)
- Find equation of parabola if its focus is (2, 5), directrix y = 1(vii)
- Find centre and vertices of ellipse $\frac{(2x-1)^2}{16} + \frac{(y+2)^2}{16} = 1$ (viii)
- Find equation of ellipse with centre (0, 0) focus (0, -3), vertex (0, 4)(ix)
- Find direction cosine of \overline{PQ} if P(2, 1, 5), Q(1, 3, 1)(x)
- Find unit vector in the direction of the vector $\underline{V} = 2\underline{i} + 6j$. (xi)
- A force $\underline{F} = 4\underline{i} 3\underline{k}$, passes through the point A(2, -2, 5). (xii) Find the moment of \underline{F} about point B(1, -3, 1)
- Find ' α ', so that $\left|\alpha \underline{i} + (\alpha + 1)\underline{j} + 2\underline{k}\right| = 3$ (xiii)

$3 \times 10 = 30$

NOTE: - Attempt any three questions.

 $f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2} \\ k \end{cases}$

Find the value of k so that the function is continuous at x = 2.

- If $y = e^{ax} \sin bx$, show that $\frac{d^2y}{dx^2} 2a\frac{dy}{dx} + (a^2 + b^2)y = 0$ (b)
- Evaluate $\int \sqrt{a^2 + x^2} dx$ 6.(a)
 - The vertices of a triangle are A(-2, 3), B(-4, 1) and C(3, 5). Find coordinates of the centroid of (b) the triangle.
- Find the area bounded by the curve $y = x^3 4x$ and the x axis. 7. (a)
 - Maximize z = 2x + 3y subject to the constraints (b) $3x + 4y \le 12$; $2x + y \le 4$; $4x - y \le 4$; $x \ge 0; y \ge 0$
- Write an equation of the circle that passes through the given points. A(4,5), B(-4,-3), C(8,-3)8. (a)
 - (b) Prove that $Cos(\alpha + \beta) = Cos \alpha Cos\beta - Sin\alpha Sin\beta$
- Find the center, Foci, Eccentricity vertices and equation of directrices of $x^2 y^2 = 9$ 9.(a)
 - Find the volume of tetrahedron whose vertices are A(2, 1, 8), B(3, 2, 9), C(2, 1, 4) and D(3, 3, 0)(b)