SAHIWAL BOARD

Physics	
Session	

(Inter Part - I, Group - I, Paper Code: 6475) Objective

Time: 20 Minutes Marks: 17

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number with marker or pen. Cutting of filling

1.	~	result in zero mark in that		
	(a) Polarization	(b) Magnification		VIV Dadaatiaa
2.		ter surface shows colour	(c) Transmission	(d) Reflection
	(a) Diffraction	(b) Interference	(c) Polarization	(d) Reflection
3.	Velocity of sound it		(c) rolarization	(a) Kellection
	(a) 332ms ⁻¹	(b) 224 ms ⁻¹	(c) 76 ms ⁻¹	(d) Zero ms ⁻¹
4.	If the pressure of g	as is doubled, then speed		(u) zero ma
	(a) Doubled	(b) Not changed	(c) Half	(d) Increased 4 times
5.	The wave form of S		(-)	(d) mercano
	(a) Square wave	(b) Saw tooth wave	(c) Sine wave	(d) Random wave
6.	The maximum drag	force on falling sphere i	그렇게 하는 하면 아이는 얼마나 얼마나 이렇게 되었다.	
	(a) IN	(b) 9.8N	(c) 19.8N	(d) 980N
7.	A rev min' is equal			*** **********************************
	(a) $\pi/30 \ rad \ s^{-1}$	(b) $\pi / 6 \ rad \ s^{-1}$	(c) $\frac{\pi}{15}$ rad s^{-1}	(d) $\pi/20 \ rad \ s^{-1}$
8.	Which is correct re	lation?	*	P 5200
	(a) $v = w \times r$	(b) $v = w.r$	(c) W = V×r	(d) $v = r \times w$
). ·		e amount of energy direc	The Country	(4)
	(a) Wind	(h) Sun		(d) Water
0.	The slope of velocit	y-time graph gives!	(c) Moon	(u) water
	(a) Speed	(b) Torque	(c) Displacement	(d) Acceleration
1.	, e,	ed by a body in time 't' s		(d) Acceleration
7	The minimum covery			
	(a) at ²	(b) v ² t	(c) $\frac{a^2t}{2}$	(d) $\frac{at^2}{2}$
	<i>₩</i>		Company of the Compan	2
2.	Which is vector qua (a) Length	(b) Volume	(c) Work	(AN Malastic)
2	Distriction of the second second			(d) Velocity
3,		ing same effect as all the	The state of the s	revised a separate of the contract of the cont
iê Ut	(a) Equal vector	(b) Resultant vector	(c) Position vector	(d) Unit Vector
4.		tainty in radius of a spl	nere is 2%, then total t	incertainty in the volu
	is: (a) 6%	(b) 2%	(c) 4%	(d) 8%
5.	7.5	number of significant d		(4) 570
		in an and a second		(4) C
	(a) Four	(b) Two	(c) Three	(d) Seven
i.	Entropy of an irrev	ersible process:		
	(a) Increases	(b) Decreases	(c) Remains same	(d) None of these
ù.	If 32 Joule work is	done by absorbing hea	t of 42 Joule, change i	n internal energy is:
,	(a) $\Delta U = 74J$	(b) $\Delta U = 10J$	(c) $\Delta U = \frac{21}{9}J$	(d) $\Delta U = \frac{8}{21}J$

Roll No. Sahiwal Board-G-1-2024

(To be filled in by the candidate)

Physics

Paper: I Group: Ist

H.S.S.C (11th)1st-Annual-2024

Objective - (i)
Paper Code 6 4

Inne: 20 Minutes

Marks: 17

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

fill the circles. Cutting or filling up two or more circles will result no mark. SECTION – A			akcity.org		
Q.1		A	B	6	D
1.	In 8.70×10 ⁴ kg has number of significant digits:		Two	Three	Seven
2.	If percentage uncertainty in radius of a sphere is 2% then total uncertainty in the volume is:		2%	4%	8%
3.	A single vector having same effect as all	Equal vector	Resultant	Position.	Unit vector
_	the original vectors taken together is:		vector	vector	Velocity (
4.	Which is vector quantity?	Length	Volume	Work	at ²
5.	The distance covered by a body in time 't' starting from rest is:	at ²	<i>v</i> ² <i>t</i>	$\frac{a^2t}{2}$	$\frac{a}{2}$
6.	The slope of velocity-time graph gives:	Speed	Torque	Displacement	Acceleration
7.	Earth receives large amount of energy directly from:	Wind	Sun	Moon	Water
8.	A rev min ⁻¹ is equal to:	π/30 rad s-1	π/6 <i>rad</i> s ⁻¹	$\frac{\pi}{15}$ rad s^{-1}	$\pi/20 \ rad \ s^{-1}$
9.	Which is correct relation?	$\vec{v} = \vec{w} \times \vec{r}$	$\vec{v} = \vec{w} \cdot \vec{r}$	$\vec{w} = v \times \vec{r}$	$\vec{v} = \vec{r} \times \vec{w}$
10.	The maximum drag force on falling sphere is 9.8 N, its weight is	1 N	9.8 N	19.8 N	980 N
11.	The wave from of SHM is:	Square wave	Saw tooth wave	Sine wave	Random wave
12.	If the pressure of gas is doubled, then speed of sond is:	Doubled	Not changed	Half	Increased 4
13.	Velocity of sound in free space is:	332ms-1	19224ms-1	76ms-1	Zero ms ⁻¹
14.		Diffraction	Interference	Polarization	Dispersion
15.	The ratio of size of image to the size of obejct is called:	Polarization	Magnification	Transmission	Reflection
16.	Entropy of an irreversible process:	Increases	Decreases	Remains same	None of these
17.	absorbing heat of 42 joule, change in internal energy is:		ΔU=10J	$AU = \frac{21}{8}J$	$\Delta U = \frac{8}{21}$

Sahiwal Board-G-1-2024

pakcity.org

2. Write short answers to any EIGHT parts.

The period of simple pendulum is measured by a stop watch. What type of errors are possible in the î. time period?

Write down the dimensions of n. b) density a) pressure

111. What is the light year and write down its units?

IV. Write down any two rules for rounding off the significant figures.

٧. Can you add zero to a null vector?

The vector sum of three vectors gives a zero resultant. What can be the orientation of the vectors? Vi.

vii. What is the moment of a force about the point lying on the axis of rotation?

An object is thrown vertically upward. Discuss the sign of acceleration due to gravity, relative to VIII. velocity, while the object is in air.

ix. What is meant by instantaneous acceleration? Write down its formula.

Show that $F = \frac{\Delta P}{}$ X.

xi. How energy can be obtained from sea tides? Explain

When a rocket re-enters the atmosphere, its nose cone becomes very hot. Where does this heat XII. energy come from?

3. Write short answer to any EIGHT parts.

i, During circular motion with constant speed, body's velocity is northward. After time \(\Delta \) its velocity is westward. What will be the direction of centripetal force? Explain with vector diagram.

ii. Explain the difference between tangential velocity and angular velocity.

m. What is meant by moment of inertia? Explain its significance.

Show that orbital angular momentum Lo-myr IV.

Why fog droplets appear to be suspended in air? ٧.

Vi. What is the difference between laminar flow and turbulent flow?

VII. Find the angular velocity of a point on the earth's equator as a result of earth's rotation.

VIII. A simple pendulum has time period 2s with amplitude 0.10m. Find its maximum acceleration.

ix. Name two characteristics of simple harmonic motion.

X. Does frequency depend on amplitude for harmonic oscillators?

xi. State law of reflection for transverse waves.

What features do longitudinal waves have in common with transverse waves? XII.

4. Write short answer to any SIX parts.

How would you manage to get more orders of spectra using a diffraction grating?

What do sugar and tartaric acid show when they are in solution and why? ii.

How did Michelson measure the length of a standard metre? 111.

What will be the angular magnification of telescope having an objective of focal length of 20cm and iv. an eye piece of 4.0cm, both convex lenses.

Describe the function of repeaters and photodiode in signal transmission? V.

A magnifying glass gives a live-times enlarged image at a distance of 25 cm from the lens. Find VI. focal length using ray diagram.

Why do we keep pressure or volume constant to study the effect of heating gases? vii.

A thermo flask containing milk as a system is shaken rapidly. Does the temperature of milk rise? viii.

Why the internal energy is similar to gravitational potential energy? Explain ix.

SECTION - II Attempt any THREE questions. Each question carries 08 Marks.

5. (a) Discuss vector addition of a number of coplanar vectors by rectangular components.

A bomber dropped a bomb at a height of 490m when its velocity along horizontal was 300kmh. How long was it in air?

6. (a) Derive an expression of Laplace's correction for speed of sound in air. Is this correction close to experimental value?

A car of mass 800kg travelling at 54kmh⁻¹ is brought to rest in 60 metres. Find the average retarding (b) force on the car.

7.(a) Define and explain centripetal force and derive the relation for it.

A block of mass 4.0kg is dropped from a height of 0.80m onto a spring of spring constant K=1960 (b) Nm⁻¹. Find the maximum distance through which the spring will be compressed.

8.(a) Define and explain the velocity at which the water droplets attain the dynamic equilibrium in air.

Calculate the entropy change when 1.0kg ice at 0° C melts into water at 0° C. Latent heat of fusion (b) of ice $L_f = 3.36 \times 10^3 \text{J kg}^{-1}$.

9. (a) In fibre optic communication system, explain signal transmission and conversion to sound.

A light is incident normally on a grating which has 2500 lines per centimetre. Compute the wavelength of a spectral line for which the deviation in second order is 15.0°.

Sahiwal Board-G-2-2024

Roll No.

(To be filled in by the candidate)

Physics Paper: I

Group: II

H.S.S.C (11th)1st-Annual-2024

Time: 20 Minutes

Marks: 17

Objective-(iv) Mai Paper Code 6 4 7 8

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in you answer book. Use marker or pen to sit the circles. Cutting or filling up two or more circles will result no mark.

fill th	ne circles. Cutting or filling up two or more circle	mark.	a nakci	ty.org	
-		<u>ON – A</u>		- Company	1,019 @s
Q.1		A	B	C	U Vicatio
1.	Which one is constant for a satellite in	1500 150 103 DIGWINEYWA 1500 -	Velocity	Angular	Kinetic
	orbit:	energy		momentum	energy
2.	The ratio of moment of inertia of a solid	1	1	$\frac{2}{5}$	2
	cylinder and thin ring is:	2	4	5	1
3.	A fog droplet of radius "r" falls in air with	$\frac{v_t}{1}$	$4v_i$	2v,	ν_{r}
	terminal velocity ve if the radius of the droplet	1			
	become "2r". Then terminal velocity is:		_		
4.	If the suspended mass of pendulum is		Becomes	Remains	1.414 times
	doubled then its time period:	double	half	unchanged	increased
5.	The distance between two consecutive	$\frac{\lambda}{2}$	$\frac{\lambda}{\lambda}$	2λ	4λ
	nodes or antinodes is:	2	4		
6.	When a wave is travelling in a denser	0	π	π	2π
	medium incident on a rare medium, the		$\frac{\pi}{2}$		
	reflected wave undergoes a phase change of:				
7.	The transverse nature of light is	Interference	Polarization	Diffraction	Beats
	confirmed by the phenomenon of:		(13)		
8.	Final image formed in compund			Real and	Real and
	microsope is:	erect	inverted •	inverted	erect
9.	The mean square velocity of the gas	\bigcirc 3T	KT	2KT	3KT
	molecule is given by:	$\sqrt{2K}$	V m	\sqrt{m}	m
10.	If a heat engine has 65% efficiency, then $\frac{T_2}{T_1}$ =	0.5	0.45	0.35	0.25
11.	1 watt hour =	3.6 J	3.6 MJ	3.6×10 ⁸ J	3.6×10 ³ J
12.	If the mass of the body is increased to four		SA		
	times while the force is kept constant, then	One Half	Doubled	One Fourth	Four Times
	acceleration in body will become:				
13.	The range of projectile at 60° is the same as that angle:	pa30°it	rg 45°	90°	120°
14.	Vectors A and B of magnitudes 4 N and 3 N make an angle of 30° and 60° with x-axis respectively. The scalar product of the two vectors:		7 N	10 N	6 N
15	Two forces act together on an obect. The	180°	90°	450°	00
10.	magnitude of their resultant force is				
	minimum when they act at:	_			
16.	Which the given quantity has different	Work	Energy	Pressure	Torque
-0.	dimensisons?		0,7		1
17.	Time for 20 vibrations of a simple pendulum				
"	is 40.25 sec measured by a stop watch of	±2.01	±0.05	±0.003	±0.005
	accuracy up to 0.1 sec. The absolute	e		400 00 1000	
	uncertaintry in the time period is:				

Sahiwal Board-G-2-2024

- Write short answers to any EIGHT parts.
 Why do we find it useful to have two units for the amount of substance, the kilogram and the mole? 2.
- Name several repetitive phenomena occurring in nature which could serve as reasonable time standards ing in nature wilder random and systematic error? il standards nit.
- h) torque IV. Write down dimensions of a) work
- If A + B = 0, what can you say about the components of the two vectors? ¥ .
- Can a body rotate about its centre of gravity under the action of its weight? 11
- 111 What is the position vector? Explain.
- Explain the circumstances in which the velocity v and acceleration u of a car are VIII
 - b) a is zero but v is not zero. a) v is zero but a is not zero.
- At what point or points in its path does a projectile have its minimum speed, its maximum speed. IX. If we draw a graph between velocity and time, how can you find the distance and acceleration from
- X.
- A boy uses a catapult to throw a stone which accidentally smashes a greenhouse window. List the MI. What is salter's duck? Explain. NII. possible energy changes.
- 3. Write short answer to any EIGHT parts.
- What is meant by moment of inertia? Explain its significance.
- How many radians are there in 2 degree? H. Show that orbital angular momentum, Lo=mvr
- What is the difference between real and apparent weights? iv.
- Explain, how the swing is produced in a fast moving cricket ball? ٧.
- What are three conditions which fluid must satisfy to study its motion? VI.
- VII. Can we realize an ideal simple pendulum?
- Show that in SHM the acceleration is zero when the velocity is greatest and the velocity is zero when viii. the acceleration is greatest.
- ix. If spring is cut into two equal halves, what will be spring constant of each part?
- What features do longitudinal waves have in common with transverse waves?
- Xi. As a result of a distant explosion, an observer senses a ground tremor and then hears the explosion? What is period of 300 cycles per second of sound waves? Explain the time difference.
- 4. Write short answer to any SIX parts.
- i. Can visible light produce interference fringes? Explain.
- 11. Why a fringe is shifted when mirror is shifted through $\lambda/2$ in Michelson interferometer.
- 111 Why longitudinal waves do not show polarization?
- IV. Why is it preferred to use the lens of small focal length for high angular magnification?
- ٧. One can buy a cheap microscope for the use of children. The image seen in such a microscope have coloured edges. Why is this so? vi. What do you understand by axial ray? How does it travel?
- VII. Can Boyle's law be derived by Kinetic Molecular theory? If so, explain.
- VIII. Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why?
- ix. Why is it not possible to utilize the hear contents of oceans and atmosphere?

SECTION - II

Attempt any THREE questions. Each question carries (8) Marks.

- 5.(a) What is meant by rectangular components? Explain addition of two vectors by rectangular components.
- Prove that for angles of projection, which exceed or fall short of 45° by equal amounts, the ranges (b)
- (a) If a body of mass 'm' is dropped from height 'h' as shown, discuss the interconversion of energies 6. during its motion.

- An organ pipe has a length of 50 cm. Find the frequency of its fundamental note and the next (b) harmonic when it is closed at one end.
- (a) What is meant by centripetal force? Derive relations for centripetal force and centripetal 7. acceleration.
- A block of mass 4.0 kg is dropped from a height of 0.80 m onto a spring of spring constant K-1960 (b) Nm⁻¹, find the maximum distance through which the spring will be compressed
- (a) Define molar heat capacity and prove that Cp-Cy-R 8.
- How large must a heating duct be if air moving 3.0 ms along it can replenish the air in a room of (b) 300 m; volume every 15 min? Assume the air's density remains constant.
- (a) How would you derive the equation of magnification of compound microscope accompanied by 9. ray diagrammatic explanation? Also, give two points to resolve the details of an image
 - (b) X-rays of wavelength 0.150 nm are observed to undergo a first order reflection at a Bragg angle of 13.3° from a quartz crystal. What is the interplanar spacing of the reflecting planes in the crystal?

Roll No.

(To be filled in by the candidate)

Physics

H.S.S.C (11th) 1st Annual 2023

Time : 20 Minutes

Paper: I

Group:1

Objective - (iv)

Paper Code

4 7 7

Marks : 17

Note: - You have four choices for each objective type question as A, B, C and D. Theschpice which you think is correctly fill that circle in front of that question number in your answer book. Is maken or pen to fill the circles. Gutting on filling up two or more circles will result no mark.

SECTION-A

Q.1	Questions	Α	В	, C	ı D
1.	2° is equal to: pakcity.org	0.035 rad.	0.300 rad.	0.350 rad.	0.0035 rad.
2.	Which electromagnetic wave is used for the satellite communication system?	Radio waves	Infrared waves	Ultraviolet waves	Microwaves
3.	An electric motor produces a tension of 4500N in a load lifting cable and rolls it at the rate of $2ms^{-1}$. The power of the motor is:	4kW	2kW	15kW	9kW
4.	Acceleration of rocket is given by relation:	$a = \frac{M}{mv}$	a=m	a= mv m	$a = \frac{mv}{M}$
5.	If $1\vec{a} + \vec{b}1 = 1\vec{a} - \vec{b}1$ then angle between \vec{a} and \vec{b} is:	0°	45°	90°	180°
6.	Two forces of magnitudes 10N and 20N act on a body in directions making angles of 30° each with x-axis. The x-component of the resultant force will be:	25.98 N	30.98 N	20.98 N	17.98 N
7.	Speed of the earth around the sun in ms is:	35500	20000	29600	50000
8.	Which pair of physical quantities have same dimensions?	Work and power	Momentum and impulse	Force and torque	Momentum and force
9.	Velocity of an object has 1% uncertainty and mass has 2% uncertainty then total uncertainty in K.E will be:	3%	2%	4%	1%
10.	Absolute zero corresponds to:	-459°F	-360°F	O°F	460°F
11.	The change in internal energy is defined as:	Q-T	Q+P	Q-P	Q-W
12.	The refractive index of water is 1.33 the speed of light in water is: $(c = 3x10^8 \text{m/sec})$	3x108m/sec	1.8x10 ⁸ m/sec	2.3x108m/sec	1.3x10 ⁸ m/sec
	In Michelson interferometer, to switch the fringes from bright to dark, the mirror should be displaced by:	$\frac{\lambda}{2}$	$\frac{\lambda}{3}$	$\frac{\lambda}{4}$	λ
14. 1	Speed of sound at $O^{\circ}C$ is 332 ms^{-1} . The speed of sound at $30^{\circ}C$ will be:	332 m/sec	350 m/sec	340 m/sec	335 m/sec
15.	A block weighing 4.0 kg extends a spring by 0.16m from its unstretched position, stretching force is:	20.3 N	16.3 N	39.2 N	14.2 N
	A simple harmonic oscillator has a period of 0.01s and an amplitude of 0.2m. The magnitude of velocity at the centre of oscillation is:	20π	40π	60π	80π
	The dimensions of $\frac{1}{2}\rho V^2$ is same as that of:	K.E	P.E	Pressure	Work
			222 24	3-14-20000	++++

		0	-hi D 0000	
		5	ahiwal Board-2023	
_			Roll No.	(To be filled in by the candidate)
F	Physics	H.S	S.S.C (11 th) 1 st Annual 20	23 Time : 2:40 Hours
F	aper:I	Group: I	Subjective	Marks : 68
Note	Section B is co	mpulsory. Attemp	t any Three questions from S	Section C.
			SECTION-B	
2.	Write short answe	rs to any Eight pa	rts. 🥯 🎇 🎾	akcity.org (8 x 2 = 16)
i.	Distinguish between l		d units.	
ii.	What are random erro			
iii.	Write the dimensions	of: (i) Pressure (ii)	Power.	
iv. v.	Define: (i) Null vecto	r (ii) Fanal vectors	red by a stop waten. What type of e	errors are possible in the time period?
vi.			orientation will both of its rectand	gular components be negative? For what
• • • •	orientation will its con	mponents have oppos	site signs?	guiai components de negative: 1 di what
vii.			the vector's magnitude?	
viii.		~ 		zero on striking the wall. What will be the
	force exerted by water			3
ix.	Derive formula for tin		tile.	
x.	What is the difference	between elastic and	inelastic collision?	
xi.	What is the difference	between uniform an	d variable velocity?	
xii.			e direction are pulled towards each	other. Explain.
3.	Write short answer			$(8 \times 2 = 16)$
i.			nich breaks into pieces. Which ener	
ii.			50 kg bag of books is lifted through	h 50cm or when a 50 kg crate is pushed
iii.	through 2m across a fe Potential energy is the	orce of SUN?	avative field Explain	(S)
iv.	What is geostationary			
v.	Show that orbital angu			
vi.	What is meant by mor	nent of inertia? Expl	ain its significance	
vii.			and set into oscillation, why does th	e motion eventually stop?
viii.	Show that when a pen	dulum moves from n	nean position to half of amplitude, t	time taken by it is $t = \frac{T}{T}$.
			901	12
ix.	What is meant by pha		(0)0	
x.	Explain 'red shift' and			20 24
xi.	Why does sound trave How are beats useful	in tuning musical ins	truments?	
4.	Write short answer	s to any Six parts	EDITION A CUMB	$(6 \times 2 = 12)$
i.	State Huygen's princip		EUUGAIIUN	(0.12 12)
ii.	How would you mana	ge more orders of sp	ectra by using a diffraction grating?	?
iii.	How is the distance b	etween interference	fringes affected by the separation b	etween the slits of Young's experiment?
	Can fringes disappear	?	And Total	
iv.	What is the least dista	nce of distinct vision	? Also, give the length of this distant	nce.
v.	If a person was looking	ng through a telescop	be at the full moon, how would the	appearance of the moon be changed by

covering half of the objective lens?

What is the average translational K.E of molecules in a gas at temperature 27°C? vi.

How would you explain the sign convention of First Law of Thermodynamics? vii.

Why is the average velocity of the molecules in a gas zero but the average of the square of velocities is not zero. Why does the pressure of a gas in a car tyre increase when it is driven through some distance? viii.

ix.

SECTION-C

Note	e: Attempt any Three questions. Each question carries Eight (8) Marks)	(8x3=24)
5. (a)	What is gravitational field? Show that gravitational field is a conservative field.	(5)
(b)	Find the projection of vector $\vec{A} = 2\hat{i} - 8\hat{j} + \hat{k}$ in the direction of the vector $\vec{B} = 3\hat{i} - 4\hat{j} - 12\hat{k}$.	(3)
6. (a)	State and prove the law of conservation of linear momentum.	(5)
	A body of moment of inertia I= 0.80 kg m ² about a fixed axis, rotate with a constant angular velocity of	(3)
	100 rad s ⁻¹ . Calculate its angular momentum and the torque to sustain this motion.	
7. (a)	State and prove Bernoulli's equation for an ideal fluid.	(5)
(b)	A carnot engine whose low temperature reservoir is at 7°C has an efficiency of 50%. It is desired to increa	se the (3)
	efficiency to 70%. By how many degrees the temperature of the source be increased?	ation (F)
8. (a)	Define simple harmonic motion. Discuss that energy is conserved for a body executing simple harmonic motion.	otion. (5)
(b)	Find the temperature at which the velocity of sound in air is two times its velocity at 10°C.	(3)
9. (a)	Describe how Michelson measured the speed of light?	(5)
(b)	In a double slit experiment the second order maximum occurs at $\theta = 0.25^{\circ}$. The wavelength is 650 nm. Dete	
	the slit separation.	

209-323-14-20000

*	pakcity.org	
(To be	e filled in by the candid	date)

Physics H.S.S.C (11th) 1th

filling up two or more circles will result no mark.

H.S.S.C (11th) 1st Annual 2023

Time : 20 Minutes

Paper: I

Group: II

Objective - (ii)

Marks : 17

Note: - You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in your answer book. Use marker or non to fill the circle and the circle and

SECTION-A

		JECTION-M			
Q.1	Questions	Α	B	С	D
1.	If a gymnast sitting on a stool with his arm stretched, lowers his arms:	ω decreases	ω increases	I increases	ω remains same
2.	Angular momentum has the same unit as:	Impulse X Distance	Power X Time	Linear momentum	Work × Frequency
3.	Which of the given variable is present in all equations of motion:	Distance	Acceleration	Time	Torque
4.	At what speed, the momentum and kinetic energy of a body have the same value:	1ms ⁻¹	2ms ⁻¹	4ms ⁻¹	8ms ⁻¹
5.	The earth receives larger amount of energy from:	Wind	Water	Sun	Moon-
6.	Product î x (ĵxk) is equal to:	W. C. L. L. S.	ō	ĵ	î
7.	Projection of \vec{A} on \vec{B} is:	$A\cos\theta$	$B sin \theta$	B $tan\theta$	A $sin\theta$
8.	Absolute uncertainty in a measuring instrument is equal to:	Least count	Accuracy	Fractional uncertainty	Percentage uncertainty
9.	The dimensional formula for the quantity light year is:	T)	[L]	[LT-1]	[M°LT]
10.	No entropy change takes place in:	Isobaric process	Isothermal process	Adiabatic process	Isochoric process
11.	If heat is added to a system, then its entropy will:	Increase and positive	Decrease and positive	Increase but negative	Decrease but negative
12.	Information carrying capacity of an optical fibre is called:	Capacity	Band width	Immunity	Ability
13.	Newton's rings are formed due to:	Diffraction	Refraction	Reflection	Interference
14.	Beats can be heard when difference of frequency is not more than:	4 Hz	6 Hz	8 Hz	10 Hz
15.	With the increase of temperature, speed of sound:	Remains same	Becomes zero	Decreases	Increases
16.	Which expression is correct for time period of simple pendulum?	$T \propto l$.	$T \propto \sqrt{l}$	$T \propto m$	<i>T</i> ∝ <i>g</i>
17.	The working of carburetor of car uses:	Equation of continuity	Gravitational law	Stoke's law	Bernoulli's theorem

		Roll No.	(To be fille	ed in by the candidate)
Physics		H.S.S.C (11th) 1st Annual 2023	Time	: 2:40 Hours
Paper: I	Group : II	Subjective	Marks	: 68
Note: Section	B is compulsory. At	empt any 3 questions from Section C.		

SECTION-B

2. Write short answers to any Eight parts.

Show that E=mc2 is dimensionally consistent. i.

pakcity.org

- iii. Give the drawbacks to use the period of a pendulum as a time standard.
- What is the difference between kilogram and mole? iv.
- Can the product of two vectors be equal to the product of their magnitudes ٧.
- Define the terms (i) unit vector and (ii) components of a vector. vi.
- If $\bar{A} + \bar{B} = \bar{O}$, what can you say about the components of the two vectors? vii.
- viii. Define impulse and write its units.
- Show that the range of projectile is maximum when projectile is thrown at an angle of 45° with the horizontal. ix.
- Can the velocity of an object reverse the direction when acceleration is constant? If so give an example. X.
- Derive the relation for the time of flight of a projectile. xi.
- Explain, how the swing is produced in a fast moving cricket ball. xii.

3. Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

 $(8 \times 2 = 16)$

- A boy uses a catapult to throw a stone which accidentally smashes a greenhouse window. List the possible energy changes. i.
- An object has 1 J of potential energy. Explain what does it mean? ii.
- What do you know about geothermal energy? iii.
- Why does a diver change his body positions before and after diving in the pool? iv.
- ٧. Show that orbital angular momentum $L_o=mvr$.
- vi. What is INTELSAT VI?
- If a mass spring system is hung vertically and set into oscillations, why does the motion eventually stop? vii.
- viii. What is meant by phase angle? Does it define angle between maximum displacement and the driving force?
- Define restoring force. What are its units? ix.
- How should a sound source move with respect to an observer so that the frequency of its sound does not change? X.
- Why does sound travel faster in solids than in gases? xi.
- xii. How are beats useful in tuning musical instruments?

4. Write short answers to any Six parts,

 $(6 \times 2 = 12)$

- In Young's experiment, one of the slits is covered with blue filter and other with red filter. What would be the pattern i. of light intensity on the screen?
- ii. How would you distinguish between an-polarized and plane-polarized lights?
- iii. Give two uses of Michelson's interferometer.
- If a person was looking through a telescope at the full moon, how would the appearance of the moon be changed by iv. covering half of the objective lens?
- What is spectrometer? Write down its two main parts. V.
- Given an example of a natural process that involves an increase in entropy. vi.
- What happens to the temperature of a room, when an air conditioner is left running on a table in the middle of the room? vii.
- Define Iso-thermal process and write its relation. viii.
 - In which process external work is done at the expense of the internal energy of the gas molecules? Explain it.

SECTION-C

(Note: Attempt any Three questions. Each question carries Eight (8) Marks) (8x3=24)5. (a) Define gravitational field. Show that work done in gravitational field is independent of path followed. (b) Two forces of magnitude 10 N and 20 N act on a body in directions making angles 30° and 60° respectively with x-axis. Find the resultant force. 6. (a) What is projectile and projectile motion? Explain and analyse the oblique projectile as well as horizontal projectile. 5 (b) What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km radius so that there will be no 3 tendency for the pilot to fall down at the highest point. 7. (a) Show that pressure exerted by the gas molecules is directly proportional to average translational kinetic energy of 5 the gas molecules.

- (b) Water flows through a hose, whose internal diameter is 1cm at a speed of 1 ms⁻¹. What should be the diameter of 3 the nozzle if water is to emerge at 21 ms-1?
- 8. (a) What is the main purpose of resonance? Explain it with an experiment of pendulums of different lengths. Also, 5 give one example of resonance.
 - (b) A stationary wave is established in a string which is 120 cm long and fixed at both ends. The string vibrates in four 3 segments at a frequency of 120 Hz. Determine its wavelength and the fundamental frequency?
- 9. (a) What is a compound microscope? Describe its construction and working. Also calculate its magnifying power.
 - (b) A light is incident normally on a grating which has 2500 lines per centimetre. Compute the wavelength of a spectral 3 line for which the deviation in second order is 15.0°.

Sahiwal	Roard	2022
Sallivval	DUALU	-/()//

Roll No.

1

(To be filled in by the candidate)

Physics

H.S.S.C (11th)-A-2022

: 20 Minutes

Paper: I

Group: I

Objective - (i)

Marks : 17

PX-IAI

Paper Code

7

Note: - You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

C	F(T	•		N	-A
-	_	-		•		

SECTION-A TO THE PART OF THE P								
Q.1	Questions	Α.	В	С	D			
1.	The time taken by light from moon to earth is:	1 min 10 sec	1 min 20 sec	1 min 30 sec	1 min 40 sec			
2.	If $r = 2.25 \pm 0.01$ cm then %age uncertainty in 'r' is:	0.2%	0.3%	0.4%	0.5%			
3.	Magnitude of resultant vector of 6N and 8N which is perpendicular to each other is:	2 N	14 N	May	10 N			
4.	The dimensions of torque are:	[MLT ⁻²]	[ML ² T ⁻²]	[A]-T-2]	[ML ⁻¹ T ⁻¹]			
5.	When velocity time graph is parallel to time axis, then acceleration of moving body is:	Negative	Pestive	Maximum	Zero			
6.	The range of projectile is same for angles:	15°, 55°	38°, 50°	35°, 55°	40°,60°			
7.	The dimension of kinetic energy is similar to that of:	D. Power	Torque	Momentum	Pressure			
8.	Centripetal force performs:	Work	Maximum work	Negative work	No work			
9.	30° is equal to:	$\frac{\pi}{2}$ radian	$\frac{\pi}{4}$ radian	$\frac{\pi}{6}$ radian	$\frac{\pi}{8}$ radian			
10.	As the water falls from a top, he cross- sectional area should decrease according to:	Bernoulli's equation	Continuity equation	Venturi relation	Torricelli's theorem			
11.	$\sqrt{\frac{m}{k}}$ and $\sqrt{\frac{l}{g}}$ has same:	Units	Time period	Numerical value	Damping			
12.	If 20 waves pass through a medium in 1 Sec. with speed of 20 m/s then the wavelength is:	1 m	20 m	40 m	400 m			
13.	The elecity of sound in vacuum at 0°C	280 m/s	332 m/s	335 m/s	Zero			
142	the wavelength of x-rays is of the order of:	10 cm	10 m	10 ¹⁰ m	10 ⁻¹⁰ m			
15.	The detector in photo-diode is made of:	Germanium	Selenium	Cadmium	Silicon			
16.	If the temperature of sink is absolute zero, then efficiency of heat engine will be:	Zero	50 %	100 %	Infinity			
17.	No entropy change takes place in:	Isothermal process	Isochoric process	Isobaric process	Adiabatic process			

Sahiwal Board-2	22
Roll No.	(To be filled in by the candidate)
H 0 0 0 (44th) # 00	Time + 2:40 Hours

Physics

H.S.S.C (11¹¹)-A-2022

2:40 Hours

Paper: I

Group: I

Subjective

: 68 Marks

Section B is compulsory. Attempt any 3 questions from Section C. Note:

SECTION-B

 $(8 \times 2 = 16)$

Give the drawbacks to use the period of pendulum as time standard. i. ii. Write the dimension of

(i) Pressure

(ii) Density

iii. Explain circumstances in which the velocity \overline{V} and acceleration \overline{a} of a car are (i) anti-parallel (ii) V=0 but $a\neq 0$

Differentiate between uniform velocity and variable velocity. Give units. iv.

Why does the pressure of a gas in a car tyre increases when it is driven through some distance? ٧.

Is it possible to convert internal energy into mechanical energy? Give example. vi.

How many seconds are there in one year? vii.

What are the dimension and unit of $\frac{F \times l}{r}$ viii.

- Why First Law of Motion also called Law of inertia? ix.
- Differentiate between elastic and in-elastic collision. x.
- xi. Give three postulates of kinetic theory of gases.
- xii. Define isothermal process.

3. Write short answers to any Eight parts.

How a vector is determined when its rectangular components are given? i.

Find the projection of A = 2i - 8J + k in the direction of B = 3i - J - 12kii.

Can a body rotate about its centre of gravity under the action of its weight? iii.

Define variable force and conservative field.

A body of mass 2Kg is dropped from a height of 10m, find its velocity just before striking the ground (ignoring friction) v.

Calculate the work done in kilo Joules in lifting a mass of 10 Kg (at a steady velocity) through a vertical height of 10m. vi.

When mud flies off the tyre of a moving bicycle, in what direction does it fly? vii.

What is meant by moment of inertia? Explain its significance. viii.

Show that $V = r\omega$ ix.

An oil film spreading over a wet foot path shows colours. Explain how does this happen? x.

xi. Write the conditions for detectable interference of light.

Name the various methods for obtaining the polarized light. xii.

Write short answers to any Six parts. 4.

Two row boats moving parallel in the same direction are pulled toward each other. Explain. i.

Show that in SHM the acceleration is zero when the velocity is greatest and the velocity is zero when the acceleration is ii. greatest.

Can we realize an ideal simple pendulum? iii.

What is damping? Where it is useful? iv.

- It is possible for two identical waves travelling in the same direction along a string to give rise to a stationary wave? v.
- Explain why sound travels faster in warm air than in cold air. vi.
- vii. Explain reflection of waves.
- Explain the difference between angular magnification and resolving power of an optical instrument. viii.
 - What is critical angle? Explain by ray diagram.

SECTION-C

(Each question carries Eight (8) Marks)

5. (a) Define Absolute Gravitational P.E. Show that absolute gravitational P.E of an object at the earth surface is

(b) A force $\vec{F} = 2\hat{i} + 3\hat{j}$ units, has its point of application moved from point A(1,3) to the point B(5,7). Find the

6. (a) What is Artificial Gravity? Derive an expression for frequency of spaceship to provide artificial gravity.

(b) Two masses 'm₁' and 'm₂' are initially at rest with a spring compressed between them. What will be the ratio of the 3 magnitude of their velocities after the spring has been released?

7. (a) State and prove Bernoulli's Equation in dynamic fluid.

(b) A church organ consists of pipes, each with open at one end, of different lengths. The minimum length is 30mm and 3 the largest is 4m. Calculate the frequency range of the fundamental notes.

8. (a) Derive a relation for the time period of a simple pendulum.

- (b) A light is incident normally on a grating which has 2500 lines per centimetre. Compute the wavelength of a spectral 3 line for which the deviation in second order is 15.0°.
- What is meant by Carnot Cycle and Carnot Engine? Calculate efficiency of an ideal Carnot engine and discuss 5 parameters on which it depends.
 - An astronomical telescope having magnifying power 5 consists of two thin lenses 24 cm apart. Find focal lengths of 3 the lenses.

Please visit for more data at: www.pakcity.org

C	ah	iwa	IR	oar	A	-2	n	22)
O	an	IIWa	םו	oar	u	-/	U	22	_

Roll No.

(To be filled in by the candidate)

Physics

H.S.S.C (11th)-A-2022

Time : 20 Minutes

Paper: I

Group: II

Objective - (ii)

Marks: 17

Px-inr Paper Code 6 4 7 4

Note: - You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

nt of that question number in your answer book. Use mark	er or pen to fill the circles. Cutti
re circles will result no mark.	6 1 1
SECTION-A	⊸ ⊗ pakcity.org 🛞
	3

		SECTION-A				
Q.1	Questions	A	В	С	D	
1.	Longitudinal waves do not exhibit:	Reflection	Refraction	Diffraction	Polynation	
2.	Young's double slit experiment is used to study the interference of:	Light waves	Micro waves	Sound waves	Radio waves	
3.	The image formed by eyepiece of compound microscope is:	Real and magnified	Real and diminished	Virtual and enlarged	Virtual and diminished	
4.	Absolute uncertainty in a measuring instrument is equal to:	Least Count	Accuracy	Fractional incertainty	Percentage uncertainty	
5.	The numerical values of constants in any formula cannot be determined by dimensional analysis, however it can be found by:	Addition	Physical Valuation of the Control of	Experiments	Uncertainty	
6.	Torque acting on a body determines its:	Linear acceleration	Impulse	Angular acceleration	Linear momentum	
7.	The vector product $(\overrightarrow{A} \times \overrightarrow{A})$ is equal to:	Selection.	3	A ²	0	
8.	According to first law of thermodynamics, the quantity which is conserved.	Force	Momentum	Power	Energy	
9.	For an ideal gas system, the internal energy is directly proportional to:	Pressure	Volume	Mass	Temperature	
10.	10 N centripetal force is revolving along a circular path of radius 1ft. the work done by this force is:	10 Joules	20 Joules	40 Joules	Zero Joule	
11.	Terminal velocity Vt is related with radius 'r' of a spherical object as:	Vt ∝ r²	Vt∝r	$Vt \propto \frac{1}{r}$	$Vt \propto \frac{1}{r^2}$	
12.	When a particle is moving in a circular path, its projection along diameter executes?	Linear motion	Simple harmonic motion	Circular motion	Perpetual motion	
13.	Phase angle of 180° is equal to a path difference of:	$\frac{\lambda}{2}$	$\frac{\lambda}{4}$	2λ	λ	
N	Motion of a body along y-axis is:	One dimensional	Two dimensional	Three dimensional	Four dimensional	
15.	If the mass of the body is doubled, then acceleration will become:	Double	Half	One fourth	Constant	
16.	Kilowatt-hour is unit of:	Power	Energy	Impulse	Momentum	
17.	Centripetal force is directed along:	Tangent to circle	Radius	Axis of rotation	z-axis	

			Saniwai	Board-2022				
			Roll No.			To be fille	d in by the candidat	te)
Physics				(11 th)-A-2022		Time	: 2:40 Hours	
	aper:I	Group : II	S	ubjective		Marks	: 68	
Note	Section B	is compulsory. Atten	npt any 3 ques	tions from Section C	a na	kcity	ora 🎎	
			SECT	<u>ION-B</u>	@ P		3 @	
2.		answers to any Eigh				(8 x 2	= 16)	
i.		backs to use the time pe	riod of a simple	pendulum as a time stand	dard.			
ii.		ficant or not? Explain.			_			
iii.		rectness of relation dime						
iv.	expression?	nensional analysis give a	any information	on constant of proportion	onality tha	t may ap	pear in an algebra	aic
ν.		of an object reverse the o	direction when ac	celeration is constant? It	f so give a	n examn	e	
vi.		rmula for time to reach the			, 90, Bive a	oʻrtampi		
vii.		lated system. Give its ex-						
viii.		range of a projectile is r		t is thrown at an angle of	f 45° with	horizonta	ıl.	
ix.		Law of Thermodynamic			_			
х.		's law and Charle's law			of gasses.			
xi. xii.		to convert internal energy ple of natural process the						
3.		answers to any Eight		rease in the entropy.		(8 x 2	= 16)	
i.		ou distinguish between u		lane-polarized lights?		(O X Z	- 10)	
ii.		onditions two or more so			s?			
iii.		entiate between plane an						
iv.		iver change his body pos		after diving in the pool	2			
v.		ital angular momentum		136	<u>)</u>			
vi.		moment of inertia of a sp						
vii. viii.		energy is in the given:	(i) Compresse	ed spring (ii) A mov	ing car			
120	Show that P =			A(2).				
ix.		t by non-conventional en						
x. xi.		tate about its centre of g t by static and dynamic e		iction of its weight?				
xii.		nitude of a vector can no		alue? Explain.				
4.		answers to any Six p		12 31		(6 x 2	= 12)	
i.		etween Laminar and Turi		iid.		•		
ii.	Find the frequ	ency of Simple Pendulu	m whose length i	$s 0.25 \text{m at } g = 9.8 \text{ms}^{-2}$				
iii.	Does frequence	y depend on amplitude	for harmonic osci	illator?				
iv.	Show that in S	SHM the acceleration is a	zero when veloci	ly is greatest.				
v.		period of 250 cycles per						
vi. vii.		sound travels faster in w do longitudinal waves h						
viii.		inderstand by linear mag			xplain how	a convex	lens is used	
0.000000	as magnifier.							
ix.		looking through a telesco		on. How would the appe	earance of	the moor	be changed	
	by covering ha	alf of the objective lens?						
			SECT	ION-C				
				ries Eight (8) Marks)				
5. (a)	The Section of Principles of the Control of the Con	you determine the equ			of a vecto	r in vec	tor addition by	5
		omponents? Also give				1.2	20	120
(b)		ach 6.0 cm thick and m	ass 1.5 kg, lie f	lat on a table. How mu	ich work i	s require	ed to stack them	3
c (-)		te top of another?	1-! T C	C	.1 > .			_
		ted system? State and	•				- What !- 4!	5
(D)		ne record turntable fro	m rest to an a	ingular velocity of 45.	o rev/min	in 1.60	s. What is the	3
7 (2)		lar acceleration? ve Bernoulli's equation	n for an ideal fi	uid				-
/ · (4)	DIALE AND DIO	AC DOMORITI 2 COMMIN	n ioi an ideal II	uiu.				5

9. (a) State First Law of Thermodynamics and discuss the law for isothermal and adiabatic processes. (b) A glass light pipe in air will totally internally reflect a light ray if its angle of incidence is at least 39°. What is the minimum angle for total internal reflection if pipe is in water? (Refractive index of water =1.33)

(b) A stationary wave is established in a string which is 120cm long and fixed at both ends. The string vibrates

(b) A light is incident normally on a grating which has 2500 lines per centimeter. Compute the wave length of

in four segments, at a frequency of 120 Hz. Determine its wavelength and fundamental frequency. 8. (a) Define simple harmonic motion. Prove that energy is conserved for a body executing simple harmonic

a spectral line for which the deviation in second order is 15.0°.

3

5

3

5

3

Roll No.

(To be filled in by the candidat

Physics pakcity.org Inter (Part-I)-A-2021

Time : 20 Minutes

Paper: I Objective - (III)

Objective - (III) Marks : 17
Paper Code 6 4 7 5

Note: - You have four choices for each objective type question as A, B, C and D. The choice which you think correct; fill that circle in front of that question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

Q.1	Questions	A	В	С	D
1.	The term "pgh" in Bernoulli's equation has the same units as:	work	energy	pressure	flow rate
2.	An ideal gas performs 10J of work while expanding adiabatically. The change in its internal energy is:	10J	-10J	100J	-200J
3.	Average translational K.E. of a gas molecule is:	$\frac{3}{2}$ KT	$\frac{1}{2}$ KT	$\frac{2}{3}$ KT	КТ
4.	The K.E of an object of mass "m" is "E", its momentum will be:	2 Em	$\sqrt{\frac{2E}{m}}$	$\sqrt{\frac{1}{2} Em}$	$\sqrt{2mE}$
5.	The frequency of waves produced in microwave oven is:	1435 MHz	2850 MHz	2450 MHz	4250 MHz
6.	The increase in velocity of sound in air for 1°C rise in temperature is:	61 (0,702)	0.61 cm/s	61 m/s	1.61 m/s
7.	The ratio of velocity of disc to velocity of hoop is:	$\frac{2}{\sqrt{3}}$	$\frac{4}{\sqrt{3}}$	$\frac{2}{3}$	$\frac{4}{3}$
8.	The wave length of nth mode of stationary waves in closed pipe is:	21 n	$\frac{4l}{2n-1}$	$\frac{4l}{n}$	$\frac{4l}{2n+1}$
9.	1 rev/min is equal to	$\frac{\pi}{6}$ rad /s	$\frac{\pi}{30}$ rad/s	$\frac{\pi}{15}$ rad /s	2π rad/s
10.	If initial velocity of projectile becomes doubled. The time of flight will become:	4 times	Half	2 times	8 times
11.	Height of projectile is maximum at an angle of projection of:	pakcity.o	60°	30°	90°
12.	$\hat{i}.(\hat{k}\times\hat{i})=$	1	ĵ	7	0
13.	If two non-zero vectors A&B are parallel to each other then:	Ā.B=0	$ \overline{A} \times \overline{B} = AB$	$\vec{A} \cdot \vec{B} = AB$	Ã.B=1
14.	The uncertainty in the time period of a vibrating body is:	least count × No. of vibrations	least count + No. of vibrations	least count + No. of vibrations	No. of vibrations
15.	Which pair of physical quantities have same dimensions?		momentum and impulse	force and torque	momentum and force
16.	Refractive index of water is:	1.5	1.33	1.0	1.2
17.	The fringe spacing is the greatest for:	Blue light	Yellow light	Green light	Red light

Paper: I		Subjective	Marks	: 68
Physics		Inter (Part-I)-A-2021	Time	: 2:40 Hours
		Roll No.	(To be fille	d in by the candic
		Garriwar Board-2021		

Write short answers to any Eight parts. 2.

i. Check the correctness of the relation $v = \sqrt{\frac{F \times l}{m}}$ where y is the speed of transverse wave on a stretched string of tensic length l and mass m.

ii. Does a dimensional analysis give any information on constant of proportionality that may appear in an algebra expression? Explain.

iii. Add the following masses given in Kg upto appropriate precision. 2.189, 0.089, 11.8 and 5.32.

- iv. The volume of sphere V=47.689 cm³ with 1.2% uncertainty. What is the correct range of volume measurement?
- v. Suppose the sides of closed polygon represent vector arranged head to tail. What is the sum of these vectors?
- vi. Prove that $A.B = A_x B_x + \lambda_y B_y + A_z B_z$
- vii. If all the components of vectors A_1 and A_2 were reversed, how would this alter $A_1 \times A_2$?
- viii. Define Law of Conservation of linear momentum and write its mathematical form.
- Explain the difference between elastic and inelastic collisions. Explain how would a bouncing ball behave in each case? Give plausible reasons for the fact that K.E. is not conserved in most cases.

Derive an expression for the time of flight of projectile.

What happens to the velocities of two bodies after collision when a light body collides with a massive body at rest for elastic collision?

Two row boats moving parallel in the same direction are pulled towards each other. Explain. xii.

Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

i. A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved?

ii. Show that 1kWh=3.6×106J

iii. What do you mean by variable force? Give its two examples

iv. Show that $v = r\omega$

What is meant by moment of inertia? Explain its significance. v.

When mud flies off the tyre of a moving bicycle, in what direction does it fly? Explain.

vii. What is meant by phase angle? Does it define angle between maximum displacement and driving force?

viii. Define resonance, write one advantage and one disadvantage of resonance.

ix. Differentiate between free and forced oscillations.

x. Is it possible for two identical wayes travelling in the same direction along a string to give rise to a stationary wave?

xi. How temperature and density of the medium effect the speed of sound?

xii. What happens when a jet plane like Concorde flies faster than the speed of sound?

 $(6 \times 2 = 12)$ Write short answers to any Six parts.

How is the distance between interference fringes affected by separation between the slits of Young's experiment? i. Can fringes disappear?

How would you manage to get more orders of spectra using diffraction grating?

What are Newton's rings? How they are formed? iii.

iv. Explain the difference between angular magnification and resolving power of an optical instrument.

What is meant by least distance of distinct vision?

vi. Why does the pressure of a gas in a car tyre increases when it is driven through some distance?

vii. What is meant by reversible process? Give its example.

viii. Write down the postulates of kinetic theory of gases.

ix. Specific heat of a gas at constant pressure greater than specific heat at constant volume. Why? (SECTION-II)

(Each question carries Eight (5+3=8) Marks)

5. (a) Describe the method of addition of vectors by rectangular components.

- (b) A truck weighing 2500 Kg and moving with a velocity of 21ms⁻¹ collides with stationary car weighing 1000 kg. The truck and the car move together after the impact. Calculate their common velocity.
- 6. (a) Define Absolute Potential Energy. Derive relation for absolute P.E of body of mass "m" at distance "r" from the center of earth.
 - (b) Find the temperature at which the velocity of sound in air is two times its velocity at 10°C.

7. (a) State and prove Bernoulli's equation.

- (b) What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km radius so that there will be no tendency for the pilot to fall down at the highest point.
- 8. (a) State first law of thermodynamics and explain: (i) Isothermal Process (ii) Adiabatic Process
 - (b) A simple pendulum is 50cm long. What will be its frequency of vibration at a place where $g = 9.8 \, ms^{-2}$?

9. (a) Calculate the speed of light by Michelson's method.

(b) Yellow sodium light of wavelength 589 nm, emitted by a single source passes through two narrow slits 1.0 mm apart. The interference pattern is observed on a screen 225 cm away. How far apart are two adjacent bright fringes?

Physics	(New	Scheme)
Paper: I		

(INTER PART - 1 CLASS 11th)(I) (Academic Session 2017 -2019)

Time	:	20	Minutes
Monle		. 1'	7

Code: 6471 Objective

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number with marker or pen. Cutting or filling two or more circles will result in zero mark in that question.

1.	i.	Solid an	igle is:						
		(A) on	e dimensional		wo dimensional		dimensional		
	ii.	For tota	al assessment of	uncertair	nty in the final resu	lt obtained	by multiplication	on we add:	;
		(A) abs	olute uncertainty	(B) fr	actional uncertaint	y (C) perc	entage uncertain	nty (D) er	rors
	iii.		nplete equilibriur						
		(A)	$\Sigma F = 0$	(B)	$\Sigma \tau = 0$	(C)	$\Sigma Fx = 0$	(D) Σ <i>I</i>	$F=0$, $\Sigma \tau = 0$
	iv.	If $\overline{A}.\overline{B}$	$=\frac{1}{2}AB$, then are	igle betw	veen the vectors wil	ll be: 🄏	pakcity.o	rg 🎉	
		(A)	30°	(B)	45°	(C)	60°	(D)	90*
	٧.	A hose	pipe ejects water	at speed	of 0.3ms ⁻¹ through	gh a hole of	fareal0cm ² , fl	ow rate wi	ll be:
		(A)	$3m^3S^{-1}$	(B)	$3 \times 10^{-4} m^3 S^{-1}$	(C)	30m3S-1	(D)	$0.03m^3S^{-1}$
	νi.	The tid	es give rise in se	a due to	gravitational pull o	f:	M.S.		
		(A)	Moon	(B)	Mars	~~~~	Venus	(D)	Satum
	vii.	(A)	3	(B)	lites form the Glob	(C)	24	(D)	22
	viii.	The rat	io of moment of	inertia o	f a disc and sphere	of same ra	idius is:		
		(A)	$\frac{2}{5}$	(B)	5/4	(C)	$\frac{1}{2}$	(D)	5/2
	ix.	1 torr j	oressure is equal	to:(1)	* (Palen	NUCAT	ION S	(P.)	7.60 N -2
		(A)	130.5 <i>Nm</i> ⁻²	1	133.3Nm ⁻²	(C)	100Nm ⁻²	(D)	$760Nm^{-2}$
	x.	The sp (A)	density	reater in	solid than gases d	(C)	temperature	(D)	oscillation
	xi.	By inc	reasing mass of	he objec	t four times attache	ed to a spri	ng. Time perio	d will beco	ome:
		(A)	same	(B)	twice	akc(C)	thrice	(D)	four times
	xii.	The w	vavelength of fu	ndamenta	al note in one end o	lose pipe i	n term of length	n "l" of p	oipe is:
		(A)	41	(B)	21	(C)	I	(D)	1/2
	xiii.	Longit	tudinal wave can	not be:	ů.				
		(A)	reflected	(B)	refracted	(C)	diffracted	(D)	polarized
	xiv.	Distan	ce between two	consecut	ive bright fringes	in young's	experiment is:		
		(A)	$\frac{\lambda L}{2d}$	(B)	$\frac{\lambda L}{d}$	(C)	$\frac{d}{\lambda L}$	(D)	$\frac{d\lambda}{L}$
	xv.	Inform	nation carrying c	apacity o	of an optical fibre is	called			
		(A)	Immunity	(B)	Dispersion	(C)	Band width	(D)	Data
	xvi.	Boltzr	nan constant 'k'	has sam	e unit as				
		(A)	temperature	(B)	energy	(C)	entropy	(D)	pressure

(B)

(D)

xvii. Efficiency of a heat engine can be increased by

increasing sink temperature

decreasing source temperature

(A)

(C)

decreasing sink temperature

using ideal working substance

Physics (New Scheme)

(INTER PART -I - CLASS 11th)

Paper: I pakcity.org (Academic Session 2017-2019)

Marks: 68

Time: 2.40 Hours

SUBJECTIVE

Note:- Section I is compulsory. Attempt any 3 questions from Section II.

(Section - I)

Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

- i. Why do we find it useful to have two units for the amount of substance kilogram and mole?
- ii. Write down the dimensions of viscosity and angular velocity.
- iii. How will you assess the total uncertainty in case of power factor? Give an example.
- iv. Define radian and steradian with figures.
- v. Define torque. Write down its S.I unit.
- vi. \vec{A} and \vec{B} are two vectors $\vec{A} = 2\hat{i} + 5\hat{j}$, $\vec{B} = 3\hat{i} + 7\hat{k}$ then find $\vec{A} \times \vec{B}$
- vii. A picture is suspended from a wall by two strings. Show by diagram the configuration of the strings for which the tension in strings will be minimum.
- viii. What are inertial and non-inertial frames of references?
 - ix. Calculate the linear momentum of a ball of mass 100 gram which moves with 5 m/s along a straight line.
 - x. Differentiate between elastic and inelastic collision. Give examples.
 - xi. A person is standing near a fast moving train. Is there any danger that he may fall towards the train.
- xii. Explain the working of a carburetor of a motor car using by Bernoulli's Principle.

Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

- i. What is Salter's duck? Explain it.
- ii. A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved?
- iii. In which case is more work done? When a 50 kg bag of books is lifted through 50 cm or when 50 kg crate is pushed through 2m across the floor with a force of 50 N?
- iv. Show that 1kwh = 3.6 MJ.
- v. What is meant by angular momentum?
- vi. Why does a diver change his body position before and after diving in the pool?
- vii. Show that in S.H.M acceleration is zero when velocity is greatest and velocity is zero when the acceleration is greatest.
- viii. How resonance plays an important role in microwave oven?
 - ix. Define simple harmonic oscillator and driven harmonic oscillator.
 - x. What is slinky spring?
 - xi. What do you mean by red. shift in application of Doppler effect?
- xii. Differentiate between longitudinal and transverse waves.

(Turn over)

- Write short answers to any Six parts:
 - i. Could you obtain Newton's rings with transmitted light? If yes would the pattern be different from that obtained with reflected light?
 - ii. How would you manage to get more orders of spectra using a diffraction grating?
 - iii. Can visible light produce interference fringes? Explain it.
 - iv. Why would it be advantageous to use blue light with a compound microscope?
 - v. What are the two conditions for total internal reflection to take place?
 - vi. Is it possible to construct a heat engine that will not expel heat into the atmosphere?
 - vii. Why does the pressure of a gas in a car tyre increase when it is driven through some distance?
 - viii. Define entropy. Give its mathematical form and SI Unit.
 - ix. Can the mechanical energy be converted completely into heat energy? If so give an example.

Section - II

Note:- Attempt any three (3) questions:

 $(8\times 3=24)$

- Describe vector addition by rectangular components. First find the resultant of two vectors and then generalize for 'n' vectors.
 - (b) A bomber dropped a bomb at a height of 490 m, when its velocity along the horizontal was 300 Kmh⁻¹. At what distance from the point vertically below the bomber at the instant, the bomb was dropped. Did it strike the ground?
- 6. (a) What is geostationary orbit? Determine orbital radius for a geostationary satellite measured from the centre of the Earth.
 - (b) A car of mass 800 Kg travelling at 54 Kmh⁻¹ is brought to rest in 60 m. Find the average retarding force on the car.
- 7. (a) Define terminal velocity. Derive its formula.
 - (b) 336 J of energy is required to melt 1 g of ice at 0°C. What is the change in entropy of 30 g of water at 0°C as it is changed to ice at 0°C by a refrigerator?
- 8. (a) What is Doppler's effect? Discuss its four cases.
 - (b) A 100 g body is hung on a spring elongate the spring by 4.0 Cm. When a certain object is hung on the spring and set vibrating, its period is 0.568s. What is the mass of the object?
- 9. (a) Explain the diffraction of X-ray by crystal. What are uses of diffraction of X-ray?
 - (b) An astronomical telescope having magnifying power of 5 consist of two thin lenses 24 cm apart.
 Find the focal length of lenses.

3

5

3

5

3

5

3