MATHEMATICS

HSSC (11th) 1st Annual 2024 Objective - (iii)

Roll No _____ (To be filled in by the candidate)

paper: I Paper Code Marks: 20 Time: 30 Minutes 9 Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in you answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

_	SECTION - A								
Q.1	Questions	A	В	C	D				
1.	$2\sin 45^{\circ} + \frac{1}{2}\csc 45^{\circ} = $	1	-1	$\frac{3}{\sqrt{2}}$	$\sqrt{\frac{2}{3}}$				
2.	The value of $\sec\left(\sin^{-1}\frac{\sqrt{3}}{2}\right) =$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	2	1/2				
3.	In any triangle ABC, $\frac{c^2 + a^2 - b^2}{2ac} = \underline{\hspace{1cm}}$	cos α	cos β	cos γ	$\cos (\beta + \alpha)$				
4.	If a = 1, b = 5 then A × H =	2/5	$\frac{5}{2}$	5	- 5				
5.	sin(-300°) =	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{2}{\sqrt{3}}$	0				
6.	If $\cos x = \frac{1}{\sqrt{2}}$, then reference angle is:	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$				
7.	Every non-recurring, non-terminating decimal represents number.	rational	irrational	whole	natural				
8.	⁶ P ₃ =	3.65	18	36	120				
9.	Range of $\sin\left(\frac{x}{2}\right)$ is:	[2,-1/2]	[-2, 2]	[2, -2]	[-1, 1]				
10.	If $a_{n-2} = 3n - 11$, then nth term is:	3n + 2	3n-5	3n + 5	3n – 3				
	$(\mathbf{A} \cup \mathbf{B})^{\mathbf{c}} = \underline{\hspace{1cm}}$	A∪B	A∩B	$A^c \cup B^c$	A°∩B°				
12.		ED2GAI	(ON 3	1	-1				
13.	If $4^x = \frac{1}{2}$ then $x = $	1/4	1/2	⁻¹ / ₂ ●	2				
14.	[1 0]	pa ² co/.	org 🗐	0	√-1				
15.	If $\begin{vmatrix} k & 4 \\ 4 & k \end{vmatrix} = 20$ then $k = $	±36	±24	±16	±6 ●				
16.		A – B	B − A	$A \cap B$	$A \cup B$				
17.	(B-Universal): $\frac{A}{x-1} + \frac{B}{x+1}$ is a partial fraction of:	$\frac{1}{x^3-1}$	$\frac{1}{x^2-1}$	$\frac{1}{1-x^2}$	$\frac{1}{x^2+1}$				
18.	1	0	i	1	-1				
	Multiplicative inverse of $(0, -1) \in \mathbb{C}$, is:	(0,1)	(1,0)	(-1,0)	(1,1)				
20.	(r+1) th term in the expansion of $(a+b)$ th	$\binom{n}{r}a^{n-r}b^r$	$\binom{n}{r}a^{n-r}b^{r-1}$	$\binom{n}{r}a^{n+r}b^r$	$\binom{n}{r}a^{n+r}b^{r+r}$				
	is:			-					

	Sahiw	al Board-	2024		Rall No	tTo	be filled in by the candida
MAT	THEMATICS	HSSC (11th) 1st	Annual	2024	Kon .	Marks: 80	Time: 2:30 House
Pape	er: I	Subje	ctive		- Section	n C.	2:30 House
Note	er: I e: Section B is compulsory	. Attempt any THI	REE ques	tions Ire	om Seem		
		36					number. (8×2
Q2.	Write short answers to an	y Eight parts.	(ii) De	fine mo	dulus of a	complex r	
(i)	Factorize 9a ² + 16b ³ .	muses of (-4, 7).	(iv) Ex	press t	he comp	ex numbe	er $1 + i\sqrt{3}$ in pol
(iii)	Find the multiplicative i	nverse or (17					The state of the s
(v)	form. Write the set $\{x \mid x \in Q\}$	$ x^3 = 2 $.	(vi) Co	nvert (/	(UB) - U	CD ino.	ogical form.
(vii)	D.C., discard matrix	and give an examp	le.				
(viii)		gular matrix A. (A)	Salve	$x^{\frac{1}{2}} - x^{\frac{1}{4}} -$	-6 = 0	
(ix)	Define co-factor of an e	lement.	(x)	Show	that x3 - Y	y = (x - y)($(x - \omega y)(x - \omega t)$
(xi)	Reduce $x^{-2} - 10 = 3x^{-1}$	o quadratic form.	(XII)	Show	2		(8×2
Q3.	Write short answers to any	Eight parts.	(1)	Ch:	ange X	into pr	$(x - \omega y)(x - \omega^2 y)$, $(8 \times 2 + 1)$ oper fraction.
(i)	Define improper fraction	1.	(**	, -	- 2i h	- I = 4i show	that G2 = A
(iii)	Define improper fraction Find 9th term of the sequ	ence $-\frac{1}{5}, -\frac{1}{3}, -1$	(iv	(2)	n = 21, 0	41, 3110	O - A × H,
(v)	Find the first term of the	geometric series	if a, = (-	-3)(5)			
(vi)	111	that the comm	on ratio i	s ± V-	. (vi	ii) If "C ₈	= "C ₁₂ , find n.
(viii)	How many triangles and	diagonals can be	formed b	y joinin	ig the veti	ces 01 0-310	red polygon?
(ix)	Define cicular permutati	on.					
(x)	From the expansion of	$\left(\frac{3x}{2} - \frac{1}{3x}\right)^n$, find	the sixth	term fro	om the en	d.	
(xi)	Expand (8 - 5x)-2 up t		(xii)	Evaluate	e ∜31 co	rrect to thr	ee decimal places.
04.	Write short answers to any	Nine parts.			(PS)		(9×2 = 1
(i)	Express $\theta = 120'40''$ in r	adians.		6	(1,3)		
(ii)	Express $\theta = 120'40''$ in r If $\sin \theta = \frac{12}{13}$ and termination from the value of $\sin(-30')$	al arm of angle is	in quadra	ant ly fir	nd tane an	id $\cos\theta$.	(ο, π)
iii)	Find the value of sin(-30	00°).	CONT	v) Pro	ove that s	In (0+ 6)	$+\cos\left(\theta+\frac{\pi}{3}\right)=\cos\left(\frac{\pi}{3}\right)$
v)	Write down the half angl	e identity for tan	2	A 1			onometric function.
vii)	Prove that period of sin f	unction is 2π .				the domain	n and range for y≐tai
ix)	Solve the right triangle A	BC in which y =	90°, a = 3	3.28, b	= 5.74.		
x)	Write half angle formula	$\sin\left(\frac{\gamma}{2}\right)$ and co	$s\left(\frac{\gamma}{2}\right)$. (2)	ki) De	fine and	draw an ob	olique triangle.
	Find the value of sin co	$s^{-1}\frac{\sqrt{3}}{2}$.					$[0, 2\pi], \sin x = -\frac{\sqrt{1}}{2}$
		SEC	TION	- C			
ote:	Attempt any THREE quest	ions. Each question	n carries	(5+5	=10) mar	ks.	

Q5.

(a) Solve the system of linear equations by Cramer's Rule.

$$2x_1 - x_2 + x_3 = 8$$
 ; $x_1 + 2x_2 + x_3 = 6$; $x_1 - 2x_2 - x_3 = 1$

(b) Solve systems of equations. x + y = 5, $x^2 + 2y^2 = 17$

(a) Resolve $\frac{x^2 - 10x + 13}{(x - 1)(x^2 - 5x + 6)}$ into partial fraction. Q6.

(b) Show that the sum of 'n' A.Ms between a and b is equal to n times their A.M.

(a) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$. Q7.

(b) If x is nearly equal to 1 then prove that $px^p - qx^q = (p - q)x^{p+q}$.

(a) Prove that $\frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1} = \tan\theta + \sec\theta$ (b) Prove that $\tan^{-1} \frac{120}{119} = 2\cos^{-1} \frac{12}{13}$ Q8.

(a) If $\alpha + \beta + \gamma = 180^{\circ}$, show that $\cot \alpha \cot \beta + \cot \beta \cot \gamma + \cot \gamma \cot \alpha = 1$. Q9.

(b) Prove that $r_1 + r_2 + r_3 - r = 4R$

Roll No.

(To be filled in by the candidate)

H.S.S.C (11th) 1st Annual 2023

Time : 30 Minutes

Paper: I

Mathematics

Objective - (iii)

Marks : 20

| Paper Code | 6 | 1 | 9 | 5

Note: -You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

SECTION-A

9-11-11	SECTION-A									
Q.1	Questions	A	В	С	D					
1.	$\cos^2 \alpha - \sin^2 \alpha =$	1	$\cos 2\alpha$	sin 2 $lpha$	sin 3 α					
2.	$\cos(\sin^{-1}\frac{1}{\sqrt{2}}) =$	$\frac{1}{\sqrt{2}}$	$\frac{-1}{\sqrt{2}}$	$\frac{1}{2}$	$\frac{-1}{2}$					
3.	r ₁₌	$\frac{s}{s-a}$	$\frac{\Delta}{s-a}$	$\frac{\Delta s}{s-a}$	$\frac{\Delta}{s+a}$					
4.	The expansion $1+x+x^2+x^3++x'+=$	$(1+x)^{-1}$	$(1-x)^{-1}$	$(1+x)^{-2}$	$(1+x)^{-3}$					
5.	The period of cosec θ is.	2π	π	$\frac{\pi}{2}$	$\frac{\pi}{6}$					
6.	Solution of $\cot \theta = \frac{1}{\sqrt{3}}$ which lies in $[0,2\pi]$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi}{2}$					
7.	Value of $(-1)^{\frac{-21}{2}}$ is.	-1	KEST?	i	-i					
8.	The statement $n! > 2^n - 1$ is true for	# *	n=2	n < 4	<i>n</i> ≥4					
9.	$\frac{a}{2\sin\alpha} =$	Pr	$r_{\rm I}$	Δ	R					
10.	n(n-1)(n-2)(n-r+1)=	$\frac{n!}{r!}$	$\frac{n!}{(n-r)!}$	$\frac{n!}{(n+r)!}$	"C _r					
11.	A square matrix A=[a _{ij}] is called hermitian matrix if:	A ^t =A	A ^t =-A	$(\overline{A})^t = A$	$(\overline{A})^t = -A$					
12.	Next two terms of sequence 7, 9, 12, 16, are:	21,27	21,26	20,27	20,26					
13.	Formula for sum of an infinite geometric series is.	$a_1 + (n-1)d$	$\frac{a_1}{1-r}$	$\frac{a_1(1-r^n)}{1-r}$	$\frac{a_1(r^n-1)}{r-1}$					
14	The rational fraction $\frac{x^2+1}{x^3-1}$ is:	Identity	Irrational	Proper	Improper					
15	$\omega^{28} + \omega^{29} + 1 =$	-1	0	1	2					
16	Which is an exponential equation?	x ² +1=0	x ³ +1=0	2x+1=0	2 ^x -1=0					
17	Value of 10! is: pakcity.org	718	719	720	730					
18	If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $ A =$	ad+bc	bc-ad	ad-bc	ac-bd					
19	The number of elements in power set of $\{0,1\}$ are.	4	3	2	1					
20	$. 1 + \cot^2 \theta =$	$\cos^2\theta$	$\sin^2 \theta$	$cosec^2\theta$	sec²θ					
				202						

H.S.S.C (11th) 1st Annual 2023

Time : 2:30 Hours

Paper: I

Subjective

Marks: 80

Note: - Section B is compulsory. Attempt any Three questions from section C.

SECTION - B

2. Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

i. Factorize $3x^2 + 3y^2$.

ii. Prove that $\overline{z} = z$ iff z is real.

iii. What is the difference between $\{a,b\}$ and $\{\{a,b\}\}$?

iv. Show that the statement is a tautology: $\sim q \land (p \rightarrow q) \rightarrow \sim p$

v. Define Monoid.

vi. If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$$
, then show that $4A - 3A = A$.

vii. Find the inverse of matrix $\begin{bmatrix} 2i & i \\ i & -i \end{bmatrix}$.

viii. Write any two properties of determinants.

ix. Solve the equation by using quadratic formula: $15x^2 + 2ax - a^2 = 0$.

x. Define a reciprocal equation and give one example.

xi. Prove that
$$\left(\frac{1+\sqrt{-3}}{2}\right)^9 + \left(\frac{1-\sqrt{-3}}{2}\right)^9 + \left(\frac{1$$

xii. Discuss the nature of roots of equation $x^2 + 2x + 3 = 0$.

3. Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

- i. Define proper rational fraction.
- ii. Find a_2 and a_3 of the sequence in which $a_n = na_{n-1}$ and a_{1-1}

iii. Which term of A.P; 5,2,-1,... is -85.

iv. Sum the series
$$\frac{1}{1+\sqrt{x}} + \frac{1}{1-x} + \frac{1}{1-\sqrt{x}} + \dots$$
 to *n* terms

v. Define harmonic mean between a and b. Write its formula also.

vi. Find the sum to n term of series whose nth term is 2n+3.

vii. Write n(n-1)(n-2)...(n-r+1) into factorial form.

viii. Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$.

ix. Calculate number of diagonals of 5 sided figure.

x. Evaluate (9.9)⁵

xi. Find middle term in the expansion of $\left(\frac{1}{x} - \frac{x^2}{2}\right)^{12}$

xii. Expand $(8-5x)^{-2/3}$ upto two terms.

4. Write short answers to any Nine parts.

 $(9 \times 2 = 18)$

- i. Define the word 'Trigonometry'.
- ii. Convert 3 radians into degree.
- Find $\sin \theta$ and $\cos \theta$ when $\theta = \frac{-7\pi}{4}$. iii.
- iv. Express $\cos 7\theta - \cos \theta$ as product form.
- Find the value of $\sin 2\alpha$ when $\sin \alpha = \frac{12}{13}$, where $0 < \alpha < \frac{\pi}{2}$. v.
- Find the value of tan 105. vi.
- Find the period of $\cos \frac{x}{\epsilon}$. vii.
- Solve the right triangle, in which $\alpha = 5.8^{\circ}1.3'$ b=125.7 and $\gamma = 90^{\circ}$. viii.
- Write half angle formulas for $\sin \frac{\alpha}{2}$ and $\sin \frac{\beta}{2}$. ix.
- By using the cosine and sine law, solve the triangle ABC given that $b=3,c=5, \alpha=120^{\circ}$ X.
- Find the value of $\tan^{-1}(-\sqrt{3})$. xi.
- xii. Define trigonometric equation.
- Find the solution of $\sec x = -2$ which lies in the interval $[0, 2\pi]$. xiii.

SECTION - C

Note: Attempt any Three questions. Each question carries (5+5=10) marks. $(10 \times 3 = 30)$

5. (a) Find the value of x if $\begin{vmatrix} 3 & 1 & x \\ -1 & 3 & 0 \\ x & 0 & 0 \end{vmatrix} = -30$

- (b) Show that the roots of $x^2 + (mx + c)^2 = a^2$ will be equal, if $c^2 = a^2(1+m^2)$.
- 6. (a) Resolve $\frac{x^2+1}{3+1}$ into partial fraction.
 - (b) Two dice are thrown twice. What is the probability that sum of dots shown in the first throw is 7 and that of second is 11?
- 7. (a) Find 'n' so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the A.M. between a and b.
 - (b) Use mathematical induction to prove that x+y is a factor of $x^{2n-1}+y^{2n-1}$, $x \neq -y$.
- 8. (a) Prove that $\sin^6\theta \cos^6\theta = (\sin^2\theta \cos^2\theta)(1 \sin^2\theta \cdot \cos^2\theta)$.
 - (b) If $\alpha + \beta + \gamma = 180^{\circ}$, show that $\cot \alpha \cdot \cot \beta + \cot \beta \cdot \cot \gamma + \cot \gamma \cdot \cot \alpha = 1$
- 9. (a) Solve the triangle ABC in which $a = \sqrt{3} 1$, $b = \sqrt{3} + 1$ and $\gamma = 60^{\circ}$.
 - (b) Prove that $\sin^{-1} \frac{77}{85} \sin^{-1} \frac{3}{5} = \cos^{-1} \frac{15}{17}$. pakcity.org

Roll No.			
KOII NO.			

9

5

(To be filled in by the candidate

Mathematics Inter (Part-I)-A-2021

Time : 30 Minutes

Paper: I Objective - (III) Marks : 20

Paper Code

Note: -You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of the question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

6

$-\sin\theta$ $\frac{-\pi}{6}$ $r = \frac{S}{\Delta}$	$-\cos\theta$ $\frac{-\pi}{3}$ $r = \frac{S - a}{\Delta}$
$r = \frac{S}{\Delta}$	$r = \frac{\frac{-\pi}{3}}{\frac{S-a}{A}}$
	$r = \frac{S-a}{\Lambda}$
n≥3	n>3
$\frac{2\pi}{3}$	π
$\frac{5\pi}{6}$, $\frac{7\pi}{6}$	$\frac{\pi}{3}, \frac{7\pi}{3}$
а	(b,a)
60°	45*
cosy	sin β
**¹C,	″-¹C,
3	4
a+b	b-a
2n-2	2n-8
identity	both B & C
3	-3
a ≠ 0	<i>b</i> ≠ 0
$\frac{A}{H}$	AH
3×4	4×4
{6}	φ
60°	90°
	a 60° $\cos y$ $a+b$ $2n-2$ identity 3 $a \neq 0$ $\frac{A}{H}$ 3×4 $\{6\}$

Roll No.

(To be filled in by the candidate)

: 80

Inter (Part-I)-A-2021

Time **Marks**

: 2:30 Hours

Subjective Paper: I Note: - Section I is compulsory. Attempt any three questions from section II.

Section - I

Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

Find the multiplicative inverse of $(\sqrt{2}, -\sqrt{5})$

ii. Prove that
$$-\frac{7}{12} - \frac{5}{18} = \frac{-21 - 10}{36}$$

iii. If
$$z_1 = 2 + i$$
, $z_2 = 3 - 2i$, $z_3 = 1 + 3i$ then express $\frac{\overline{z_1} \, \overline{z_3}}{z_2}$ in the form $a + ib$

- Write the inverse and contrapositive of conditional $-p \rightarrow -q$
- Show A-B and B-A by Venn diagram when A and B are overlapping sets.
- vi. If a and b are elements of a group G, then solve the equation xa = b

vii. Find the matrix X if
$$X\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$$

viii. Show that
$$\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ yz & zx & xy \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$$

viii. Show that
$$\begin{vmatrix} x & y & z \\ yz & zx & xy \end{vmatrix} = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$$
ix. If $A = \begin{bmatrix} -1 & 2 \\ 1 & 4 \\ 2 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$ show that $AB = BA$

x. Find two consecutive numbers, whose product is 132.

- Evaluate $(-1+\sqrt{-3})^5 + (-1-\sqrt{-3})^5$
- Find numerical value of x^3 if the polynomial $x^3 + kx^2 7x + 6$ has a remainder of -4, when divided by x + 3
- Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

- Write into partial fraction form of $\frac{4x^2}{(x^2+1)^2(x-1)}$ without finding constants.
- Write into partial fraction form of $\frac{1}{(x-1)^2(x^2+2)}$ without finding constants.
- If $a_{n-3} = 3n 11$, find nth term of the sequence.
- Find the Geometric Mean between -2i and 8i.
- v. If $y = 1 + 2x + 4x^2 + 8x^3 + ...$ show that $x = \frac{y-1}{2y}$
- vi. Find 8th term of H.P; $\frac{1}{2}, \frac{1}{5}, \frac{1}{8}, ...$
- Write $\frac{52.51.50.49}{4.3.2.1}$ in the factorial form.
- Find the value of n when ${}^{11}P_n = 11.10.9$ viii.
- Find the value of n, when " $C_1 = "C_4$
- Show that the inequality 4'' > 3'' + 4 is true, for integral values of $n \ge 2$.
- Calculate (9.98)4 by means of binomial theorem.
- xii. Expand $(1+x)^{-1/3}$ upto 4 terms.

(INTERMEDIATE PART - I, Class 11th) - (III)

Code: 6195

Objective

Mathematics

Please visit for more data at: www.pakcity.org

Time: 30 Minutes

(A)

(B)

Note:	You ha	ve four	choices fo	r each obje	ective typ	e question	as A, B, C a	and D. The c	hoice wh	nich
	you this	nk is cor	rect, fill th	hat circle i	n front of	that questi	on number.	Use marker	or pen to	fill the
	circles.	Cutting	or filling	two or mo	ore circles	s will result	in zero ma	rk in that que	stion.	
1. 1	Ifω i	s cube r	oot of uni	ty, then	$(1+\omega-\epsilon)$	ω²)³=	pakcit	y.org	>	
	(A)	-8ω	(B)	8ω	(C)	8	(D)	-8		
2.	$\frac{p(x)}{x^2+1}$	will be	proper fra	action if de	gree of p	p(x) is				
	(A)	1	(B)	2	(C)	3	(D)	4		
3.	The ser	ies a+	ar + ar² +	— œ						
	(A)	r > 1	(B)	r ≥1	(C)	$ r \le 1$	(D)	r < 1		
4.	A, G	, Н , а	ire in				2	<u> </u>		
	(A)	A . P	(B)	G.P	(C)	H . P	(D) se	rics		
							10			
5.	For an	event A,	range of	its probab	ility P (A	is the	5)			
	(A)	-1 ≤ <i>I</i>	$P(A) \leq 1$	(B)	0 < P(Med .	(C) 0	$\leq P(\Lambda) \leq 1$	(D) I	P(A) = 1
6.	If "c,	$-^{\circ}c_{5}=0$), then n	= [130					
	(A)	C)	WB)		4 EDMC	(C)	6	(D)	9
7.	$(1+i)^8$	=	W.	(B)						
	(A)	2	(B)	4	(C)	8	(D)	16		
8.	The co	njunction	n of two s	tatements	p and q	y is denote	ed by			
						1	,			
	(A) p	$\leftrightarrow q$	(B)	$p \rightarrow q$	(C)	$q \rightarrow$	p (D)	$p \wedge q$		
9.	If $\begin{vmatrix} a \\ c \end{vmatrix}$	$\begin{vmatrix} b \\ d \end{vmatrix} = 2 \iota h$	nen c d a b	=						
	(A)	2	(B)	-2	(C)	±2	(D)	0		
10.	If A =									
				1				_		
	(A)	- 5	(B)	<u>1</u> 5	(C)	0	(D)	5		
	No -C		feha mara	tion (= /	1\22	9v : 16				

(C)

8

(D)

infinite

_____Annual 2019

Paper: I

Marks: 20

Roll No.

$$r_1 < r_2$$

$$r_1 = r$$

(D)
$$r_1 \neq r_2$$

13. With usual notations
$$a+b-c=$$

$$2s-2c$$

(C)

$$2s-2b$$

(D)
$$2s-2a$$

14.
$$Sin^{-1}(0) + Cos^{-1}(0) =$$

$$\frac{\pi}{2}$$

(A)
$$\frac{\pi}{2}$$
 (B) $\frac{\pi}{6}$ (C)

$$\frac{2\pi}{5}$$

15. If
$$Sinx = -\frac{\sqrt{3}}{2}$$
, then $x = -\frac{\sqrt{3}}{2}$

(A)
$$\frac{\pi}{2}$$

$$\frac{4\pi}{3}$$

(D)

(A)
$$\frac{\pi}{3}$$
 (B) $\frac{4\pi}{3}$ (C) $\frac{2\pi}{3}$ (D) $\frac{5\pi}{3}$

16. If n is even, middle term of $(a+b)^n$ is

(A) $(\frac{n}{2})$ th term (B) $(\frac{n+1}{2})$ th term (C) $(\frac{n+1}{2})$ th term (D) $(\frac{n+3}{2})$ th term (D) $(\frac{n+3}{2})$ th term

(A)
$$(\frac{n}{2})$$
th ten

B)
$$(6)$$
 th (6)

(C)
$$(\frac{n+1}{2})$$
th term

(D)
$$(\frac{n+3}{2})$$
th term

17.
$$2^{nd}$$
 term of $(a+b)^7$ is

$$(\Lambda)$$

7ab

18.
$$Tan(\alpha - 90^{\circ}) =$$

 $-Tan\alpha$

19.
$$\frac{\pi}{3}$$
 rad is an angle.

20. Period of
$$\frac{1}{2}\sin 2x$$
 is

(A)
$$\frac{\pi}{2}$$

$$2\pi$$

Roll No. Annual 2019

Chemistry (New Scheme) Time: 2: 40 Hours

(INTERMEDIATE PART - I)

Paper: I Marks: 68

Subjective

Note :- Section I is compulsory. Attempt any three (3) questions from Section II. (Section I)

2. Write short answers to any Eight Parts.

 $(8 \times 2 = 16)$

- i. N_2 and CO molecules have equal number of protons and neutrons. Justify.
- ii. Mg atom is twice heavier than C-atom. Why?
- iii. What is justification of two strong peaks of almost equal heights in the mass spectrum for Bromine?
- iv. How crystals are dried in vacuum desiccator?
- v. Why fluted filter paper is used for greater rate of filtration than ordinary cone filter paper?
- vi. Write any two characteristics of plasma.
- vii. Why real gases deviate from ideal behaviour?
- viii. Define Avogadro's Law. How many molecules of an ideal gas present in 22.4dm3 at STP?
- -273. 15°C is known to be the lowest temperature of an ideal gas. Give reason. ix.
- Relative lowering of vapour pressure is independent of temperature. Justify this statemen x.
- Define hydrolysis. Give chemical equation for hydrolysis of ammonium chloride. χi.
- Define molality. Give one of its mathematical expression. xii.

3. Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

- i. Cleavage of the crystals is itself an isotropic behaviour. Justify.
- How liquid crystals are used to locate veins, arteries, infections and tumors? ii.
- iii. Lower alcohols are soluble in H_2O but hydrocarbons are insoluble. Give reason.
- iv. Why graphite is good conductor of electricity but diamond is bad conductor of electricity?
- Give two importances of Moseley Law. ٧.
- vi. State Heisenberg's uncertainty principle.
- vii. Differentiate between orbits and orbitals.
- viii. How the dual nature of electron was verified?
 - How acidic and basic buffers are prepared? Give one example of each. ix.
 - x. State Law of Mass Action.
 - Define activation energy and activated complex. xi.
- How does the increase of temperature increases the rate of the chemical reaction. xii.

(Turn Over)

4. Write short answers to any Six parts.

- $(2 \times 6 = 12)$
- i. Why did the atomic Radii cannot be measured precisely?
- ii. In NH, bond angle is 107.5° but in NF, it is 102°. Explain it.
- iii. NII3 can form coordinate covalent bond with H. Explain!
- iv. Oxygen molecule is paramagnetic in nature. Justify!
- v. Prove that $\triangle E = q_{\bullet}$.
- vi. Define the terms Heat and Work.
- vii. A salt bridge maintain the electrical neutrality in galvanic cell. Explain.
- viii. Define standard electrode potential?
 - ix. Write down chemical reactions taking place in alkaline battery.

(Section - II)

Note: Attempt any three (3) questions from Section H. Each question carries 08 marks. (3 x 8 = 24)

- 5. (a) Define limiting reactant. Write different steps involved in the identification of limiting reactant. How does it control the viel of product formed in chemical reaction.
 - (b) Describe manometric method for the measurement of vapour pressure of a liquid.
- 6. (a) 250cm³ of the sample of hydrogen effuses four times as rapidly as 250cm³ of an unknown gas. Calculate the molar mass of unknown gas.
 - (b) Derive the equation for the radius of nth orbit of hydrogen atom using Bohr's model.
- 7. (a) Define hybridization. Explain sp^3 hybridization with the example of methane (CH_4) .
 - (b) How enthalpy of reaction is determined by glass calorimeter?
- 8. (a) $N_2(g)$ and $H_2(g)$ combine to $NH_3(g)$. The value of K_c in this reaction at $500^{\circ}C$ is 6.0×10^{-2} . Calculate the value of K_g for this reaction.
 - (b) Describe the homogeneous and heterogeneous catalysis with one example of each.
- 9. (a) Write note on (i) Hydration
- (ii) Hydrates
- (b) Explain the construction of fuel cell. Repare pakeity.org

Sahiwa	l Board-2018
Jannwa	Dualu-20 0

D. II M.	٨1	2010
Roll No.	Annual	2010

Mathematics

(INTERMEDIATE PART - I, Class 11th) - (IV)

Paper: I

Time: 30 Minutes

Objective Code: 6197 Marks: 20

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.

1. i. $\frac{n!}{(n-r)!}$ is always equal to pakcity.org

(A)

(B)

(C)

(D)

ii. If 1/a, 1/b and 1/c are in G.P then common ratio is equal to:

(C) $\pm \sqrt{a+c}$

(D)

(D)

 $\frac{A}{x-1} + \frac{B}{x+1}$ is a partial fraction form of the proper fraction:

(D)

 $+2x^2+kx+4$ then k equals:

(D)

(D)

(C) kcity.oo

 ω^2

0

(A) $\pm \sqrt{\frac{c}{a}}$ (B) $\pm \sqrt{\frac{a}{c}}$ (C)

Sum of n - arithmetic means between a and b is equal to:

(A) $\frac{a-b}{2}$ (B) $n(\frac{a-b}{2})$ (C)

The sum of all cube roots of unity equals:

(A) 1 (B) 2 (C)

(B) 2 (C)

(C) 2 (C)

(D) 2 (C)

(E) 2

(A)

1

(B)

3

(C)

2

viii. If A is a square matrix and A' = A, then A is called

(A) hermitian matrix (B) skew hermitian matrix (C) symmetric matrix (D) skew symmetric matrix

ix. If 'p' is a logical statement, then $p \land \neg p$ is always:

(A) absurdity (B) contingency

(C)

tautology

(D)

(D)

conditional

If $(x+iy)^2 = a+ib$ then $x^2 - y^2$ equals:

(A)

 $a^2 + b^2$ (B) $a^2 - b^2$

(C)

(D)

a+b

Period of Cot x/2 is equal to:

- (A)
- 2π
- (B)
- 4π
- (C)
- (D)

 3π

A coin is tossed twice then probability of getting all heads equal: Representation packets.

- xii. (A)
- 1/2
- (B)
- 1/3
- (C)
- 1/4
- (D)

2/3

xiii. $\frac{a}{Sin\alpha} = \frac{b}{Sin\beta} = \frac{c}{Sin\gamma}$ is called

- (A)
- Sine law
- (B)
- Cosine Law
- (C)
 - Tangent law
- (D)

Fundamental law

 $\frac{D}{N}$ xiv. If α , β and γ are angles of triangle ABC, then $\cos(\frac{\alpha+\beta}{2})$ will be equal to:

(A) $\sin \alpha$ (B) $\sin \gamma$ (C) $\sin \frac{\gamma}{2}$ (D)

xv. In an oblique triangle ABC, if $\alpha = 2$ and $\alpha = 30^{\circ}$, then circum-radius 'R' is equal to:

(A) 4 (B) 3 (C) 1 (D)

- (D) $Sin \beta$

xv. In an oblique triangle ABC, if a = 2 and $\alpha = 30^{\circ}$, then circum-radius 'R' is equal to:

- (D)
- 2

- (A) $Cos^{-1}A + Cos^{-1}B$ (B) $Cos^{-1}A Cos^{-1}B$ (C) $Sin^{-1}A + Sin^{-1}B$
- (D) $Sin^{-1}A Sin^{-1}B$

- (A) $\frac{4\pi}{3}, \frac{2\pi}{3}$ (B) $\frac{4\pi}{3}, \frac{5\pi}{3}$ pak (C) $\frac{\pi}{3}, \frac{5\pi}{3}$
- (D)

Second term in the expansion of $(\sqrt{x} + \frac{1}{2x^2})^{10}$ equals:

- (A)
- $5x^{2/5}$
- (B)
- $10x^{2/5}$
- (C)
- $10x^{5/2}$
- (D)
- $5x^{5/2}$

xix. If the number of terms in the expansion of $(a+b)^n$ is 16 then 'n' equals

- (A)
- 18
- (B)
- 16
- (C)
- 17
- (D)
- 15

xx. Length 'l' of an arc of a circle with radius r and central angle θ is equal to :

- (A)
- (B)
- (C)
- (D) $\frac{1}{2}r^2\theta$

Sahiwal Board-2018 Roll No.__

(INTERMEDIATE PART - I, Class 11th)

Annual 2018

iii. Prove that

By using fundamental law of trigonometry, show that $Sin(\pi/2 + \alpha) = Cos\alpha$ iv.

 $Sin(45^{\circ} + \alpha) = \frac{1}{\sqrt{2}}(Sin\alpha + Cos\alpha).$

٧. Prove that

Find the period of Cot 8x.

vii. Find that value of $\cos 2\alpha$ for $\cos \alpha = 3/5$ where $0 < \alpha < \pi/2$.

viii. If $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$, $b = \sqrt{6}$ then find c and α for any triangle ABC.

ix. Find the area of triangle, given two sides and their included angle,

a = 4.33, b = 9.25, $r = 56^{\circ} 44'$

Show that $r_i = s \tan \frac{\alpha}{2}$.

xi. Find the value of the expression $Cosec(tan^{-1}(-1))$.

Find the solutions of $\sin x = -\sqrt{\frac{3}{2}}$ in $[0, 2\pi]$.

Find the value of θ , satisfying the equation $3\tan^2\theta + 2\sqrt{3}\tan\theta + 1 = 0$.

Attempt any three (3) questions:

 $(3 \times 10 = 30)$

- ease visit for more data Convert $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ to logical form and prove by constructing (2+3)truth table.
 - truth table. (b) Use Cramer's rule to solve the system: $2x_1 x_2 + x_3 = 8$

 $x_1 + 2x_2 + 2x_3 = 6$

(2+1+1+1)

(a) Prove that $\frac{x^2}{a^2} + \frac{(mn+c)^2}{b^2} = 1$ will have equal roots, if $c^2 = a^2m^2 + b^2$

(5)

(b) Resolve into partial fraction:

(5)

Find the sum of an infinite series $r + (1+k)y^2 + (1+k+k^2)r^3 + \dots$ 7. (a) (5)

Find the co-efficient of x^n in the expansion of $\frac{(1+x)^2}{(1-x)^2}$. (5)

Prove that $\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \tan \theta + \sec \theta$ 8. (a) (5)

Reduce $\sin^4 \theta$ to an expression involving only function of multiples of θ , (b) (5) raised to the first power.

 $abc(\sin \alpha + \sin \beta + \sin \gamma) = 4\Delta s$ using usual notations. (5) Prove that: 9. (a)

(b) Prove that $\sin^{-1} \frac{5}{13} + \sin^{-1} \frac{7}{13} = \cos^{-1} \frac{253}{325}$ (5)