Roll No

HSSC-(P-I)-A/2024 (For All Sessions)

Mathematics (Objective)

Group-I

Marks: 20 Time: 30 Minutes

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

- Four 4th roots of 625 are:
- ±4,±4i
- $\pm 5, \pm 5i$
- (C)
- ±16, ±16i
- (D)
- $\pm 25, \pm 25i$

- Partial fractions of $\frac{x^2+1}{(x+1)(x-1)}$ are of the form:
- (B)

(B)

- (C)
- (D)

- A. M between x 3 and x + 5 is: 3.

- x-3
- (D)
- x + 5

i

- No term of a G. P can be:
- (B)
- 1
- (C)

(C)

- -1
- (D)

- 8.7.6 =5.
 - (A)

x+1

- (B)
- 8! 7!
- (C)
- (D)
- 5!

- $4^n > 3^n + 4$ is true for integers:
- $n \ge 2$
- (B)
- $n \ge 3$
- (C)
- $n \ge 5$ (D)

- If sin heta < 0 and cos heta > 0, then terminal arm of heta lies in quadrant: 7.

- $sin\theta$
- (B)

- $\cos \theta$
- (D)

(D)

 $\cos^2\frac{\theta}{2}$

(D)

(D)

IV

- Range of y = tanx is: 9.
 - $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$
- < y < ∞

(B)

- (C)
- $-\infty < x < \infty$ (D)

- $2R \sin \alpha =$ 10.
- $Sin\left(\cos^{-1}\frac{\sqrt{3}}{2}\right) =$ 11.

- (C)

Δ

а

.1

2

- Reference Angle for $1 2 \sin x = 0$ is:

- (B) (B)
- (C)
- (D)

- 12. $\forall Z \in C$, which one is true: 13.
- (B)
- = pakcit(c)oro
- (D)

- A prime number can be factor of a square only if it occurs in it at least. 14. **Twice**
 - (A)
- Once

- (C)
- Thrice
- (D)
- Four times

- If A and B are disjoint sets, then A -15.
- (B)
- (C)
- B A
- (D)

 $p \rightarrow \sim q$

Rt At

- The converse of $\sim p \rightarrow q$ is: 16.
 - (A)
- (B)
- $p \rightarrow q$
- (C)
- (D)

- p ∧ q is called: 17.
 - Conjunction (A)
- Disjunction (B)
- (C)
- Conditional

AB

Equivalence (D)

- $(AB)^t =$ 18. A^tB^t A square matrix A is anti-symmetric if:
- (B)

(B)

- $A^t = A$
- (C)

(C)

- A = A
- $\bar{A} = -A$ (D)

 $1 + \omega + \omega^2 =$

Page 20 of 44

- (B)

At B

- (C) 825-11-A
- ω^2
- (D)

(D)

- 0

Roll No

HSSC-(P-I)-A/2024 (For All Sessions)

Mathematics (Subjective)

(GROUP-I)

Time: 2:30 hours

SECTION-I

Write short answers of any eight parts from the following: 2.

(8x2=16)

- Define a complex number. Is 0 a complex number? i.
- Whether the set $\{0, -1\}$ is closed or not w.r.t addition and multiplication. ii.
- Factorize: $3x^2 + 3y^2$ iii.
- Find multiplicative inverse of -3 5iiv.
- Construct truth table of $\sim (p \rightarrow q) \rightarrow p$ ٧.
- Define monoid. vi.
- Find the matrix X if: $X\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$ vii.
- If A and B are square matrices of the same order, then explain why in general $(A + B)^2 \neq A^2 + 2AB + B^2$ VIII.

ix. If
$$A = \begin{bmatrix} 1 \\ 1+i \\ i \end{bmatrix}$$
, find $A(\bar{A})^t$

- Find four fourth roots of 81 X.
- XI.
- If α , β are the roots of $3x^2 2x + 4 = 0$, find the value of β XII.

Write short answers of any eight parts from the following: 3.

(8x2=16)

- Define conditional equation. i.
- Resolve $\frac{x^2+15}{(x^4+2x+5)(x-1)}$ into partial fraction without finding constants. ii.
- Find the first four terms of the sequence $a_n = \frac{n}{2n+1}$ iii.
- Determine whether -19 is a term of 17, 13, 9, ...iv.
- Find the 5th term of the G.P 3, 6, 12, ٧.
- Sum the series $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots + a_{13}$ vi.
- Prove from the first principle that ${}^{n}P_{r}=n$. ${}^{n-1}P_{r-1}$ vii.
- Find the value of n when ${}^{n}C_{12} = {}^{n}C_{6}$ viii.
- Determine the probability of getting dots less than 5 when a die is rolled. ix.
- Prove that $n! > 2^n 1$ for n = 4, 5X.
- Calculate (2.02)⁴ by means of binomial theorem. χi.
- Expand $(1 + 2x)^{-1}$ up to 4 terms. XII.

Write short answers of any nine parts from the following: 4.

Write values of trigonometric functions for $\theta = \frac{-9}{2}\pi$.

Plage
$$\theta$$
 we that $t^2\theta - \cos^2\theta = \cot^2\theta \cos^2\theta$.

- Prove that $sin(\theta + 270) = -cos\theta$. iii.
- Prove that $sin2\theta = 2sin\theta \cos\theta$. IV.
- Express $sin12^{\circ}$ $sin46^{\circ}$ as sum or difference. ٧.
- Write domain and range of $\cos x$. vi.
- Find period of $\sin \frac{x}{3}$. VII.
- Draw the graph of tanx for $x \in (0, \pi)$ viii.
- Prove that $r = (s b) \tan \frac{\beta}{2}$. IX.
- Write any two half angle formulae. X.
- When angle between ground and sun is 30° , flag pole casts a shadow of 40m long. Find height of top of flag. χi.
- Show that $cos(sin^{-1}x) = \sqrt{1-x^2}$. XII.
- Solve the equation $4 \cos^2 x 3 = 0$ XIII.

SECTION-II

Attempt any three questions. Each question carries equal marks: Note:

(10x3=30)

- If \propto and β are the roots of $x^2 3x + 5 = 0$, form the equation whose roots are 5.(a)
 - Find the rank of m rix $\begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & -6 & 5 & 1 \\ 3 & 5 & 4 & -3 \end{bmatrix}$ Resolve
- Resolve $\frac{1}{(x-1)^2(x^2+2)}$ into partial fractions. 6. (a)
 - Find six arithmetic means between 2 and 5. (b)
- A die is thrown. Find the probability that the no. of dots on the top are prime numbers or odd numbers. 7. (a)
 - If x is so small that its cube or higher powers can be neglected, show that $\sqrt{\frac{1-x}{1+x}} \approx 1 x + \frac{1}{2}x^2$ (b)
- Solve the triangle ABC, given that $\propto = 35^{\circ} 17^{\circ} \beta = 45^{\circ} 13^{\circ}$, $b = 421^{\circ}$. 8. (a)
 - Reduce $\cos^4\theta$ to an expression involving only function of multiples of θ , raised to the first power. (b)
- A circular wire of radius 6 cm is cut straightened and then bent so as to lie along the circumference of a 9. (a) hoop of radius 24 cm. Find the measure of the angle which it subtends at the center of the hoop.
 - Prove that: $tan^{-1}\frac{1}{4} + tan^{-1}\frac{1}{5} = tan^{-1}\frac{9}{19}$

HSSC-(P-I)-A/2024 (For All Sessions)

Paper Code	6	1	9	2

Mathematics(Objective)

Group-II

Time: 30 Minutes

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

(C)

A complex number 1 + i can also be expressed as:

(A)
$$2(\cos 45^{\circ} + i \sin 45^{\circ})$$
 (B)

(B)
$$\sqrt{2}(\cos 45^{\circ} - i \sin 45^{\circ})$$

$$\sqrt{2}(\cos 45^{\circ} - i \sin 45^{\circ})$$
 (C) $\sqrt{2}(\cos 45^{\circ} + i \sin 45^{\circ})$

$$2(\cos 45^{\circ} - i \sin 45^{\circ})$$

If Z is a complex number and $Z = \overline{Z}$ then Z must be:

The set $\{(a,b)\}$ is called: 3.

Drawing conclusion from premises believed to be true is called:

If p is a logical statement $p \land \sim p$ is always: 5.

6. If
$$A = [a \ b \ c]$$
, then order of A^t is:

(C)

(C)

(C)

If the matrix $\begin{bmatrix} \lambda & 1 \\ -2 & 1 \end{bmatrix}$ is singular then $\lambda =$

IF $4^{3x} = \frac{1}{3}$ then x is equal to: 8.

$$-\frac{1}{6}$$

1

9. If
$$\omega$$
 is cube root of unity, then $\omega + \omega^2 =$

(D)

$$\frac{1}{\omega}$$

2

6

2), value of B is: From the identity 5x + 4 = A(x - 1) + B(x)

Which of the term cannot be a term of G.F. 11.

(D)

K is equal to:

$$\frac{n+1}{2}$$

$$\frac{n(n+1)}{2}$$

$$\frac{n(n+1)(2n+1)}{6}$$

$$\frac{n(n-2)}{2}$$

 $\frac{"Pr}{r!}$ is equal to:

$$^{n}C_{r-1}$$

$$^{n+1}C_r$$

(D)

(D)

$$^{n-1}C_r$$

In expansion of $(a + b)^{16}$ middle term will be: 14.

15.

16.

5. The angle
$$\frac{3\pi}{2} - \theta$$
 lies in quadrant:

IV

The range of sinx is: 17.

$$(A)$$
 $[-1, 1]$

(C)

$$\frac{\Delta}{S-a}$$

D)
$$\frac{\Delta}{c}$$

The radius of inscribed circle is: 18.

(B)

$$\frac{\pi}{4}$$

(D)

$$-\frac{\pi}{4}$$

Page 23 of $\frac{1}{4}$, then reference angle is:

 $Cos\left(sin^{-1}\frac{1}{\sqrt{2}}\right)$ is equal to:

 $\frac{1}{2}\pi$

827-11-A

Roll No

to be filled in by the candidate

HSSC-(P-I)-A/2024 (For All Sessions)

Marks: 80

Time: 2:30 hours

Mathematics (Subjective)

(GROUP-II) SECTION-I

Write short answers of any eight parts from the following: 2.

(8x2=16)

- Does the set $\{1, -1\}$ possess closure property w.r.t multiplication? Construct the multiplication table. i.
- If $\frac{a}{b} = \frac{c}{d}$, prove that ad = bc
- Factorize $a^2 + 4b^2$ iii.
- Simplify by expressing in the form a + bi: $(2 + \sqrt{-3})(3 + \sqrt{-3})$ iv.
- If $B = \{1, 2, 3\}$ then write down the power set of B٧.
- Determine whether the statement $p \to (q \to p)$ is a tautology or not. Vİ.
- Under what conditions, the determinant of a square matrix A is zero. Write any two conditions. VII.
- If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b. viii.
- Determine whether the matrix $A = \begin{bmatrix} 1 & 1+i \\ 1-i & 2 \end{bmatrix}$ is hermitian matrix or skew-hermitian matrix.
- X.
- Xİ.
- Show that the roots of equation will be rational $px^2 (p-a)x = 0$ Write short answers of any eight parts from the following:

 Define an identify with XII.
- 3.

(8x2=16)

- Define an identity with example. i.
- Resolve into partial fraction $\frac{1}{r^2-1}$ ii.
- The 7th and 10th terms of an H.P are $\frac{1}{3}$ and $\frac{5}{21}$ respectively, find its 14th term. iii.
- Find the sum of first 15 terms of geometric sequence $1, \frac{1}{3}, \frac{1}{9}, \dots$ iv.
- Insert two G.M's between 2 and 16
- How many terms of the series $-7 + (-5) + (-3) + \cdots$ amount to 65 Vİ.
- A card in drawn from a deck of 52 playing cards What is the probability that it is a diamond card or an ace? VII. pakcity.org
- Find n, if ${}^nC_8 = {}^nC_{12}$ VIII.
- How many different 4-digit numbers can be formed out of the digits 1, 2, 3, 4, 5, 6, when no digit is repeated? ix.
- Use mathematical induction to prove that $3 + 3.5 + 3.5^2 + \cdots + 3.5^n = \frac{3(5^{n+1}-1)}{4}$ for n = 1,2
- Calculate by means of binomial theorem (2.02)⁴ Xİ.
- Expand upto 4 terms $(1-x)^{1/2}$ XII.

Write short answers of any nine parts from the following: 4.

(9x2=18)

- Find r, when l = 56cm, $\theta = 45^{\circ}$ i.
- Verify that $sin2\theta = 2sin\theta cos\theta$ for $\theta = 45^{\circ}$ ii.
- Write the fundamental law of trigonometry.

- Show that $cos(\alpha + \beta) cos(\alpha \beta) = cos^2 \alpha sin^2 \beta$. iv.
- Express sin5x + sin7x as a product. ٧.
- Define the period of trigonometric function. Vi.
- Write down the domain and range of tangent function. VII.
- Find the period of $\sin \frac{x}{3}$ viii.
- Solve the right triangle ABC, in which $\gamma = 90^{\circ}$, a = 3.28, b = 5.74. IX.
- Define half angle formulas for tangent. X.
- Define Hero's formula. Xİ.
- Find the value of $sin(tan^{-1}(-1))$ XII.
- Solve the equation sin2x = cosx where $x \in [0, 2\pi]$ XIII.

SECTION-II

Attempt any three questions. Each question carries equal marks: Note:

(10x3=30)

5.(a) Show that
$$\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3$$

- (b) Prove that $\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$ will have equal roots if $c^2 = a^2m^2 + b^2$; $a \neq 0, b \neq 0$
- Resolve into partial fractions $\frac{6x^3+5x^2-7}{2x^2-x-1}$
 - The A. M between the two numbers is 5 and their positive G. M. is 4 find the numbers.
- Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
 - Find the coefficient of x^5 in the expansion of $\left(x^2 \frac{3}{3}\right)^{10}$
- Reduce $sin^4\theta$ to an expression involving only functions of multiples of θ raised to the first power. 8. (a)
 - With usual notations, prove that $r = s.\tan^{\alpha}/2 \cdot \tan^{\beta}/2 \cdot \tan^{\gamma}/2$
- If $cot\theta = \frac{5}{2}$, and θ is in quadrant 1. find the value of $\frac{3sin\theta + 4cos\theta}{cos\theta sin\theta}$ 9. (a)
 - Prove that $\cos^{-1}\frac{63}{65} + 2\tan^{-1}\frac{1}{5} = \sin^{-1}\frac{3}{5}$

828-11-A

ተ ተ	Roll Noto be fill	e i in by th	e candidate	HSSC-(I	P-1)-A/2023	Paper Code	6 1 9 3
M	athematics(Objective)	(For	All Sessions)		oup-l		00 Minutes Marks : 20
Note:	Write Answers to the Questions of er you consider correct, fill the corre-	n the object	tive answer sheet	provided. Fo	our possible answers		
1.1	=	of orients c	sole M, D, O or D gr	ven ar mount o	or each question with i	Marker or Pen ink	on the answer sheet provided.
	r_1	(B)	r	(C)	R	(D)	A
2.	In any $\triangle ABC \sqrt{\frac{S(S-c)}{ab}}$ is:	(1-7		(0)	K	(0)	Δ
	(A) Cos \(\alpha/2\)	(B)	Cos B/2	(C)	Cos Y/2	(D)	Cos ∝
3.	$Cos\left(Tan^{-1}0\right) = \underline{\hspace{1cm}}$		-22	, ,	12	(0)	C03 W
	(A) -1	(B)	1	(C)	1	(D)	1
4.	Solution of $1 + Cosx = 0$ in [0 2π1 is:			2/		$\frac{1}{2}$
	(A) π	(B)	π	(C)	$\sqrt{3\pi}$		5π
5.	The set{1} possess closure prop		2	(C)	1 2) (D)	2
٠,	(A) Addition		ultiplication	(C)	Subtraction	(D)	Both A & B
6.	A function $f: A \rightarrow B$ is called at (A) Range of $f = A$			(0)	1		
				(C)	Range of $f =$	B (D)	Range of $f \neq B$
7.	If $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 1 \end{bmatrix}$ then	A = _	·· \		\		
	(A) 4	(B)	7	10)	Jano S	(D)) / 13
8.	If order of a matrix "A" is $m \times p$		1 1	is $n \times p$	1 / -/	ct of matrices A	
9.	(A) $m \times p$ The roots of $x^2 - 7x + 10 = 0$	(B) are:	$n \times p$	10/2	$m \times n$	(0)	$p \times n$
2724	(A) -2,-5	(B)	2,5	CA	-2,8		2,-5
10.	If α , β are the roots of $3x^2 - 2$	2x + 4 =	0, then sum of the	ts is.			
	(A) $\frac{2}{3}$	(B)	(53)	(C)	$\left\langle \frac{4}{3} \right\rangle$	(D)	$-\frac{4}{3}$
11.	Partial fractions of $\frac{1}{(x-1)(x+1)}$	are:	2012	1			
	$A \qquad A \qquad B$	~ 1 1 /	Ax + B C	V (0)	A = Bx +	C m	Ax + B
/	x-1 $x+1$	150	x-1 + x + 1	(C)	$\overline{x-1} + \overline{x+1}$	- (D)	$\frac{x^2-1}{x^2-1}$
12.	Next two terms of sequence 2, 9, (A) 18, 20	(8)	19, 21	(C)	20, 22	(D)	21, 27
13	If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P then co	ou wou ta	itto is:	/			
	$\pm \sqrt{\frac{\kappa}{a}}$	(8)	to C	pacyc	ity.org $\frac{b}{c}$	(D)	$\pm\sqrt{\frac{c}{b}}$
14.	$n_{p_2} = 30$, then <i>n</i> is:				V		
	(A) 6	(a)	5	(C)	4	(D)	3
15.	In how many ways can 4-keys	be arran	ged on a circular		•	(0)	5
16.	(A) 1 $n! > n^2$ is true for $n \neq 1$.	(3)	2	(C)	3	(D)	4
10,	(A) 1	(13)	2	(C)	3	(D)	4
17.	The formula for $(r+1)th$ te	rm of bind	omial expansion	of $(a+x)$	$)^n$ is:		
	(A) $\binom{n}{r} a^{n-r} x^r$	(13)	$\binom{n}{r} a^{n+r} x^r$	(C)	$\binom{n}{r} a^n x^{n-r}$	(D)	$\binom{n}{r} a^n x^{n+r}$
18.	Which one is the quadrantal a	ngle: (II)	456	(C)	60°	(D)	900
19.	Cos 2 ∝ =			(0)	00	(D)	90
	(A) $1-2 \cos^2 \propto$	(E:)	$2 Cos^2 \propto -1$	(C)	Sin ∝ Cos ∝	(D)	$2Sin \propto Cos \propto$
20.	Period of Cosec $\frac{x}{4}$ is:						
	(A) 2π	(E)	4π	(C) 21-11-A7	6π	(D)	8π

Mathematics (Subjective)

(For All Sessions)

(GROUP-I)

Marks: 80 Time: 2:30 hours

Rawalpindi Board-2023 SECTION-I

Write short answers of any eight parts from the following: 2.

Name the properties used in equations: (a): 100 + 0 = 100 (b): $1000 \times 1 = 1000$ I,

Separate into real and imaginary parts, if $Z = \frac{i}{1+i}$ iii. Differentiate between Equal and Equivalent sets, with II. example.

Write the set: $\{x | x \in N \land 4 < x < 12\}$, in descriptive and tabular forms: Define semi-group.

Find values of x if $\begin{vmatrix} 3 & 1 & x \\ -1 & 3 & 4 \\ x & 1 & 0 \end{vmatrix} = -30$ vii. If the matrices A and B are symmetric and AB = BA, show that AB is symmetric.

ix. Solve: x(x + 7) = (2x-1)(x+4) by factorization. If $A = \begin{bmatrix} i & 1+i \\ 1 & -i \end{bmatrix}$, find $A + (\overline{A})^t$ VIII.

If ω is a cube root of unity, form an equation whose roots are $Z\omega$ and $Z\omega^2$ X.

Find the three cube roots of -8 Find two consecutive numbers, whose product is 132. XI.

(8x2=16)Write short answers of any eight parts from the following: 3. Find vulgar fraction equivalent to recurring decimal 0.7

Without finding constants write $\frac{x^2-10+13}{(x-1)(x^2-5x+6)}$ into partial fractions.

Find the *nth* term of sequence $\left(\frac{4}{3}\right)^2$, $\left(\frac{7}{3}\right)^2$, $\left(\frac{10}{13}\right)^2$, ... Calculate geometric means between 4 and 16. iv. iii.

If $y = \frac{2x}{3} + \frac{4x^2}{9} + \frac{8x^3}{27} + \cdots$ and if $0 < x < 3/\frac{1}{4}$, then show that $x = \frac{2y}{2(1+y)}$

vii. Find the term involving x^2 in the expansion of $\left(x - \frac{2}{x^2}\right)^{13}$ Find 12th term of H.P: $\frac{1}{3}, \frac{2}{9}, \frac{1}{6}, \dots$ νi.

How many words can be formed from PLANE using all letters when no letter is to be repeated. VIII.

A de is thrown. Find the probability that dots on top are prime numbers. Write formula for "P, and "C, ix.

Expand $(1-x)^{1/2}$ up to 4 terms by binomial the prem. XÌ.

If x is so small that its square and higher powers be neglected, then show that: $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3x}{2}$ xii.

Write short answers of any nine parts from the following: 4. ii. Find $tan\theta$ and $cot\theta$ for $\theta = \frac{19\pi}{3}$

Define the word "Trigoriometry" ii. Find $tan\theta$ and $cot\theta$ for θ . Show that $sin^2\left(\frac{\pi}{6}\right) + sin^2\left(\frac{\pi}{3}\right) + tan^2\left(\frac{\pi}{4}\right) = 2$ iv. Find the value of $cos\left(\frac{\pi}{12}\right)$

Prove that $Sin(180^{\circ} - \alpha)$ $Sin(90^{\circ} - \alpha) = -Sin \alpha Cos \alpha$. vi. Define the principal tangent function.

Prove that $Sin(\alpha + \beta)Sin(\alpha - \beta) \neq \cos^2 \beta - \cos^2 \alpha$. viii. Define the period of a Trigonometry function VII.

Solve the right triangle ABC in which: $r=90^{\circ}$, b=68.4 , c=96.2ix.

Solve the triangle ABC if $\beta=60^{\circ}$, $r=15^{\circ}$, $b=\sqrt{6}$

Find the area of triangle ABC for b=21.6 , c=30.2 , $\alpha=52^{\circ}40'$ Xi.

Define the trigonometric equation. Find the solution of Cosec $\theta = 2$ which lie in the interval $[0, 2\pi]$ XII.

SECTION-II

Attempt any three questions. Each question carries equal marks: Note

(10x3=30)

(9x2=18)

Find the matrix A if: $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} A = \begin{bmatrix} 0 & -3 & 8 \\ 3 & 3 & -7 \end{bmatrix}$ 5. (a)

For what values of "m" the roots of the equation $x^2 - 2(1 + 3m)x + 7(3 + 2m) = 0$ be equal? (b)

Resolve into partial fractions $\frac{x^2}{(x-2)(x-1)^2}$ 6. (a)

 ${}^{n-1}C_{r-1}$: ${}^{n}C_{r}$: ${}^{n+1}C_{r+1}$ = 3:6:11 Find the values of n and r when

7. (a)

Use binomial theorem to show that: $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \dots = \sqrt{2}$ Prove that $\tan \theta + \sec \theta - 1$

The measures of sides of a triangular plot are 413,214 and 375 meters. Find the measure of corner angles of the plot. 9. (a)

	Rawalpir	ndi Board-2023	.		 	
자자자 Roll No to be filled in l	ly the candidate	HSSC-(P-1)-A/2023	Paper Code	6	9	

Mathematics (Objective)

(For All Sessions)

Time: 30 Minutes

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

The sum of infinite geometric series with common ratio |r| < 1 is:

$$\frac{\dot{a}}{1-r}$$

A die is rolled. The probability that the dot on the top is greater than 4 is:

(A)
$$\frac{1}{6}$$

(D)

The value of $^{12}C_{10} =$

(D)

The sum of exponents of a and b in every term in the expansion of $(a + b)^n$ is:

(D)

n-1

The inequality $n! > 2^n - 1$ is valid if n is:

 $n \leq 3$

 60^{0}

(C)

(D)

 $n \ge 3$

radians = 6.

 120^{0}

(B)

900

(D)

300

 $Sin(2\pi - \theta) =$ 7.

Sino

(B)

 $-Sin\theta$

(C)

(C)

(D) $--Cos\theta$

The period of Sin 2x =

211

Hero's formula for area of Ariangle is:

 $\sqrt{s(s-a)(s-b)(s-c)}$

 -2π

 $\cos \frac{\pi}{2}$

10.

 $\sin \frac{\pi}{2}$

 $C^2 \sin \propto \sin \beta$

(D)

30°

6

450

6

 60^{0}

The equation $x^2 + 1 = 0$ has solution in:

(B)

(D)

Q

Let $p \to q$ be a given conditional then $\sim q \to \sim p$ is: 14.

Contra positive

Converse Inverse If A and B are non singular matrices, then $(AB)^{-1}$ is equal to.

BA

(D)

 $B^{-1}A^{-1}$

Positive

AX = 0 is homogeneous system with $|A| \neq 0$ then system has: 16.

No solution

Trivial solution

Non-trivial solution

(D)

Infinite solution

If $4^{-x} = \frac{1}{2}$ then x = :

(A)

1

(B)

(C)

(D)

1 2

An equation which remains unchanged when x is replaced by

(A)

Exponential

Reciprocal

(C)

Radical

(D)

Reducible

Partial fractions of $\frac{1}{x^2-1}$ will be of the form:

823-11-A-

A + Bx

General term of the sequence 1,3,5 ... is: 20.

2n + 2

(D)

3n

Mathematics (Subjective:

SECTION-I

Write short answers of any eight parts from the following: 2.

(8x2=16)

(8x2=16)

(9x2=18)

Find the multiplicative inverse of (-4,7)i.

Prove that $\ddot{Z} = Z$ if Z is a real number.

- Write down the power set of {9, 11}.
- Construct the truth table for $(P \land \sim P) \rightarrow q$
- If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ find the value of a and b.
- Show that AA^t is symmetric for any matrix of order 3x3. viii. VII.
- Solve the equation: $(a+b)x^2 + (a+2b+c)x + b + c = 0$ IX.
- Find the condition that one root of $x^2 + px + q = 0$ is double the other. х.
- Show that the roots of $(mx + c)^2 = 4ax$ will be equal if $C \neq \frac{a}{m}$ xi.
- Solve the equations simultaneously: x + y = 5; $x^2 + 2y^2 = 17$
- Write short answers of any eight parts from the following:

Write the first three terms of $\binom{a}{n}$

- Resolve into $\frac{1}{x^2-1}$ partial fraction. i.
- If nth term of the A.F. is 3n-1, find the A.P.
- Which term of the sequence: $x^2 y^2$, (x + y), ٧.
- Define Harmonic Mean. Also derive formula. vi.
- How many numbers greater than 1000,000 can be formed from the digits 0,2,2,2,3,4,4? VII. Prove that $n! > n^2$ for n = 4, 5.
- Find the value of n when ${}^{n}C_{10} = \frac{12 \times 11}{2}$ viii.
- Find the sum of infinite $G.P.2, \sqrt{2}, 1, ...$
- Expand $(1 + /x)^{-2}$ upto 3 terms. X.
- Using binomial theorems: (1.03) , calculate the value upto three decimal places.
- XII. Write short answers of any nine parts from the following:
 - Write domain and range of sin x Find θ when $k=1.5 \, cm$, $r \neq 2.5 \, cm/o$
- If tan 0 < 0 and ; in which quadrant will the.
- Prove that $R = \frac{abc}{4\Delta}$ Prove than $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{4} + \tan^2 \frac{\pi}{4} =$
- Find the distance between A(3,8) and B(5,6)
- State law of Sines.
- viii.
 - \propto when $\cos \alpha = \frac{3}{5}$ and $0 < \alpha < \frac{\pi}{2}$ IX.
 - $45^{\circ}13'$; b = 421 find a and r. X.
 - Find the value of $cos(sin^{-1}\frac{1}{\sqrt{2}})$ xi.
- Solve $cos x = \frac{\sqrt{3}}{2}$ where $x \in [0, 2\pi]$
- Define trigonometrize equation. Give one example. xiii.

Attempt any three questions. Each question carries equal marks: Note

(10x3=30)

- Reduce the following matrix into echelon form: 1 5. (a)
 - For what value of m will the roots of following equation be equal? $(1+m)x^2 - 2(1+3m)x + (1+8m) = 0$
- Resolve $\frac{x^2+1}{x^3+1}$ into partial fractions.
 - A card is drawn from a deck of 52 playing cards. What is the probability that it is a diamond card or an ace? (b)
- Show that sum of n, A, Ms between 'a' and 'b' is equal to n times their A, M, 7. (a)
 - If x is very near equal to 1. Then prove that $Px^p qx^q \approx (p-q)x^{p+q}$ (b)
- A railway train is running on circular track of radius 500 meters at the rate of 30 km per hours. 8. (a) Through what angle it turn in 10 seconds. ⊗ pakcity.org
 - Show that $cos20^{\circ} cos40^{\circ} cos80^{\circ} = \frac{1}{8}$ (b)
 - Show that $r_1 = 4R \sin \frac{\alpha}{2}$. Cos $\frac{\beta}{2}$. Cos $\frac{\gamma}{2}$ -1 120 - 2 Cos-1 12

Please visit for more data at: www.pakcity.org

Roll No. Jo be filled in by the condidate. (For all sessions) Paper Code Mathematics (Objective Type) (A) (O,O) **(1,0)** (B) (0,1) (D) (1,1) 15. sin(-300°)= (C) 25-2b (A) 1 **(B)**-1 (C) 26 9. (n+1) term of G.P is: $\Theta^{\frac{4\pi}{3}}$ (D) $a_1 + (2n-1)d$ 821-11-A-**☆**

ι.

Inter - (Part-I) -A-2021 (For all sessions)

Roll No._____to be filled in by the candidate.

Mathematics (Essay Type)

pakcity.org

Time: 2:30 Hours

Marks: 80

Section -I

2. Write short answers of any eight parts from the following.

2x8=16

i. Separate into real and imaginary parts
$$\frac{2-7i}{4+5i}$$
. ii. Factorize $3x^2+3y^2$.

iii. Simplify
$$(2,6)(3,7)$$

iv. Let
$$A = \{1, 2, 3, 4\}$$
, Find the relation $\{(x, y) / x + y < 5\}$ in A

v. Write the inverse and converse of
$$\stackrel{\sim}{p} \rightarrow \stackrel{\sim}{q}$$
 vi. Find the value of x if $\begin{vmatrix} 3 & 1 & x \\ -1 & 3 & 4 \\ x & 1 & 0 \end{vmatrix} = -30$.

vii. Find the condition that one root of $x^2 + px + q = 0$ is multiplicative inverse of other.

viii. Evaluate
$$(1+w+w^2)(1-w+w^2)$$
.

ix. Solve the equation ax = b where a,b are the elements of a group G

x. Discuss the nature of roots of the equation $2x^2 - 5x + 1 = 0$

xi. If
$$A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$$
 and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ then find the values of a and b.

xii. If A and B are square matrices of the same order, then explain why in general $(A+B)(A-B) \neq A^2-B^2$.

Write short answers of any eight parts from the following.

2x8=16

ii. Insert three G.M's between 1 and 16.

iii. Write in factorial form
$$\frac{(n+1)(n)(n-1)}{3.2.1}$$
.

pakcity.org iv. Find the value of n , when $^nP_4: ^{n-1}P_3 = 9:1$

v. If 5 is the harmonic mean between 2 and b, find b. vi. Find the number of diagonals of a 6-sided figure.

vii. Evaluate $\sqrt[3]{30}$ correct to two places of decimals. . viii. Expand by binomial theorem $\left(\sqrt{\frac{a}{x}} - \sqrt{\frac{x}{a}}\right)^3$.

ix. Resolve into partial fractions
$$\frac{7x+25}{(x+3)(x+4)}$$

x. Resolve into partial fractions without finding the constants $\frac{9x-7}{(x^2+1)(x+3)}$

xi. If
$$\frac{1}{a}$$
, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P, show that the common ratio is $\pm \sqrt{\frac{a}{c}}$.

xii. Check whether,
$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2\left(1 - \frac{1}{2^n}\right)$$
 is true for $n = 1, 2$

4. Write short answers of any nine parts from the following.

- i. Prove that $\sec^2\theta \cos ec^2\theta = \tan^2\theta \cot^2\theta$. ii. Find the values of $\cos 105^0$ taking $\left(105^0 = 45^0 + 60^0\right)$.
- iii. Prove that $\frac{\sin 8x + \sin 2x}{\cos 8x + \cos 2x} = \tan (5x)$
- iv. Find the period of tan(4x).
- v. Show that $\gamma = (s-c)\tan\left(\frac{\gamma}{2}\right)$.
- vi. In $\triangle ABC$ a=3,b=6 and B=36 $^{\circ}$ 20' Find "b".
- vii. Find area of $\triangle ABC$ if a=18, b=24 and c=30. viii. Find the value of $\cos^{-1}\left(\frac{-1}{2}\right)$.
- ix. Solve the equation $1 + \cos x = 0$.
- x. Find the soln of equation $\sec x = -2$ which lies in $[0, 2\pi]$.
- xi. What is the circular measure of the angle between the hands of a watch at 4 'o' clock.
- xii. Find the values of remaining trigonometric functions when $\cos\theta = \frac{9}{41}$ and the terminal arm of the angle is in quad ly
- xiii. If α , β and γ are angles of a triangle ABC then prove that $\tan(\alpha + \beta) + \tan \gamma = 0$.

 Section 11

10x3=30

- 5. (a) If $A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$ verify that $(A^{-1})^t = (A^t)^{-1}$ (b) Solve the system of equations x + y = 5; $\frac{2}{x} + \frac{3}{y} = 2$.
- **6.** (a) Resolve $\frac{\sqrt{(1-ax)(1-bx)(1-cx)}}{(1-ax)(1-bx)(1-cx)}$ into partial fractions.
 - (b) For what value of n, $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the positive Geometric Meam (G.M) between a and b.
- **7.** (a) Prove that C^+C^-C
 - (b) If x is so small that its cube and higher powers can be neglected then show that $\sqrt{\frac{1+x}{1-x}} \approx 1+x+\frac{1}{2}x^2$.
 - 8. (a) Two cities A and B lie on the equator such that their longitudes are 45 E and 25 W respectively. Find the distance between two cities, taking radius of earth as 6400 kms.
 - (b) Show that $\cos(\alpha + \beta)\cos(\alpha \beta) = \cos^2\alpha \sin^2\beta = \cos^2\beta \sin^2\alpha$
 - 9. (a) The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. Prove that the greatest angle of the triangle is 120^0 .
 - (b) Prove that $2 \tan^{-1} \left(\frac{1}{3} \right) + \tan^{-1} \left(\frac{1}{7} \right) = \frac{\pi}{4}$

ቷ ቷ	Inter. (Part-1)-1-2019					
Roll No to be filled in by the candidate.	(For all sessions)	Paper Code	6	1	9	3
Mathematics (Objective Type)	pakcity.org	*				

Time: 30 Minutes

Marks: 20

NOTE: Write answers to the questions on objective answer sheet provided. Four possible answers A,B,C & D to each question are given. Which answer you consider correct, fill the corresponding circle #,B,C or D given in front of each question with Marker or pen link on the answer sheet provided.

1-1. In an oblique triangle, if a = 200; b = 120 and included angle $\gamma = 150^\circ$, then its area will be equal to:

(A) 6000

- (B) 5000
- (C) 2000
- (D) 12000

- 2. If "R" is the circum-radius, then its value is:
 - (A) $\frac{ac}{4\Delta}$
- (B) $\frac{ab}{4\Delta}$

- (C) $\frac{abc}{4\Delta}$
- (D) $\frac{abc}{\wedge}$

- 3. The value of $\sin\left(\cos^{-1}\frac{\sqrt{3}}{2}\right)$ is equal to:
 - (A) 1
- (B) -1

- (g) 2
- (D) ½

4. The solution of $\cos ec\theta = 2$ in interval $[0,2\pi]$ is equal to:

- $(A) \frac{\pi}{6}, \frac{7\pi}{6}$
- (B) $\frac{\pi}{6}$, $\frac{5\pi}{6}$
- (C) $\frac{\pi}{3}$, $\frac{5\pi}{6}$
- (D) $\frac{\pi}{3}, \frac{\pi}{6}$

5: If $z = \cos \theta + i \sin \theta$, then $|\theta|$ is equal to:

- (A) 0
- (8)

- (C) 2
- (D) 3

6 For any two subsets A and B of set \bigcup , then $(A \bigcup B)'$ is equal to:

- (A) AUB'
- (B) $A \cap B'$
- ICI A'UB
- (D) $A' \cap B'$

- 7. If "A" is a square matrix and $\left(\overline{A}\right)^{l} = -A$, then "A" is called:
 - (A) Skew Symmetric
- (B) Symmetric
- (C) Skew Hermitian
- (D) Hermitian

8. If $A = \begin{bmatrix} 4 & x & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$ is a singular matrix, then 'x' is equal to:

- (A) 3
- (B) 4

- (C) 6
- (D) 7

9. If α and β are roots of $ax^2 + bx + c = 0$, then $\alpha \cdot \beta$ is equal to:

- (A) -b/
- (B) 4/b

- (C) %
- (D) %

821-011-A- 本立

Inter - (Purt-1) -A-2019

(For all sessions) Roll No.

Mathematics (Essay Type) pakcity.org

Time: 2:30 Hours

Marks: 80

Section -I

2. Write short answers of any eight parts from the following.

2x8=16

- i. Find the modulus of complex number 3+4i.
- ii. Simplify by justifying each step $\frac{1}{4} + \frac{1}{5}$ by writing propertie
- iii. Factorize the expression $9a^2 + 16b^2$.
- Define absurgity and give one example.
- v. Solve the system of linear equations, $3x_1 x_2 = 5$ vi. Find the value of x if $\begin{vmatrix} 1 & 2 & 1 \\ 2 & x & 2 \\ 3 & 6 & 0 \end{vmatrix} = 0$
- vii. Define Row Rank of a matrix.

- vii. Define Row Rank of a matrix. viii. Solve the equation $x^{-2} 10 = 3x^{-1}$. bx. If $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7, 8\}$, $C = \{5, 6, 7, 9, 10\}$ yearly distributivity of union over intersection.
- x. Find the inverse of the relation $\{(1,3),(2,5),(3,7),(3,9),(5,11)\}$
- xi. Use remainder theorem to find the remainder when $x^3 x^2 + 5x + 4$ is divided by x 2.
- xii. Find the roots of the equation $16x^2 + 8x + 1 = 0$ by using quadratic formula.
- 3. Write short answers of any eight parts from the following.

2x8=16

- I. Resolve $\frac{1}{x^2-1}$ into partial fraction.
- ill. Define Circular permutation.

- v. If $\frac{1}{a} \cdot \frac{1}{b} \cdot \frac{1}{c}$ are In-Arithmetic progression (A.P) show that common difference is $\frac{a-c}{2ac}$.
- vi. If 5,6 are two Arithmatic Means (A.M) between "a" and "b". Find "a" and "b".
- vii. If the numbers $\frac{1}{k}$, $\frac{1}{2k+1}$, $\frac{1}{4k-1}$ are/in (H.P.) Hormonic Progression, Find "K".
- viii. How many words can be formed from the letters of PLAN" using all letters when no letteNs to be repeated?
- ix. If $c = \frac{n}{c}$, where c stands for combination then find value of n.
- x. Varify the inequality $n > 2^n 1$ for integral values of n = 4, 5.
- xi. If x is so small that its square and higher power cab be neglected, show that $\frac{1-x}{\sqrt{1-x}} = 1 \frac{3}{2}x$. xii. Prove that Hormonic Mean (H.M) between two numbers "a" and "b" is $\frac{2ab}{a+b}$.
- 4. Write short enswers of any nine parts from the following.

2x9=18

I. Prove the fundamental identity $\cos^2\theta + \sin^2\theta = 1$, ii. Verify the result $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$ for $\theta = 30^\circ$.

iii. Show that
$$\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} - \sin 11^{\circ}} = \tan 56^{\circ}$$
.

lv. Prove that
$$\cos 330^{\circ} \sin 600^{\circ} + \cos 120^{\circ} \sin 150^{\circ} = -1$$

v. Find the period of
$$cosec(10x)$$

vi. Show that
$$\gamma = 4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$$
 with usual notation.

vii. Find the value of
$$\cos\left(\sin^{-1}\frac{1}{2}\right)$$
.

viil. Show that
$$\frac{\cot^2 \theta - 1}{1 + \cot^2 \theta} = 2\cos^2 \theta - 1$$

ix. Express the following difference as the product of trignometric functions
$$\cos 7\theta - \cos \theta$$

x. In any triangle
$$\triangle ABC$$
, if $\alpha = 16.1$, $\alpha = 42^{\circ}45'$, $\gamma = 74^{\circ}32'$, then find " β " and " α ".

xi. Find the area of triangle ABC, given two sides and their included angle
$$a = 200, b = 120, \gamma = 150^{\circ}$$
.

xii. Find the solutions of the equation
$$\cot \theta = \frac{1}{\sqrt{3}}$$
 in the interval $[0, 2\pi]$.

xiii. Find the values of
$$\theta$$
 satisfying the equation $3 \tan^2 \theta + 2\sqrt{3} \tan \theta + 1 = 0$.

Section -II

5. (a) Verify De Morgan's Laws for the given sets:
$$U = \{1, 2, 3, ..., 20\}$$
, $A = \{2, 4, 6,20\}$, $B = \{1, 3, 5,19\}$

(b) Find the value of
$$\lambda$$
 if A is singular matrix, $A = \begin{pmatrix} 4 & 3 & 6 \\ 3 & 6 & 6 \end{pmatrix}$

Note: Attempt any three questions from the following. 10x3=30

5. (a) Verify De Morgan's Laws for the given sets:
$$U = \{1, 2, 3, \dots, 20\}$$
, $A = \{2, 4, 6, \dots, 20\}$, $B = \{1, 3, 5, \dots, 19\}$.

(b) Find the value of A if A is singular matrix, $A = \{1, 2, 3, \dots, 20\}$, $A = \{2, 4, 6, \dots, 20\}$, $A = \{1, 3, 5, \dots, 19\}$.

6. (a) If the roots of $px^2 + qx + q = 0$ are a and B , then prove that $\sqrt{\frac{a}{\beta}} + \sqrt{\frac{g}{\alpha}} + \sqrt{\frac{g}{p}} = 0$.

(b) Resolve into partial fraction A .

7. (a) The sum of an infinite geometric series is 9 and sum of square of its forms is
$$\frac{81}{5}$$
. Find the series.

(b) If
$$y = \frac{2}{5} + \frac{1.3}{2!} \left(\frac{2}{5}\right)^2 + \frac{1.3.5}{3!} \left(\frac{2}{5}\right)^3 + \dots$$
, then prove that $y^2 + 2y - 4 = 0$.

(b) If
$$\tan \alpha = \frac{-15}{8}$$
 and $\sin \beta = \frac{-7}{25}$ and neith/er the terminal side of the angle of measure α nor that of β is in IV quadrant. Find $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$.

9. (a) One side of a triangular garden is 30m. If two comer angle are
$$22^{\circ} \frac{1}{2}$$
 and $112^{\circ} \frac{1}{2}$, find the cost of planting the grass at the rate of Rs.5 per square meter.

(b) Prove that
$$\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} - \tan^{-1} \frac{8}{19} = \frac{\pi}{4}$$
.

Inter. (Part-1)-A - 2018

Roll No. _____ to be filled in by the candidate.

(For all sessions)

Paper Code

Mathematics (Objective Type) Repakcity.org

Time: 30 Minutes

Marks: 20

NOTE: Write answers to the questions on objective answer sheet provided. Four possible answers A,B,C & D to each question are given. Which answer you consider correct, fill the corresponding circle A,B,C or D given in front of each question with Marker or pen ink on the answer sheet provided.

1-1. In any $\triangle ABC \ rr_1 r_2 r_3 =$ _____

- (D) A

- (A) \triangle^4 (B) \triangle^3 2. With usual notation $\sqrt{\frac{(s-b)(s-c)}{bc}}$ is equal to:
 - (A) $\cos \frac{\alpha}{2}$
- (B) $\sin \frac{\alpha}{2}$

- (D) $\sin \frac{\gamma}{2}$

- 3. $\cos^{-1}(-x)$ is equal to:
 - (A) $\frac{\pi}{2} \sin^{-1} x$ (B) $\frac{\pi}{2} + \sin^{-1} x$
- (D) $\pi \cos^{-1} x$

4: Solution of the equation $\tan x + 1 = 0$ is:

(A)
$$\left\{\frac{3\pi}{4} + n\pi\right\}$$
 (B) $\left\{\frac{\pi}{4} + n\pi\right\}$

(D) $\{2\pi + n\pi\}$, when $n \in \mathbb{Z}$

- 5. If z = a + ib, what is the value of $\cos \theta$?

- 6. A function $f: A \rightarrow B$ is surjective if:
 - (A) Range f = A
- (B) Range f = B
- (C) Range $f \neq B$
- (D) Range $f \neq A$

- 7. Determinant of any unit matrix has value:
 - (A) Greater than 1
- (B) less than 1
- (C) 1

(D) zero

- 8. A square matrix A is skew -symmetric if A^r is equal to:
 - (A) A

(B) -A

- (C) A'
- (D) A^2

- 9. The discriminant of $ax^2 + bx + c = 0$, $a \ne 0$ is:
 - (A) $b^2 + 4ac$ (B) $4ac b^2$
- (D) $a^2 4ac$

 $x^{2} + 1$

11. $\overline{O(x)}$ will be improper fraction if

(A) Degree of Q(x) = 2

(B) Degree of Q(x) = 3

(C) Degree of Q(x) = 4

(D) Degree of Q(x) = 5

12. $\sum_{i=1}^{n} K_i$ is equal to:

- (A) $\frac{n+1}{2}$

- (C) $\frac{n(n+1)}{2}$
- (D) $\frac{n(n-1)}{2}$

13. The geometric mean between $^{-2i}$ and 8i is:

(A) ±1

(B) ± 2

(C) ± 3

(D) ± 4

14. If A and B are mutually exclusive events, then $P(A \cup B)$ is equal to

- (D) $P(A) \cap P(B)$

Please visit for more data at: www.pakcity.org

(D) 0

(D) T_5

(A) 8 (B) 12 (C) P(AB)16. In the expansion of $(x+x)^n$, middle term is:

(A) T_4 (B) T_6

(A) 2"

(B) 2ⁿ⁺¹

- (C) 2^{n-1}
- (D) 3"

18. An angle in the standard position whose terminal side falls on x-axis or y-axis is:

- (A) General angle
- (B) coterminal angle
- (C) Quadrantal angle
- (D) acute angle

19. $\cos(\pi + \theta)$ is equal to:

- (A) $\sec \theta$
- (B) $-\cos\theta$

- (C) $\cos \theta$
- (D) $-\sec\theta$

- (A) (-1.1)
- (B) [-1,1]

- (c) [-1,1)
- (D) (-1.1]

Inter - (Part-I) -A-2018 (For all sessions)

Mathematics

(Essay Type)

Time: 2:30 Hours

Section -I

2. Write short answers of any eight parts from the following.

2x8=16

Marks: 80

i. Separate into real and imaginary parts
$$\frac{i}{1+i}$$

ii. Simplify
$$\left(\frac{-1}{2} - \frac{\sqrt{3}}{2}i\right)^3$$

- iii. Write the converse and inverse of $q \rightarrow p$.
- Define the terms proper and improper subsets with example.

v. Find inverse of $\begin{bmatrix} -2 & 3 \\ -4 & 5 \end{bmatrix}$

vi. Differentiate between I_n to and on to function.

vii. For a square matrix A, |A| = |A'|.

- viii. What is Rank of matrix? Explain with example.
- ix. Solve $15x^2 + 2ax a^2 = 0$ by quadratic formula.
- x. At α β are roots of $3x^2 2x + 4 = 0$, find $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.
- xi. Does the set $\{0,-1\}$ possess closure property w.r.t "Addition" and "multiplication"?
- xii. Show that roots of equation $(p+q)x^2 px q = 0$ are rational.
- 3. Write short answers of any eight parts from the following.

- i. Resolve into partial fractions (12-1).
- ii. If $y = 1 + \frac{x}{2} + \frac{x^2}{4} + \dots \infty$, show that $x = \frac{2(y-1)}{y}$.

iii. Prove that $\sum_{i=1}^{n} K = \frac{n(n+1)}{2}$

iv. Find n, if $\stackrel{n}{P}_2 = 30$

v. Find *n*, if $C_{10} = \frac{12 \times 11}{2!}$.

- Define the probability.
- vii. If 5 and 8 are arithematic means between a and b find a and b.
- viii. Find 12th term of Harmonic progression $\frac{1}{3}$, $\frac{2}{9}$, $\frac{1}{6}$,
- ix. In how many ways 4 keys be arranged on a circular key ring?
- x. Prove the formula $1+3+5+...+(2n-1)=n^2$ for n=1,2.
- xi. Find the term involving x^4 in the expansion of $(3-2x)^7$
- xii. Use binomial theorem, find the value to three decimal places $(1.03)^{\frac{1}{3}}$.
- 4. Write short answers of any nine parts from the following.

2x9=18

i. Verify
$$2\sin 45^0 + \frac{1}{2}\cos ec 45^0 = \frac{3}{\sqrt{2}}$$
. ii. Prove that: $\frac{2\tan \theta}{1 + \tan^2 \theta} = 2\sin \theta \cos \theta$.

ii. Prove that:
$$\frac{2\tan\theta}{1+\tan^2\theta} = 2\sin\theta\cos\theta$$

iii. Prove that
$$\tan(45^{\circ} + A)\tan(45^{\circ} - A) = 1$$

iv. Prove that:
$$\frac{\sin 2\alpha}{1 + \cos 2\alpha} = \tan \alpha$$

vi. Prove that
$$\gamma = (s-a)\tan\frac{\alpha}{2}$$
.

vii. Prove that
$$\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{1}{5} = \tan^{-1} \frac{9}{19}$$

viii. Solve
$$\sin x + \cos x = 0$$
.

ix. Solve the trigonometric equation
$$\sec^2 \theta = \frac{4}{3}$$
.

xi. If
$$\alpha$$
, β be the angle of a triangle ABC then prove that $\cos\left(\frac{\alpha+\beta}{2}\right) = \sin\frac{\gamma}{2}$.

Find the smallest angle of
$$\triangle ABC$$
, when $a = 37.34$, $b = 3.24$, $c = 35.06$.

Find area of triangle ABC given three sides
$$a = 18$$
, $b = 24$, $c = 30$.

Section -II

Note: Attempt any three questions from the following.

10x3=30

- (a) Convert into logical form and prove by truth table of $(B) = A' \cup B'$.

$$x_1 + 4x_2 + \lambda x_3 = 0, 2x_1 + x_2 - 3x_3 = 0, 3x_1 + \lambda x_2 - 4x_3 = 0$$

(b) Find the value of
$$\lambda$$
 if given system has non-trivial solution
$$x_1 + 4x_2 + \lambda x_3 = 0, 2x_1 + x_2 - 3x_3 = 0, 3x_1 + \lambda x_2 - 4x_3 = 0$$
(a) If α , β are the roots of $x^2 + px - p - c = 0$, then prove that: $(1 + \alpha)(1 + \beta) = 1 - C$.

(b) Resolve into partial fraction
$$\frac{x^2 + a^2}{(x^2 + b^2)(x^2 + c^2)(x^2 + d^2)}$$
(a) The sum of 9 terms of a A.P is 171 and its eighth term is 31. Find the series.

(b) If
$$x$$
 is very nearly equal 1 then prove that: $px^p - qx^q = (p-q)x^{p+q}$.

8. (a) Find the value of remaining trigonometric function of
$$\sin \theta = -\frac{1}{\sqrt{2}}$$

and the terminal arm of the angle is not in quad III.

(b) Prove that:
$$\frac{\sin 3\theta}{\cos \theta} + \frac{\cos 3\theta}{\sin \theta} = 2 \cot 2\theta$$

9. (a) Prove that:
$$r_1 + r_2 + r_3 - r = 4R$$

(b) Prove that:
$$\sin^{-1} \frac{3}{5} + \sin^{-1} \frac{8}{17} = \sin^{-1} \frac{77}{85}$$
 pakcity.org