Paper Code Number: 2197		2024 (1st-A) INTERMEDIATE PART-I (11 th Class)		Roll No:			
MA	THEMATICS PA	APER-I GROU					
TIM	E ALLOWED: 30		OBJEC'		XIMUM MAR	r - saverarous o	
Q.No	.1 You have four	choices for each object that bubble in front of t	ive type question	as A, B, C and	D. The choice wheet. Use mark	nich you think er or pen to	
	fill the bubbles	s. Cutting or filling two	or more bubbles	will result in ze	ro mark in that	question.	
S.#	QUE	STIONS	A	<u> </u>	C	υ	
1	Inverse of square m	atrix exists if it is:	Singular	Non-singular	Null	Symmetric	
2	If A is skew symm	tetric, then A^2 will be	Symmetric	Skew symmetric	Hermitian	Skew Hermitian	
3	Product of roots of	$x^2 - 5x + 6 = 0$ is:	-6	6	5	-5	
4	Roots of equation complex if:	$cx^2 + ax + b = 0 \text{ are}$	$b^2 - 4ac < 0$	$c^2 - 4ab < 0$	$a^2 - 4bc < 0$	$a^2 - 4ac < 0$	
5	$\frac{1}{x^3 + 1} = \frac{1}{x + 1} + {x^2}$	-x+1	Bx + c	В	C	B+C	
	(Numerator of x^2	-x+1)				260	
6	Next term of 1, 3, 1	2, 60, is:	120	180	240 3n-3	360	
7	General term of -	2, 1, 4, 7, is:	3 <i>n</i> −2 ●	3n-4	3n-3	3n – 5	
8	A die is rolled, prob on top are greater th		$\frac{1}{2}$	$\frac{1}{3}$	1/4	$\frac{1}{6}$	
9	Sum of odd coefficient of $(1+x)^4$ is:	ients in expansion	8	16	18	6	
10	-1035° is cotermi	nal with	60°	30°	45°	35°	
11	$\cos(\alpha+\beta)-\cos(\alpha+\beta)$	$(\alpha - \beta) =$	$-2\cos\alpha\cos\beta$	$2\cos\alpha\cos\beta$	$2\sin\alpha\sin\beta$	$-2\sin\alpha\sin\beta$	
12	Period of $\sec x$ is:			2π	3π	$\frac{\pi}{2}$	
13	$\sqrt{\frac{s(s-a)}{bc}} = \underline{\hspace{1cm}}$		cos $\frac{\alpha}{2}$	$\sin \frac{\alpha}{2}$	$\tan \frac{\alpha}{2}$	$\cot \frac{\alpha}{2}$	
14	$\tan[\tan^{-1}(-1)] = \frac{1}{2}$		pakcity.ord	-1	$\frac{\pi}{4}$	$-\frac{\pi}{4}$	
15	$\sin x \cos x = \frac{\sqrt{3}}{4},$	then $x = $	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	
16	$3x + y^2i = 1 - 2i^2$, t	hen value of x is:	$\frac{1}{3}$	1	3	Zero	
17	If $z = \sqrt{3} + i$, then	z =	4	$\sqrt{3}-1$	$-\sqrt{3}+i$	2	
18	Inverse of $p \rightarrow q$	is	$\sim p \rightarrow \sim q$	$\sim q \rightarrow \sim p$	$\sim q \rightarrow p$	$q \rightarrow \sim p$	
19	Set A contains 4 el of elements in its po	lements, then number ower set $P(A)$:	8	12	16	4	
20	$\{1, -1\}$ is group wi		Addition	Subtraction	Square root	Multiplication	
			13(C	bi)(公公公公)-2	024(1st-A)-22000	(MULTAN)	

TIME	CALLOWED: 2.30 Hours SUBJECT	CTIVE		MAXIMUM I	MARKS: 80
NOT	E: Write same question number and its parts number	on ansv	ver book,	as given in the q	uestion paper.
2. At	SECTION SECTION SECTION	V-1		8 7	2 = 16
(i)	Simplify $(2,6) \div (3,7)$	(ii)	Separate in	nto real and imagin	
(iii)	$\forall z \in C$, prove that $ -z = z = \overline{z} = -\overline{z} $	(iv)		ultiplicative invers	
(v)	Express $\{x \mid x \in N \land x \le 10\}$ in descriptive and tabular for	m.	,		
(vi)	Show $B-A$ by Venn diagram when $A \subseteq B$	(vii)	Find x a	and y if $\begin{bmatrix} x+3 \\ -3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 3y - 4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$
(viii)	If $A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$, $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find the values of a and b .	(ix)	Without ex	kpansion show that	$\begin{bmatrix} 1 \\ 3y - 4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = 0$
(x)	Find roots of the equation $5x^2 - 13x + 6 = 0$ by using quad-	ratic for	mula.		
(xi)	Find four 4 th roots of unity.	(xii)		equation $4^x = \frac{1}{2}$	
3. Att	empt any eight parts.	L			2 = 16
(i)	Define Rational fraction.				
(ii)	Write in to partial fractions $\frac{8x^2}{(x^2+1)^2(1-x^2)}$ without finding	constan	ts.		
(iii)	Write the first four terms of the sequence $a_n = (-1)^n (2n-3)$				
(iv)	How many terms are there in A.P in which $a_1 = 11$, $a_n = 6$				
(v)	Sum the series $1+4-7+10+13-16+19+22-25+$		to 3n term	ns.	
(vi)	Find the sum of the infinite series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$				
(vii)	How many signals can be made with 4-different flags when any	numbe	r of them ar	e to be used at a ti	me?
(viii)	If ${}^{n}C_{8} = {}^{n}C_{12}$, find n .		(0)		
(ix)	Determine the probability of getting 2 heads in two successive	tosses o	fa balanced	coin.	
(x)	Prove $2+6+18+$ $+2\times 3^{n-1}=3^n-1$ for $n=1$,	2	25)		
(xi)	Calculate (21) ⁵ by means of Binomial theorem.	90	(xii)	Expand $(1+x)$	$\frac{-1}{3}$ up to 4 terms.
	empt any nine parts.	****		9	× 2 = 18
(i)	In a right angle triangle ABC , prove that $\sin^2\theta + \cos^2\theta$:	= 1			
(ii)	Prove that $\cot^2 \theta - \cos^2 \theta = \cot^2 \theta \cos^2 \theta$		(iii)	Prove that sin 3	$\alpha = 3\sin\alpha - 4\sin^3\alpha$
(iv)	Express the product as sum or difference $\sin 12^\circ \sin 46^\circ$	3	(v)	Prove that $\tan \left(\frac{2}{4} \right)$	$\left(\frac{\pi}{4} - \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right) = 0$
(vi)	Define period of a trigonometric function.	1	(vii)	Find the period o	$f \cos ec \frac{x}{4}$
(viii)	Draw the graph of $y = \tan x$ for $-\pi \le x \le \pi$.				
(ix)	Find area of triangle ABC, if $a = 4.33$, $b = 9.25$, $\gamma =$	56°44	I'		
(x)	Find R , if sides of triangle ABC are $a = 13$, $b = 14$, c	= 15	(xi)	Show that $\frac{1}{2rR}$	$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$
(xii)	Without using calculator, show that $\cos^{-1} \frac{4}{5} = \cot^{-1} \frac{4}{3}$		(xiii)	Find the solution	of $\sin x \cos x = \frac{\sqrt{3}}{4}$
NOTE	SECTION	II 9	//		V 10 - 20
NOTE: 5.(a)	Attempt any three questions.	ond -	_ 2	3	× 10 = 30
J.(u)	Use synthetic division to find the values of p and q if $x+1$	and X	-2		
(b)	are the factors of the polynomial $x^3 + px^2 + qx + 6$ Use matrices to solve the system of equations $x = 2x + x = 6$	_ 1 ^	Day 24	24 6 2	2
6.(a)	Use matrices to solve the system of equations $x_1 - 2x_2 + x_3 = \frac{1}{1}$	4, 2	$-3x_1 - 3x_2 +$	$2x_3 = -0, 2x_1 +$	$2x_2 + x_3 = 3$
	Resolve into partial fractions $\frac{1}{(x-1)^2(x+1)}$				
(b) 7.(a)	Show that the sum of n A.Ms. between a and b is equal	to n	times their	A.M.	
(b)	Find values of n and r when ${}^{n}C_{r} = 35$, ${}^{n}P_{r} = 210$. 27	0n+l 1	for all many many	hua intagan- sa
8.(a)	Using Mathematical induction to show that $1+2+2^2+$ Prove without using calculator $\sin 19^o \cos 11^o + \sin 71^o \sin 11^o$	1	= 2 -1	ior all non-negati	ive integers n.
(b)	Solve the triangle ABC in which $a = 36.21$, $c = 30.14$ and	2	°10′.		
9.(a)	Prove that $\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \tan \theta + \sec \theta$ (b)			$\sin^{-1}\frac{5}{13} + \sin^{-1}\frac{1}{6}$	$\frac{6}{5} = \frac{\pi}{2}$
11th	Class Mathematics Subjective Paper Group 1 Mult	an Bo	ard 202/1	3-2024(1st-A)-22	2000 (MIII.TAN)

Paper Code 2024 (1st-A) Number: 2198 INTERMEDIATE PART-I				1 th Class)	Roll No:	
MATHEMATICS PAPER-I GROUP-II						
TIM	E ALLOWED: 30		OBJEC		MAXIMUM MAI	
Q.No	is correct, fill t	choices for each object hat bubble in front of Cutting or filling two	that question nu	mber, on bub	ble sheet. Use marl	ker or pen to
S.#		STIONS	A	В	С	D
1	Sum of binomial co		2 ⁿ	n	2 <i>n</i>	n ²
2	Trigonometric ratio	of -330° is same as:	60"	30°	45"	90"
3	$\frac{3\pi}{2} + \theta$ lies in quad	drant:	l st	2 nd	3 rd	4 th
4	Range of $y = \sin x$	is:	(-1, 1)	[-1, 1)	[-1, 1]	(-1, 1]
5	In right triangle, no	angle is greater than:	45°	80°	60°	90"
6	Domain of $y = \sin x$	$^{-1}(x)$ is:	$-1 \le x \le 1$	$-1 \ge x \ge 1$	$1 \qquad -1 < x < 1$	$0 \le x \le 1$
7	If $cox x = \frac{1}{\sqrt{2}}$, the	en reference angle is:	$\frac{\pi}{6}$	$\frac{\pi}{4}$	3	$\frac{\pi}{2}$
8	Every non-recurring decimals represents:		Rational number	Natural number	Irrational number	Whole number
9	The multiplicative in number (0, 1) is:	nverse of complex	(0, -1)	(0,1)	(-1, 0)	(0,0)
10	How many inverse of to each element of g		At least two	Two	At least one	Only one
11	Set containing elemented by:	ents A or B is	ANB	$A \cup B$	$A \subseteq B$	$B \supseteq A$
12	$p \rightarrow q$ is called con	overse of:	$\sim p \rightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$\sim q \rightarrow p$
13	The inverse of squaris:	re matrix exists if A	Singular	Non-singula	r Symmetric	Rectangular
14	If A is a square mathem $ KA $ equals:	trix of order 2 × 2	Accords Velifons transfer Law Melen	$\frac{1}{K} A $	$K^2 A $	2 <i>K</i> <i>A</i>
15	If $4^x = \frac{1}{2}$ then x	is equal to:	nakcity ord	-2	$\frac{1}{2}$	$\frac{1}{4}$
16	The roots of the equare:	$ation x^2 - 5x + 6 = 0$	2, -3	-2, -3	2, 3	-2, 3
17	The fraction $\frac{x-3}{x+1}$	is:	[mproper	Proper	Identity	Equivalent
18	G.M between $\frac{1}{a}$ and	$\frac{1}{b}$ is:	$-\frac{1}{ab}$	$\pm\sqrt{\frac{1}{ab}}$	ab	$-\sqrt{ab}$
19	$\sum_{k=1}^{n} 1$ is equal to:		1	n^3	n 🌘	n^2
20	$\frac{3!}{0!}$ is equal to:		3	.6	<u>α</u>	12
1			15//	11:1/24242424	7)-2024(1 st -A)-17000	(MIII TAN)

TIM	E ALLOWED: 2.30 Hours E: Write same question number and its parts	number		er book, as		MUM MARKS: 80 the question paper.
2 4		ECTIO	N-I			9 v 2 16
(i)	ttempt any eight parts. Simplify (2, 6) ÷ (3, 7)	(ii)	Find mul	tiplicative in	verse of	$8 \times 2 = 16$ $a + ib$
(iii)	Show that for all $z \in C$, $z\overline{z} = z ^2$	(iv)		$\frac{3}{\sqrt{6}-\sqrt{-12}}$	iverse or	a pakcity.org
(v)	For $A=\{1, 2, 3, 4\}$, state the domain and range of	of relatio				
(vi)	Define Semi group.	(vii)		$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$, find	A^{-1}	organis de la composition della composition dell
(viii)	If $A = \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$, then show that $4A - 3A = A$	(ix)	If $A = \begin{bmatrix} - \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ 2 & -2 & 1 \end{bmatrix},$	then find	A_{12}, A_{22}
(x)	Discuss the nature of roots of $2x^2 + 5x + 1 = 0$	(xi)	Evaluate	$(1+\omega-\omega$	2)8	
(xii)	Solve by completing the square $x^2 + 6x - 567 =$	= 0				
	ttempt any eight parts.	-		**************************************		8 × 2 = 16
(i)	Define Identity. Give one example.					
(ii)	Write $\frac{2x-3}{x(2x+3)(x-1)}$ in partial fraction form with	-	_			
(iii)	If $a_{n-3} = 2n-5$, then find <i>nth</i> term of sequence					.Ms. between a and b.
(v)	If $y=1+\frac{x}{2}+\frac{x^2}{4}+\frac{x^2}{4}$, then find the interval in	n which	the series i	s convergen	t.	
(vi)	If $\frac{1}{k}$, $\frac{1}{2k+1}$, $\frac{1}{4k-1}$ are in H.P, then find k .					
(vii)	In how many ways can 4 keys be arranged on a ci	rcular ke	y ring?			
(viii)	Find the number of diagonals of 12 sided figure.					
(ix)	If $P(A) = \frac{1}{2}$; $P(B) = \frac{1}{2}$; $P(A \cap B) = \frac{1}{3}$, then find P			700	<u>)</u>	
(x)	Prove that $4^n > 3^n + 2^{n-1}$ for $n = 2$ and $n = 3$	(xi	Expan	d $3a - \frac{x}{3a}$	by bin	nomial theorem.
(xii)	If x is so small that its square and higher powers	s be negl	lected, ther	show that	$\sqrt{\frac{1-x}{1+x}} = 1$	-x
4. At	tempt any nine parts.	745				9 × 2 = 18
(i)	Prove that $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4} = 2$	20,5	(ii)	Show that	$\frac{1}{1+\sin\theta}$	$+\frac{1}{1-\sin\theta}=2\sec^2\theta$
(iii)	Prove that $\sin(180^{\circ} + \alpha)$. $\sin(90^{\circ} - \alpha) = -\sin \alpha$	$\cos \alpha$	(iv)	Find the va	lue of co	os 105°
(v)	Prove that $\sin(180^{\circ} + \alpha)$. $\sin(90^{\circ} - \alpha) = -\alpha$. Show that $\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta} = 2$. Find the period of tan $4x = -\alpha$.	×	(vi)	Write dom	ain and ra	$\operatorname{enge of } y = \sin x$
(vii)	Find the period of $\tan 4x$		(viii)	Draw the g	raph of	$y = \sin x$ from 0 to π
(ix)	In $\triangle ABC$ if $\beta = 60^\circ$; $\gamma = 15^\circ$; $b = \sqrt{6}$, then if	find a a	and y			
(x)	Find area of $\triangle ABC$ in which $\alpha = 45^{\circ}17'$;			b = 25.4	(xi)	Define inscribed circle
(xii)	Find the value of $\sec \left[\sin^{-1}\left(-\frac{1}{2}\right)\right]$	Accarata Newton's Law Mor	ii) Defi		etric equa	tion. Give one example.
TO TEX		CTION	-11			2 × 10 = 30
	2: Attempt any three questions.	1 1 1 1 1	- V	//		$3 \times 10 = 30$
5.(a)	Find the inverse of $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{bmatrix}$ and show that $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{bmatrix}$	$A^{-1}A = I$	org			
(b)	Prove that $\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$ will have equal roots	oots, if	$c^2 = a^2 m^2$	$+b^2$; $a\neq 0$,	<i>b</i> ≠0	
5.(a)	Resolve $\frac{x^2+1}{x^3+1}$ into partial fractions. (b)	The sum Find the	of three numbers.	umbers in a	n A.P is 2	4 and their product is 440
7.(a) (b)	A number is chosen out of first fifty natural number	rs. What	is probabi	lity that chos	sen numb	er is multiple of 3 or of 5.
(0)	Show that $\left[\frac{n}{2(n+N)}\right]^{\frac{1}{2}} = \frac{8n}{9n-N} - \frac{n+N}{4n}$ when	re n an	d N are n	early equal.		
.(a)	Prove without using calculator that sin19° cos11°	+ sin 71	sin 1 1° = -	1 2		
(b)	Find the area of the triangle ABC , when $\alpha = 35$	°17′, γ	= 45°13′ a	b = 42.1		
(b)	Prove the identity and state the domain of $\theta = \sin^6 \theta$	$\theta + \cos^6$	$\theta = 1 - 3 \sin^2 \theta$	$\theta^2 \theta \cos^2 \theta$		
. 7	Prove that $\tan^{-1}\frac{1}{11} + \tan^{-1}\frac{5}{6} = \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{2}$	156.10			2024(1 st	

11th Class Mathematics Subjective Paper Group 2 Multan Board 2024 15-2024(1st-A)-17000 (MULTAN)

Number: 2191 INTERMEDIATE			E PART-I (11 th	Class)	Roll No:			
_	ATHEMATICS	PAPER-I GF	ROUP-I	lultan	Board-2023	3		
TI	ME ALLOWED:	30 Minutes	OBJECT	OBJECTIVE MAXIMUM MARKS: 2				
	Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question.							
S.#	QUI	ESTIONS	A	В	C	D		
1	The set { 1, -1 } po property under:	ossess closure	Multiplication	Addition	Subtraction	Division		
2	If 'p' is logic state	ement then $p \land \sim p$ is:	Tautology	Absurdit	y Contingency	Conditional		
3		unit matrix has value:	Greater than 1	Less than	1 1	Zero		
4		A is $m \times n$ and order p then order of matrix	$m \times n$	n×m	$m \times p$	$p \times m$		
5	Reciprocal equation when 'X' is replace		-X	$y = \frac{1}{X}$	$\frac{1}{X^2}$	$\frac{1}{X}$		
6	If ω is a cube root $1 + \omega^{28} + \omega^{29}$ is eq		Zero	1	<i>λ</i>	ω^2		
7	$\frac{x^2 + 1}{Q(x)}$ will be prop of $Q(x)$ is equal	er fraction if degree		OFF	2	3		
8	(n+1)th term of a	n A.P. is:	$a_1 + (n - 1)a$	$a_1-(n-1)$	$a_1 + a$	$a_1 - nd$		
9	If A, G, H have the a and b are positive numbers and $G > 0$	e distinct real	b, A, m	G < I	H H>G>A	G>H>A		
10	In how many ways, seated at a round take		23 ENICA		25	26		
11	With usual notation			C,	"C,	″-¹C,		
12	Number of terms in $(1+x)^{2n+1}$, 'n' is p	THE PERSON NAMED IN COLUMN TO PERSON NAMED I	2n + 2 pakciti	2n+1	2 <i>n</i>	3n + 1		
13	In equality $n! > 2^n$	- 1 y/1.	n < 4	n ≥ 4	n = 3	n < 3		
14	$\frac{\pi}{2}$ is an angle:		Acute	Obtuse	Quadrental	Non- quadrental		
15	$\tan(\alpha - 90^\circ)$ is eq	ual to:	$\cot \alpha$	$-\cot \alpha$	$\tan \alpha$	$-\tan \alpha$		
16	Period of $3\sin 3x$ is	pakcity.org	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π		
17	If α , β , γ are and triangle then it must		$\alpha = 90^{\circ}$	β = 90°	$\gamma = 90^{\circ}$	No angle is 90°		
18	If ABC is right tria cosines reduces to:	ngle then law of	Pythagoras theorem	Law of Sines	Area of triangle	Law of tangents		
19	$y = \cos x$ is one to interval:	one function in	$\left[0,\frac{2\pi}{3}\right]$	$[0, 2\pi]$	[0,∞]	[0, π]		
20	If $\cos 2x = 0$ then squadrant is:	solution in first	30°	45°	60°	15°		
			13	(Obj)(★)-2	023(1 st -A)-17000	(MULTAN)		

MATE	EMATICS PAPER-I GROUP-I	2023 (1 -A) ROB NO.
		UBJECTIVE MAXIMUM MARKS: 80
NOTE	Write same question number and its parts number	
		Multan Board-2023 $\frac{1}{8 \times 2 = 16}$
(i)	Simplify as a simple complex number $(5, -4)(-3, -4)$	
(iii)	Write the descriptive and tabular form of $\{x x \in N \land A\}$	$x + 4 = 0$ }
(iv)	For the sets $A = \{1, 2, 3, 4, 5\}, B = \{4, 6, 8, 10\}$	verify the commutative property of intersection.
(v)	Show that the statement $\sim (p \rightarrow q) \rightarrow p$ is a tautolo	gy. If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$, show that $A^4 = I_2$
(vii)	Without expansion show that $\begin{vmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{vmatrix} = 0$	(viii) Find the value of λ if matrix $A = \begin{bmatrix} 4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$ is singular.
(ix)	Solve $x^2 - 2x - 899 = 0$ by completing square.	(x) Reduce $x^4 - 6x^2 + 10 - \frac{6}{x^2} + \frac{1}{x^4} = 0$ to quadratic form.
(xi)	Discuss the nature of the roots of the equation $9x^2 - 1$	2x + 4 = 0
(xii)	Prove that the sum of cube roots of unity is zero.	02.16
3. Att	empt any eight parts.	8 × 2 = 16
(i)	Resolve $\frac{7x+25}{(x+3)(x+4)}$ into partial fractions.	
(ii)	Find the number of terms in A.P if $a_1 = 3$, $d = 7$ and	$a_n = 59$ (iii) Define a geometric progression (G.P).
(iv)	If the numbers $\frac{1}{k}$, $\frac{1}{2k+1}$ and $\frac{1}{4k-1}$ are in harmonic	sequence, find k.
(v)	Find the sum of the infinite G.P, 2, $\sqrt{2}$, 1,	
(vi)	How many terms of the series $-7+(-4)+(-1)+$	amount to 114?
(vii)	How many 3 - digit numbers can be formed by using e	ach one of the digits 2, 3, 5, 7, 9 only once?
(viii)	Find the value of n , when $C_{r} = C_{r}$	(0)
(ix)	If sample space = $\{1, 2, 3, \dots, 9\}$, event $A = \{2, 4\}$	6, 8} and event $B = \{1, 3, 5\}$. Find $P(A \cup B)$
(x)	Use mathematical induction to prove that the formula i	strue for $n = 0$ and $n = 2$ $1+4+7+(3n-2) = \frac{n(3n-1)}{2}$
(xi)	Calculate (2.02) ⁴ be means of binomial theorem.	130
(xii)	If x is so small that its square and higher powers can	be neglected, then show that $\sqrt{1+2x} \approx 1+\frac{3}{2}x$
	(O)	$\sqrt{1-x}$ 2
4. Att	empt any nine parts.	$9 \times 2 = 18$
(i)	What is the length of the arc intercepted on a circle of	radius 14 cms by the arms of a central angle of 45°?
(ii)	Find the values of all the trigonometric functions of 42	Prove that $2\cos^2\theta - 1 = 1 - 2\sin^2\theta$
(iv)	Prove that cos 330° sin 600 + cos 120° sin 150° =	= -1 (v) Prove that $\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} - \sin 11^{\circ}} = \tan 56^{\circ}$
(vi)	Ti 11 - 1 - 6 and 15° with out coloulator	(vii) Write the domain and range of cosecant function.
	Find the value of cos15° without calculator.	ix) With usual notations prove that $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$
(viii)	Find α if $a = 7$, $b = 7$, $c = 9$.	
(x)	Show that $r_3 = s \tan \frac{\gamma}{2}$	Prove that $\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x$
(xii)	Find the solution set of $\sin x \cos x = \frac{\sqrt{3}}{4}$ in [0, 2π]	
(xiii)	Solve the following trigonometric equation $\cot^2 \theta = \frac{1}{3}$	
		CTION-II 3 × 10 = 30
NOTE		3 × 10 = 30
5.(a)	Use matrices to solve the system of linear equations	
(b)	Solve the equations simultaneously $x + y = a + b$;	$\frac{a}{x} + \frac{b}{y} = 2$ pakcity.org
6.(a)	Resolve into partial fractions $\frac{4x^3}{(x^2-1)(x+1)^2}$	
(b)	A die is thrown. Find the probability that the dots on	he top are prime numbers or odd numbers.
7.(a)	Find 'n' so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be harmonic me	an between a and b .
(b)		In be neglected, then show that $\frac{(9+7x)^{\frac{1}{2}}-(16+3x)^{\frac{1}{4}}}{4+5x}\approx \frac{1}{4}-\frac{17}{384}x$
0()		(b) Show that $\tan \alpha + \tan \beta = \sin(\alpha + \beta)$
8.(a)	Find the values of other five trigonometric functions of	f θ , if $\cos \theta = \frac{12}{13}$ (b) Show that $\frac{\tan \alpha + \tan \beta}{\tan \alpha - \tan \beta} = \frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)}$
8.(a)		drant.
9.(a)	Find the values of other five trigonometric functions of and the terminal side of the angle is not in the first quality of the trigonometric functions of and the terminal side of the angle is not in the first quality of the first quality o	

	r Code	2023 (1st-A) L (11 th Closs)	Roll No:	
	ber: 2198 INTERI THEMATICS PAPER-I GR	MEDIATE PART- OUP-II MUIT	an Board		
	E ALLOWED: 30 Minutes	0	BJECTIVE	MAXIMUM M	
Q.No	1.1 You have four choices for each correct, fill that bubble in fro	th objective type quantity	uestion as A, B, C	and D. The choice	e which you think is
	the bubbles. Cutting or filling	two or more bubl	bles will result in	zero mark in that	question.
S.#	QUESTIONS	A	В	C	D
1	If A is a matrix of order 3×1	1 × 1	1 × 3	3×1	3 × 3
	then order of $AA' = $			<mark>&</mark> pa	ıkcity.org 🎥
2	If $b^2 - 4ac < 0$ for a quadratic	Real and	Real and	Complex or	Real and rational
	equation $ax^2 + bx + c = 0$ then nature of the roots is	unequal	repeated	imaginary	
3	Under what condition one root of	p = 0	q = 0	p=1	q = 1
	$x^2 + px + q = 0$ is additive				
	inverse of other.				
4	Partial fractions of	$\frac{Ax+B}{(x-1)^2} + \frac{c}{x+1}$	$\frac{A}{x-1} + \frac{B}{x+1}$	$\frac{Ax}{(1)^2} + \frac{B}{(1)^2}$	$\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$
	$\frac{1}{(x-1)^2(x+1)}$ are of the type:	$(x-1)^{*}$ $x+1$	x-1 $x+1$	$(x-1)^{x}$ $x-1$	$x-1 (x-1)^{-1} x+1$
	$(x-1)^2(x+1)$				
5	Fifth term of geometric progression(G.P) 3, 6, 12, is:	24	V. 248	18	30
		(1)	72	ACUSTOS STATES	5 72
6	Sum of <i>n</i> term of the series	$\frac{n(n+1)}{2}$	n(n+1)	6	$\left[\frac{n(2n+1)}{2}\right]^2$
	$\sum_{i=1}^{n} k^2$ is:	2			2
	k = 1	THE ON		7.0	
7	If ${}^{n}C_{10} = \frac{12 \times 11}{2!}$ then $n = $	(1) 图 (1)	12/28/17	11 .á	13
	2.	V.		Arr. All	
8	If A and B are two independent events then $P(A \cap B) =$	P(A)+P(B)	P(A)P(B)	CE(M) - II (II)	$P(A) + P(B) - P(A \cup B)$
9	The sum of coefficients in the binomial expansion equals to .	20-	2"	2 ²ⁿ⁻¹	2"
10	Third term in the expansion of	2x	-2x	$4x^2$	$-8x^{3}$
11	$(1+2x)^{-1}$ is:	139	A	N	
''	which the arm of a central and	35 cm	-36 cm	30 cm	32 cm
	of measure 1 radian ent off an analy				
12	of length 35cm is .	2053α	$\sin 3\alpha$	$\cos 2\alpha$	$\sin 2\alpha$
	$3\sin\alpha - 4\sin^3\alpha$	2000	Sin 3α -∞ <y<+∞< td=""><td>1/10</td><td></td></y<+∞<>	1/10	
13	The range of the function $y = \sec x$ is:	1 ≥ y ≤ 1	DEWCKYCHW (y ≤ 1	$y \ge 1$ or $y \le -1$
14	If measures of the side, of	8.125	10.5		14
	triangle ABC are a $b = 14$, $c = 15$ then r	0.125	10.5	4	14
15	With usual notations the circum-	abc	41		5
"	radius $R = $	400	ahc	<u> </u>	$\frac{3}{4}$
16	$\sin^{-1} A + \sin^{-1} B =$	$\frac{abc}{4\Delta}$ $\sin^{-1}\left(A\sqrt{1+B^2}+B\sqrt{1+A^2}\right)$	$\frac{4\Delta}{abc}$ $\sin^{-1}\left(A\sqrt{1-B^2}+B\sqrt{1-A^2}\right)$	$\frac{S}{\sin^{-1}\left(A\sqrt{1+B^2}-B\sqrt{1+A^2}\right)}$	$\frac{\Delta}{\Delta}$ $ \sin^{-1}\left(A\sqrt{1-B^2}-B\sqrt{1-A^2}\right) $
17					
17	Solutions of the equation $\sqrt{3}$	π/5π/	2#/ 4#/	47/57/	$\pi/4\pi/$
	$\sin x = -\frac{\sqrt{3}}{2}$ which lie in	$\frac{\pi}{6}, \frac{5\pi}{6}$	$2\pi/3$, $4\pi/3$	$4\pi/3$, $5\pi/3$	$\frac{\pi}{3}, \frac{4\pi}{3}$
	$[0, 2\pi]$ are:				
18	If $x + iy = r\cos\theta + ir\sin\theta$	$\tan^{-1}\frac{y}{x}$	tan <u>y</u>	tan x	tan ⁻¹ x
	be the polar form of complex number then angle $\theta = $	x	x	у	У
19	A compound statement of the	Conjunction	Disjunction	Conditional	biconditional
	form if p then q is called:	- Still and their	2 isjunotion	Conditional	- Citorianional
20	In a square matrix A all elements	Lower	Upper	Symmetric	Singular matrix
	below the principal diagonal are	triangular	triangular	matrix	
	zero is called:	matrix	matrix		
			15(Ohi)(+++	+)-2023(1st-A)-1	5000 (MIII.TAN)

Multan Board-2023

	INTERMEDIATE PART-I (11th Class)		023 (1 st -A) Roll No:
MAT	HEMATICS PAPER-I GROUP-II		ZON THE
		BJECTIV	E MAXIMUM MARKS: 80
NOTI	E: Write same question number and its parts num	ber on an	swer book, as given in the question paper.
		TION-I	
	ttempt any eight parts.		8 × 2 = 16
(i)	State trichotomy property and transitive property of i		s of real numbers. Define Overlapping sets.
(ii)	Separate $\frac{i}{1+i}$ into real and imaginary parts.	(iii)	
(iv)	Construct truth table for statement $(p \land \neg p) \rightarrow q$	(v)	Define semi-group.
(vi)	If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$, show that $A^4 = I_2$	(vii)	Write two properties of determinants.
(viii)	Define Skew Hermitian Matrix.	(ix)	Solve the equation $x^{\frac{1}{2}} - x^{\frac{1}{4}} - 6 = 0$
(x)	Evaluate $(1 + \omega - \omega^2)^8$ (xi) Use factor	r theorem	to determine if $x - 2$ is a factor of $x^3 + x^2 - 7x + 1$
(xii)	If α and β are the roots of $3x^2 - 2x + 4 = 0$ find	the value	βα
3. At	ttempt any eight parts.		8 × 2 = 16
(i)	Define Proper Rational Fraction.		
(ii)	Which term of the A.P 5, 2, -1, is -85?		
(iii)	If 5, 8 are two A.Ms between a and b, find a an		1.2.4
(iv)	Sum the series $3 + 5 - 7 + 9 + 11 - 13 + 15 + 17 - 1$		
(v)	If A, G and H are arithmetic, geometric and harmonic		
(vi)	Find the sum of n terms of the series whose nth term	$n ext{ is } n^2 + 4$	4n+1.
(vii)	Prove from the first principle that ${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1}$		
(viii)	How many permutations of the letters of the word PA the first letter in each arrangement?	NAMA c	an be made, if P is to be
(ix)	If ${}^{n}C_{8} = {}^{n}C_{12}$, find n .	Ship	N
(x)	Use mathematical induction to prove 2 + 4 + 6	+2n	= n(n+1) for $n = 1, 2$
(xi)	Expand by using binomial theorem $(a + 2b)^5$	(xii)	Expand $(1-x)^{\frac{1}{2}}$ up to three terms.
4. At	tempt any nine parts.		$9 \times 2 = 18$
(i)	Find x, if $\tan^2 45^\circ - \cos^2 60^\circ = \cosh 45^\circ \cos 45^\circ$ tan	60° (ii)	Prove that $\sec^2 A + \cos ec^2 A = \sec^2 A \cos ec^2 A$
(iii)	Prove that $\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta} = 2\sec^2\theta$		If α , β , γ are the angles of a triangle ABC, then prove that $\tan (\alpha + \beta) + \tan \gamma = 0$
(v)	Prove that $\frac{1}{1+\sin\theta} + \frac{1}{1+\sin\theta} = \frac{2\sec^2\theta}{\sqrt{2}}$ Prove that $\sin(45^\circ + \alpha) = \frac{1}{\sqrt{2}}(\sin\alpha + \cos\alpha)$	April 10 A	(vi) Prove the identity $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$
(vii)	· -	a of triang	le ABC, given three sides, $a = 18$, $b = 24$, $c = 30$
(ix)			ve a post of 6000m away from anti-aircraft gun
()			e of depression of 27°. Find the height of the plane.
(xi)	, , , , , , , , , , , , , , , , , , , ,		olutions of the equation $\cot \theta = \frac{1}{\sqrt{3}}$, θ lie in $[0, 2\pi]$
(xiii)			
(XIII)		ION-II	
NOTE		10N-11	$3 \times 10 = 30$
NOTE		(b)	
5.(a)	Find the multiplicative inverse of $A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \\ 1 & 0 & 2 \end{bmatrix}$	(6)	the roots of polynomial $x^3 - 4x^2 + ax + b$
6.(a)	Resolve into partial fractions $\frac{x^2 + 1}{x^3 + 1}$		→ pakcity.org
(b)	There are twenty chits marked 1, 2, 3,, 20 a chit, the number written on which is a multiple of 4		
7.(a)	Find n A.M's between α and b .		
(b)	Use mathematical induction to prove that $1 + 2 + 4$	++	$2^{n-1} = 2^n - 1$
8.(a)	Prove the identity $\sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \theta$ co		
(b)	If $\alpha + \beta + \gamma = 180^{\circ}$ prove that $\cot \beta \cot \alpha + \cot \beta$		$\cot \alpha \cot \gamma = 1$
9.(a)	Prove that $r_1 + r_2 + r_3 - r = 4R$		
- ·(··)	11070 that 11 12 113 11 - 11	F	Prove that $\sin^{-1} \frac{77}{85} - \sin^{-1} \frac{3}{5} = \cos^{-1} \frac{15}{17}$
			15-2023(1st-A)-15000 (MULTAN)

Paper Co	ode	2021 (Roll No:		
Number	: 2197	INTERMEDIATE PA				
MATH	EMATICS PAP	ER-I Multan Boai	rd-2021	TIME ALLO	OWED: 30	Minutes
GROU		OBJECTIV		MAXIMUN	MARKS:	20
Note: Y	ou have four choices	for each objective type qu	estion as A, B	, C and D. Th	e choice whi	ch you
t	hink is correct, fill th	at bubble in front of that q	uestion numb	er, on bubble	sheet. Use n	narker
0	r pen to fill the bubb	les. Cutting or filling two	or more bubb	les will result i	n zero mark	in that
	question. No credit wi his sheet of OBJECT	ill be awarded in case BUB	BLES are not	filled. Do no	t soive quest	ion on
			61	· 6		
(1)	The product of roots of	of the equation $3x^2 + 5x = 0$	₩ ракс	ity.org 🐲	•	
		(B) $\frac{5}{2}$	(C) 5		(D) 0	
	(A) $\frac{-5}{3}$	3	` ,		(D) 0	
(2)	(A) Identity	true for all values of unknov (B) Algebric equation	(C) Algel			
(3)	The A.M between 1	$-x + x^2$ and $1 + x + x^2$ is:	(A) $x + 1$	(B) $x^2 + 1$	(C) $\frac{x+1}{2}$	(D) $\frac{x+1}{2}$
(4)	G.M between 2 and 8		(A) 5	(B) 8	(C) ± 4	(D) 16
(5)	The sum of an infinite	e geometric series with $ r $ <	1, where firs	t term is a and	r is commo	n ratio:
(5)						
	(A) $\frac{a}{1+r}$	(B) $\frac{a}{1-r^2}$	(C) - 1	<u>a</u> - r	$(D) \frac{1}{1+r^2}$	
(6)	If $^nP_2 = 30$, then n	=	(A) 6	(B) 4	(C) 5	(D) 8
	-	expansion of $(a + x)^n$ is:		200		
(.)		(B) $\binom{n}{r} a^r x^n$	W 189	$a^n x^{n-r}$	(D) $\binom{n}{r}a$	$n x^n$
(9)	$\frac{5\pi}{4}$ radian =		360°	(B) 225°	(C) 335°	(D) 270°
	7		3) "			(D) 1
, ,	$(\cos 2\theta)^2 + (\sin 2\theta)^2$	= 90,11		(B) 2	(C) 4	(D) 1
(10)	$\sin(180^0 + \alpha) =$	Wall all	$(A) - \cos \alpha$			(D) $-\sin \alpha$
(11)	Period of $\tan \frac{x}{3}$ is:		(A) π	(B) $\frac{\pi}{2}$	(C) $\frac{\pi}{3}$	(D) 3π
(12)	In any triangle ABC	with usual notation, $r_1 = \Lambda$				
	(A) $\frac{\Delta}{s-a}$	(B) $\frac{\Delta}{s-b}$	$(C) - \frac{1}{s}$	Δ	(D) $\frac{\Delta}{s}$	
	s-a	s-b	S	- c	S	
(13)	Circum radius $R =$			0 3		
	(A) $\frac{\Delta}{abc}$	(B) $\frac{\Delta}{s}$	pakcityc) 4	$\frac{abc}{4\Delta}$	(D) $\frac{\Delta}{s-a}$	
(14)	$\cos\left(\sin^{-i}\frac{1}{\sqrt{2}}\right) =$		$(A) \ \frac{1}{\sqrt{2}}$	(B) $\frac{1}{2}$	(C) $\frac{\pi}{4}$	(D) $-\frac{\pi}{4}$
(15)	If $\sin x = \frac{\sqrt{3}}{2}$ and	$x \in [0, 2\pi]$ then $x =$				
	(A) $\frac{5\pi}{3}, \frac{4\pi}{3}$	(B) $\frac{\pi}{4}$, $\frac{3\pi}{4}$	(C) $\frac{7}{3}$	$\frac{\pi}{3}, \frac{2\pi}{3}$	(D) $\frac{\pi}{6}$, $\frac{5\pi}{6}$	<u>r</u>
(16)	(A) $A \cap B = A$	n empty disjoint sets then: (B) $A \cap B = B$	(C) A	$A \cap B = \phi$	(D) A∩B	≠ φ
(17)	If $z = -2 + 3i$, the (A) $-2 - 3i$	(B) $2 - 3i$	(C) -	-2 + 3i	(D) $2 + 3i$	
(18)	If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the		à	_	-	, 7
	(A) $\begin{bmatrix} -a & -b \\ c & d \end{bmatrix}$	(B) $ \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} $		-		
(19)	If $ A = 5$ then $ A $	' =	(A) $\frac{1}{5}$	(B) 0	(C) -5	(D) 5
(20)		ourth roots of unity is:	(A) 0	(B) 1	(C) -1	(D) 4
7.1 C.		12/01	ハイアイアイアイ	Z) 2021(A)-25	OOO OMILL	(AN)

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I

TIME ALLOWED: 2.30 Hours

GROUP-I

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.

- (i) Find the modulus of the complex number $1 i\sqrt{3}$
- (ii) Simplify $(2, 6) \div (3, 7)$
- (iii) Name the property used in the following equation a(b-c) = ab ac
- (iv) Write two proper subsets of the set $\{a, b, c\}$
- (v) Construct the truth table of the following statement $(p \land \sim p) \rightarrow q$
- (vi) Find the solution of the linear equation xa = b, where a and b belong to group G.

(vii) Find x and y if
$$\begin{bmatrix} 2 & 0 & x \\ 1 & y & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & x & y \\ 0 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 4 & -2 & 3 \\ 1 & 6 & 1 \end{bmatrix}$$

(viii) Without expansion verify
$$\begin{vmatrix} 1 & a^2 & \frac{a}{bc} \\ 1 & b^2 & \frac{b}{ca} \\ 1 & c^2 & \frac{c}{ab} \end{vmatrix} = 0$$

- (ix) Solve the equation by using the quadratic formula $16x^2 + 8x + 1 = 0$
- (x) Evaluate $(1 \omega \omega^2) (1 \omega + \omega^2)$
- (xi) Find the inverse of matrix $\begin{bmatrix} -2 & 3 \\ -4 & 5 \end{bmatrix}$ EDUCATION
- (xii) If α , β are roots of the equation $x^2 px p c = 0$ then prove that $(1 + \alpha)(1 + \beta) = 1 c$
- Attempt any eight parts.

- $8 \times 2 = 16$
- (i) Resolve $\frac{1}{(x+1)^2(x^2-1)}$ into partial fractions without finding the constants.
- (ii) Resolve $\frac{4x^2}{(x^2+1)^2(x-1)}$ into partial fractions without finding constants.
- (iii) If $a_{n-3} = 2n 5$ find the *nth* term of the sequence.
- (iv) Find A.M. between x 3 and x + 5
- (v) If 5 is harmonic mean between 2 and b, Find b.
- (vi) Find the 12th term of the harmonic sequence $\frac{1}{3}$, $\frac{2}{9}$, $\frac{1}{6}$, ----
- (vii) Find the value of *n* if ${}^{n}p_{4}: {}^{n-1}p_{3} = 9:1$
- (viii) How many necklaces can be made by 6 beads of different colours?
- (ix) How many diagonals can be made by 8 sided figure?
- (x) Verify the statement $2 + 6 + 18 + --- + 2 \times 3^{n-1} = 3^n 1$ for n = 1, 2
- (xi) Expand $(4-3x)^{1/2}$ upto 3 terms.
- (xii) If x be so small that its square and higher powers be neglected, prove that $\frac{1-x}{\sqrt{1+x}} \approx 1 \frac{3}{2}x$

4. Attempt any nine parts.

- - Find r, when $\ell = 5 \, cm$, $\theta = \frac{1}{2}$ radian. (i)
 - Write any two fundamental identities of trigonometry. (ii)
- Evaluate $\frac{1 \tan^2 \frac{\pi}{3}}{1 + \tan^2 \frac{\pi}{2}}$ pakcity.org (iii)

- If α , β , γ are angles of triangle ABC then prove that $\cos(\alpha + \beta) = -\cos\gamma$ (iv)
- (v) Prove that $\tan(45^{\circ} + A)\tan(45^{\circ} - A) = 1$
- Prove that $\frac{\sin 8x + \sin 2x}{\cos 8x + \cos 2x} = \tan 5x$ (vi)
- Find the period of $\sin \frac{x}{5}$ (vii)
- A kite is flying at a height of 67.2m is attached to a fully stretched string inclined (viii) at an angle of 55° to the horizontal. Find the length of string.
- (ix) Find the area of triangle ABC, when b = 37, c = 45, $\alpha = 30^{\circ}50^{\circ}$
- (x)
- Show that $tan(sin^{-1}x) = \frac{x}{\sqrt{1-x^2}}$ Solve the equation (xi)
- Solve the equation $\sin x = \frac{1}{2}$, where $x \in [0, 2\pi]$ (xii)
- (xiii) Find solution of the equation $\sec x = -2$ which lies in the interval $[0, 2\pi]$

- TE: Attempt any three questions.

 SECTION-II

 If $A = \begin{bmatrix} -1 & 2 \\ 1 & 4 \\ 2 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$ then verify $(AB)^t = B^t A^t$
 - If ' ω ' is a root of $x^2 + x + 1 = 0$ show that its other root is ω^2 and prove that $\omega^3 = 1$
- Resolve $\frac{x^2+1}{x^3+1}$ into partial fractions. 6.(a)
 - Find four Arithmetic Means (A.Ms) between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$ (b)
- Find the values of n and r, when ${}^{n}C_{r} = 35$ and ${}^{n}P_{r} = 210$ 7.(a)
 - Find the coefficient of x^5 in the expansion of $\left(x^2 \frac{3}{2x}\right)^{10}$ (b)
- Prove that $\sin^6 \theta \cos^6 \theta = (\sin^2 \theta \cos^2 \theta) (1 \sin^2 \theta \cos^2 \theta)$ 8.(a)
 - Prove that $\frac{2\sin\theta\sin(2\theta)}{\cos\theta + \cos(3\theta)} = \tan(2\theta)\tan\theta$ (b)
- The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. 9.(a) Prove that the greatest angle of the triangle is 120°.
 - Prove that $\tan^{-1}\frac{1}{11} + \tan^{-1}\frac{5}{6} = \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{2}$

Paper C	ode		2021 (A)	Roll No:	
Number	: 2194	INTERMEDIA	ATE PART-	I (11 th CLASS)	
				2021 TIME AI	LOWED: 30 Minutes JM MARKS: 20
GROU			ECTIVE		The choice which you
	hink is correct. fill th	at bubble in front	of that questi	on number, on bubl	ole sheet. Use marker
(or pen to fill the bubb	les. Cutting or fil	ling two or mo	ore bubbles will resu	ilt in zero mark in that
	question. No credit w this sheet of OBJECT		ase BUBBLE	S are not lined. Do	not solve question on
Q.No.1			_	<i>-</i>	. E
(1)	The A.M between $\sqrt{2}$		(A) √6	(B) $-2\sqrt{2}$ (C)	$2\sqrt{2}$ (D) $-\sqrt{6}$
(2)	Common ratio of G.F			Œ	E.
	(A) $\pm \sqrt{\frac{a}{c}}$	(B) $\pm \sqrt{\frac{c}{a}}$		(C) $\pm \sqrt{\frac{b}{c}}$	\$1.50 and
` '	H.M between 3 and			5 (B) √21 (C) $\frac{21}{5}$ (D) $\frac{5}{21}$
	If A and B are two $(A) P(A) + P(B)$	(B) $P(A)$ –	P(B)	(C) $P(A \cup B)$	(D) $P(A) \cdot P(B)$
(5)	The number of terms i		$(a+x)^n$ are:	(C) $n-1$	(D) 2n
	(A) n	(B) $n + 1$	_	` '	
	The value of $tan \theta$ fo	$\theta = 30^{\circ}$ is:	(A) √3	(B) $\frac{1}{\sqrt{3}}$ (C) $\frac{2}{\sqrt{3}}$	(D) $\frac{\sqrt{2}}{2}$
(7)	$\frac{5\pi}{6}$ radian =		(A) 150°	(B) 130° (C	
(8)	If $\sin \alpha = \frac{4}{5}$, $0 < \alpha$	$\alpha < \frac{\pi}{2}$, then cos	$\alpha = \beta$	(A) $\frac{2}{5}$ (B) $\frac{1}{5}$	$\frac{1}{5}$ (C) $\frac{4}{5}$ (D) $\frac{3}{5}$
(9)	π is the period of:	_ ()	$(A) \sec \theta$	(B) $\cos ec\theta$ (C)	$\cot \theta$ (D) $\sin 3\theta$
(10)	In any triangle ABC	, with usual notation	$\int \frac{s(s-c)}{ab}$	= 30	~
(11)	(A) $\cos \frac{\gamma}{2}$ Radius of e-circle of	(B) $\cos \frac{\alpha}{2}$		(C) $\cos \frac{\beta}{2}$	(D) $\sin \frac{\alpha}{2}$
(11)		posite to vertex A	Of Billion	Δ	(D) A
	(A) $\frac{\Delta}{s-a}$	(B) ${s-c}$		(C) $\frac{\Delta}{s}$	(D) $\frac{\Delta}{s-b}$
(12)	$2\tan^{-1}(A) =$		nakci	ty org	
	(A) $\tan^{-1}\left(\frac{A}{1-A^2}\right)$	(B) tan ⁻¹	$\frac{A}{1+A^2}$	(C) $\tan^{-1} \left(\frac{2A}{1-A} \right)$	$(D) \tan^{-1} \left(\frac{2A}{1+A^2} \right)$
(13)	Reference angle of	$\sin x = \frac{1}{2} \text{ is:}$	(A)	$\frac{\pi}{3}$ (B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$ (D) $\frac{\pi}{2}$
(14)	Every non terminat		lecimal represe	nts: (C) Natural num	per (D) Whole number
(15)	(A) Rational numb			(C) Parata name	(2)
(/		(B) $(A \cup B)$		(C) $(A \cap B)^C$	(D) $A \cap B^C$
(16)	A square matrix A	$= [a_{ij}]$ is called up	pper triangular	matrix if:	
	(A) $a_{ij} = 0$ for $i <$	$j (B) a_{ij} = 0$	for $i > j$	(C) $a_{ij} \neq 0$ for $i >$	j (D) $a_{ij} = k$ for $i < j$
(17)	(A) (0, 0, 1)	(B) (0, 1, 0))	equation in three vari (C) (0, 0, 0)	ables is: (D) $(0, -1, 0)$
(18)	If α , β are the roo	ts of $x^2 - px - p$	-c = 0, then c	$\alpha \beta =$	(D) = n + c
(19)	(A) $-p-c$ Sum of all the four f	(B) $p + c$ ourth roots of unity	is:	A) 1 (B) 0	(C) -1 (D) 2
(20)	Partial fraction of —	$\frac{x^2+1}{}$ will	be of the form	pakcity.o	(D) $-p+c$ (C) -1 (D) 2
()	(,	(x+1)(x-1)	$R_{Y} + C$	Ar + R	A B
	$(A) \frac{A}{x-1} + \frac{B}{x+1}$	(B) $\frac{A}{x+1}$	$+\frac{Dx+C}{x-1}$	(C) $\frac{7x + b}{x^2 - 1}$	(D) $1 + \frac{A}{x+1} + \frac{B}{x-1}$

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I

TIME ALLOWED: 2.30 Hours

GROUP-II

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: Write same question number and its part number on answer book, pakcity.org as given in the question paper.

SECTION-I

2. Attempt any eight parts.

- Prove the following rule of addition $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$ (i)
- Find the multiplicative inverse of (-4, 7)(ii)
- If Z_1 and Z_2 are the complex numbers then prove that $|Z_1 \cdot Z_2| = |Z_1| \cdot |Z_2|$ (iii)
- Write the set $\{x \mid x \in N \land x \le 10\}$ into (iv)
- (i) Descriptive form (ii) Tabular form
- Determine that $p \to (p \lor q)$ is a tautology or not. (v)
- Find the domain and range of the relation $\{(x, y)|x + y > 5\}$ if $A = \{1, 2, 3, 4\}$ (vi)
- Find x and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$ (vii)
- If A and B are two square matrices of same order, then explain why in general
- Without expansion, show that

 | 1 2 3 | 4 5 6 | 7 8 |
 | Find the (ix)
- (x)
- Find the number, if sum of a positive number and its reciprocal is $\frac{26}{5}$ (xi)
- Discuss the nature of the roots of the equation $2x^2 + 5x 1 = 0$ (xii)
- 3. Attempt any eight parts.

- Resolve into partial fractions $\frac{1}{(x-1)(2x-1)(3x-1)}$ (i)
- Resolve into partial fractions, without finding the constants $\frac{x^2 + 15}{(x^2 + 2x + 5)(x 1)}$ (ii)
- If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in A.P, show that $b = \frac{2ac}{a+c}$ (iii)
- How many terms of the series -7 + (-5) + (-3) + ---, amount to 65? (iv)
- Find geometric means between 2 and 16. (v)
- If $y = \frac{x}{2} + \frac{1}{4}x^2 + \frac{1}{8}x^3 + ---$ and if 0 < x < 2, prove that $x = \frac{2y}{1+y}$ (vi)
- Prove that ${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1}$ (vii)
- How many arrangements of the letters of word, taken all together, can be made "PAKISTAN"? (viii)
- What is the probability that a slip of numbers divisible by 4 are picked from the slips (ix) bearing numbers 1, 2, 3, ---, 10?
- Show that the inequality $4^n > 3^n + 4$ is true for integral values of n = 2, 3(x)
- Expand upto three terms $(4-3x)^{1/2}$ (xi)
- If x is so small that its square and higher powers can be neglected, then show that $\frac{1-x}{\sqrt{1+x}} \approx 1 \frac{3}{2}x$ (xii)

- If $\sin \theta = -\frac{1}{\sqrt{2}} \Re(\theta)$ is in 3rd quadrant. Find the value of $\cot \theta$ (i)
- Verify that $2\sin 45^o + \frac{1}{2}\cos ec45^o = \frac{3}{\sqrt{2}}$ pakcity.org (ii)
- Verify that $(\sec \theta + \tan \theta) (\sec \theta \tan \theta) = 1$ (iii)
- Express sin 319° as a trigonometric function of an angle of positive degree (iv) measure of less than 45°.
- Prove that $\tan(45^{\circ} + A) . Tan(45^{\circ} A) = 1$ (v)
- Prove that $1 + \tan \alpha$. $\tan 2\alpha = \sec 2\alpha$ (vi)
- Find the period of $3\cos\frac{x}{5}$ (vii)
- Solve for C in a triangle $\triangle ABC$ if $\gamma = 90^{\circ}$, $\alpha = 62^{\circ}40'$ and b = 796(viii)
- In an equilateral triangle find the value of R. (ix)
- Prove that $(r_1 + r_2) \tan \frac{\gamma}{2} = c$ (x)
- (xi)
- (xii)
- Find the solution of $\cot \theta = \frac{1}{\sqrt{3}}$ for $\theta \in [0, \pi]$

Attempt any three questions.

- 5.(a)
- Solve the system of linear equations by Cramer's rule. $2x_1 x_2 + x_3 = 8$, $2x_2 + 2x_3 = 6$, $x_1 2x_2 x_3 = 1$ If the roots of $px^2 + qx + q = 0$ are α and β , then prove that $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{q}{p}} = 0$
- Resolve $\frac{3x+7}{(x^2+4)(x+3)}$ into partial fractions.
 - Sum of three numbers in A.P. is 24 and their product is 440. Find the numbers. (b)
- If $y = \frac{1}{3} + \frac{1 \cdot 3}{2!} \left(\frac{1}{3}\right)^2 + \frac{1 \cdot 3 \cdot 5}{3!} \left(\frac{1}{3}\right)^3 + ----$ then prove that $y^2 + 2y 2 = 0$ 7.(a)
 - Find the values of n and r when ${}^{n}C_{r} = 35$ and ${}^{n}P_{r} = 210$ (b)
- Find the values of the trigonometric function $\frac{-17\pi}{2}$ 8.(a)
 - Prove that $\frac{2\sin\theta\sin2\theta}{\cos\theta+\cos3\theta} = \tan2\theta\tan\theta$ (b)
- Solve the triangle ABC if a = 53; $\beta = 88^{\circ}36'$; $\gamma = 31^{\circ}54'$ 9.(a)
 - Prove that $\sin^{-1} \left(\frac{5}{13} \right) + \sin^{-1} \left(\frac{7}{25} \right) = \cos^{-1} \left(\frac{253}{325} \right)$ (b)

Deper Code

MATHEMATICS

Number:

2191

PAPER-I

	OBJE	CTIVE	MAXIMUM MARKS: 20
think Cuttingiven are no	e: You have four choices for each objective to ke is correct, fill that bubble in front of that quiting or filling two or more bubbles will result in in objective type question paper and leave on filled. Do not solve questions on this sheet	iestion number. Use in zero mark in that others blank. No cre	marker or pen to fill the bubbles. question. Attempt as many questions a dit will be awarded in case BUBBLES
Q.No.	If $l = \sqrt{-1}$, then $l'' = $ pake (A) 1 (B) -1	city.org 🎇	
	(A) 1 (B) -1	(C) i	(D) $-i$
(2)	The symbol used to denote a biconditional be	etween two proposition	ons is:
	(A) → (B) ∧	(C) ←→	(D) v
(3)	For a non singular matrix A , if $AX = B$, t		
		(C) $(AB)^{-1}$	
(4)	If $A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 1 \\ 4 & 5 & 2 \end{bmatrix}$, then $M_{13} =$	(A) 13 (E	3) 0 (C) 10 (D) 7
(5)	The number of roots of polynomial $8x^4 - 19$	$x^3 - 27 = 0$ are:	(A) 2 (B) 4 (C) 6 (D) 8
(6)	If s = sum of roots and p = product of roots,		
	(A) $x^2 + sx + p = 0$ (B) $x^2 - sx - p =$	$0 (C) x^2 - sx + \frac{1}{2}$	$(D) sx^2 - sx + p = 0$
(7)	$\frac{2x^2}{(x-3)(x+2)^2}$ is a fraction: (A) Pr	oper (B) improper	(C) Identity (D) Irrational
(8)	(A) $x^2 + sx + p = 0$ (B) $x^2 - sx - p = \frac{2x^2}{(x-3)(x+2)^2}$ is a fraction: (A) Proof of $a_x = (-1)^{x+1}$, then $a_{26} = (-1)^{x+1}$	(A) (B) - 1	(C) i (D) $-i$
(9)	Geometric Mean between 41 and -161 is:	(A) 8 (B) -8	$(C) \pm 8$ (D) ± 64
(10)	The factorial form of $n(n-1)(n-2)$	-(n-r+1) is:	
	The factorial form of $n(n-1)(n-2)$ (A) $\frac{n!}{(n-r)!}$ (B) $(n-1)!$	(C) n!	(D) $\frac{n!}{(n-r+1)!}$
(11)		$P(A \cup B) =$	I TOTA
	(A) $P(A) - P(B)$ (B) $P(A) + P(B) - P(B)$	$(A \cap B)$ (C) $P(A)$	$-P(A \cap B)$ (D) $P(A) + P(B)$
(12)	The statement $4^{\circ} > 3^{\circ} + 4$ is true if:	(A) n < 2 (B	$n \neq 2$ (C) $n \ge 2$ (D) $n \le 2$
(13)	In the expansion of $(3-2x)^{4}$, 5th term w	ill be its: akcity	org
	(A) Last term (B) 2 nd last term	(C) 3rd last term	(D) Middle term
(1.4)			
(15)	The angle $\frac{3\pi}{2} - \theta$ lies in quadrant: (A)	(B) !I (C) III (D) IV
(16)			
	$(A) - \infty < x < \infty \qquad (B) - \infty < y < \infty$	(C) $-1 \le y \le 1$	(D) $-1 \le x \le 1$
(17)	In a $\triangle ABC$ with usual notation $\sqrt{\frac{s(s-a)}{bc}}$	$= (A) \sin \frac{\alpha}{2}$	(B) $\cos \frac{\alpha}{2}$ (C) $\cos \frac{\beta}{2}$ (D) $\sin \frac{\beta}{2}$
(18)	Area of \(\Delta ABC\) in terms of measure of its al	I sides is:	
	(A) $\frac{1}{2}bc\sin\alpha$ (B) $\frac{c^2\sin\alpha\sin\beta}{2\sin\gamma}$	(C) $\frac{1}{2} ca \sin \beta$	(D) $\sqrt{s(s-a)(s-b)(s-c)}$
(19)	$Tan(Tan^{-1}(-1)) = $ (A) -	(B) 1 (C) 2	(D) -2
(20)	Solution set of $\sin x = \frac{1}{2}$ is:		
	(A) $\left\{\frac{4\pi}{3}, \frac{5\pi}{3}\right\}$ (B) $\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$	(C) $\left\{\frac{\pi}{3}, \frac{4\pi}{3}\right\}$	(D) {0, π}
		13(Obj)(🏠)-2	019(Λ)-25000 (MULTAN)

Multan Board-2019 2019 (A) Roll No INTERMEDIATE PART-I (11th CLASS)

GROUP-I

Roll No:

TIME ALLOWED: 30 Minutes

2019 (A)

Roll No:

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I GROUP-I

TIME ALLOWED: 2.30 Hours

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, pakcity.org as given in the question paper.

SECTION-I

Attempt any eight parts. 2.

 $8 \times 2 = 16$

- - Express $(2 + \sqrt{-3})(3 + \sqrt{-3})$ in the form of a + bi and simplify. (i)
 - Find the multiplicative inverse of (-4, 7) (ii)
 - Factorize $9a^2 + 16b^2$ (iii)
 - Define union of two sets and give an example. (iv)
 - If A and B are any two sets then prove $(A \cup B)' = A' \cap B'$ (v)
 - Define tautology and absurdity. (vi)
 - If A and B are non singular matrices then prove $(AB)^{-1} = B^{-1}A^{-1}$ (vii)
 - Find the inverse of matrix $A = \begin{bmatrix} -2 & 3 \\ -4 & 5 \end{bmatrix}$
 - If $A = \begin{bmatrix} 0 & 2-3i \\ -2-3i & 0 \end{bmatrix}$ then show that A is skew-hermitian. Solve the equation $x^{\frac{1}{2}} x^{\frac{1}{4}} 6 = 0$ (ix)
 - (x)
 - Using factor theorem show that (x-1) is a factor of $x^2 + 4x 5$ (xi)
 - The sum of a positive number and its reciprocal is $\frac{26}{5}$. Find the number. (xii)

Attempt any eight parts 3.

- Define "Proper Rational Fraction". (i)
- Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into Partial Fractions. (ii)
- For the identity $\frac{2x+1}{(x-1)(x+2)(x+3)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x+3}$ Calculate the value of B. (iii)
- (iv) Find the next two terms of the sequence: 1, 3, 7, 15, 31, ---
- If the nth term of the A.P is 3n'-1, find its first three terms. (v)
- Find the 11th term of the geometric sequence: 1+i, 2, $\frac{4}{1+i}$, ---(vi)
- (vii) Insert two G. Ms. between 1 and 8.
- Find the 12th term of the harmonic sequence: $\frac{1}{3}$, $\frac{2}{6}$, $\frac{1}{6}$, ----(viii)
- Find the value of n when $P_1: ^{n-1}P_1 = 9:1$ (ix)
- Prove the formula for n = 1 and n = 2: $1 + 4 + 7 + --- + (3n 2) = \frac{n(3n 1)}{2}$ (x)
- (xi) Calculate (0.97)3 by using binomial theorem.
- Expand upto 4 terms: $(2-3x)^{-2}$ taking the values of x such that expansion is valid. (xii)

4. Attempt any nine parts.

 $9 \times 2 = 18$

Find θ , if $\ell = 1.5 \, cm$, $r = 2.5 \, cm$ (i)

(ii) Prove
$$2\sin 45^{\circ} + \frac{1}{2}\cos ec^{45^{\circ}} = \frac{3}{\sqrt{2}}$$

- Prove $(\tan \theta + \cot \theta)^2 = \sec^2 \theta \cos ec^2 \theta$ (iii)
- Prove $\frac{\tan \alpha + \tan \beta}{\tan \alpha \tan \beta} = \frac{\sin(\alpha + \beta)}{\sin(\alpha \beta)}$ (iv)
- Prove $\frac{\tan\frac{\theta}{2} + \cot\frac{\theta}{2}}{\cot\frac{\theta}{2} \tan\frac{\theta}{2}} = \sec\theta$ (v)
- Prove $\sin\left(\frac{\pi}{4} \theta\right) \sin\left(\frac{\pi}{4} + \theta\right) = \frac{1}{2}\cos 2\theta$
- Find the period of $\cos 2x$. (vii)
- Find the area of a $\triangle ABC$, if b = 37, c = 45, $\alpha = 30^{\circ}50'$
- Prove $R = \frac{abc}{4A}$ (ix)
- Prove $r r_1 r_2 r_3 = \Delta^2$ (x)
- (xi) Prove $\cos(Sin^{-1}x) = \sqrt{1-x^2}$
- Find the solution of $\sec x = -2$ which lie in $[0, 2\pi]$
- Find the values of θ satisfying the equation $2\sin\theta + \cos^2\theta 1 = 0$

NOTE: - Attempt any three questions.

- Show that the set $\{w, w^2\}$ when $w^3 = 1$ is an abelian group w.r.t. ordinary multiplication. 5
- Find n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be A.M between a and b. 5 (b)
- Find the inverse of the matrix $A = \begin{bmatrix} 2 & 5 & -1 \\ 3 & 4 & 2 \\ 1 & 2 & 2 \end{bmatrix}$ by using column operation. 5 6.(a) 5
 - A die is thrown twice. What is the probability that the sum of dots shown is 3 or 11.
- Find the condition that $\frac{a}{x-a} + \frac{b}{x-b} = 5$ may have roots equal in magnitude but 5 opposite in signs.
 - Use binomial theorem to prove that $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + ---= \sqrt{2}$ 5
- If $\cot \theta = \frac{5}{2}$ and the terminal arm of the angle is in the I quadrant, then find the value of 5 8.(a)
 - (b) Find the value of $\sin 18^\circ$ without using table or calculator. Hint: $5\theta = 2\theta + 3\theta = 90^\circ$ 5
- 5 9.(a) Prove that $\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$
 - (b) Prove that $Tan^{-1}\frac{1}{11} + Tan^{-1}\frac{5}{6} = Tan^{-1}\frac{1}{3} + Tan^{-1}\frac{1}{2}$ pakcity.org 5

Multan Board-2019

2019 (A)

Roll No:

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I GROUP-II

TIME ALLOWED: 2.30 Hours

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, pakcity.org as given in the question paper.

 $8 \times 2 = 16$

SECTION-I

- Attempt any eight parts. 2.
 - Find the multiplicative inverse of (-4, 7)(i)
 - Simplify $(i)^{-3}$ (ii)

(iii) Simplify
$$\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^3$$

- Write down the power set of $\{a, \{b, c\}\}\$ (iv)
- Show that $p \to (q \lor p)$ is tautology or not. (v)
- For $A = \{1, 2, 3, 4\}$ find the relation $\{(x, y) | x + y < 5\}$ in A. (vi)
- State any two properties of determinants. (vii)
- (viii)

- Reduce $2x^4 3x^3 x^2 3x + 2 = 0$ into quadratic form. (x)
- Solve the equation $x^3 + x^2 + x$ y = 0Define exponential equation (xi)
- (xii)

Attempt any eight parts. 3.

 $8 \times 2 = 16$

- Resolve $\frac{x^{(y)}}{(x+1)(x-1)}$ into partial fractions. (i)
- Define improper rational fraction. (ii)

For the identity $\frac{1}{(x+1)^2(x^2-1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2} + \frac{D}{(x+1)^3}$ (iii) Calculate the values of A and D.

- Write first four terms of the sequence $a_n = 3n 5$ (iv)
- Find the 13^{th} term of the sequence x, 1, 2-x, 3-2x, ----(v)
- How many terms of the series -7 + (-5) + (-3) + --- amount to 65? (vi)
- Insert two G.Ms. between "2" and "16". (vii)
- Write two relations between A, G, H, in which A = Arithmetic Mean, G = Geometric Mean, (viii) H = Harmonic Mean.
- How many arrangements of the letters of the word "ATTACKED", taken all together, can be made? (ix)
- Prove the given formula for n = 1, 2 $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2 \left[1 \frac{1}{2^n} \right]$ (x)
- Calculate (9.98)4 by means of binomial theorem. (xi)
- If x is so small that its square and higher powers can be neglected, then show that (xii) $\frac{1-x}{\sqrt{1+x}} = 1 - \frac{3}{2}x$

where $A \neq \frac{n\pi}{2}$, $n \in \mathbb{Z}$

- (ii) Write two fundamental identities.
- (iii) Show that $\cot^4 \theta + \cot^2 \theta = \csc^4 \theta \csc^2 \theta$
- cos ėc²θ pakcity.org
- (iv) Prove that $\tan(45^{\circ} + A) \tan(45^{\circ} A) = 1$
- (v) Express $\sin 5x + \sin 7x$ as a product.
- (vi) Prove that $\frac{\sin A + \sin 2A}{1 + \cos A + \cos 2A} = \tan A$
- (vii) Write down domain and range of $y = \tan x$
- (viii) Find the area of the triangle ABC, given three sides a = 18, b = 24, c = 30
- (ix) Show that $r = (s a) \tan \frac{\alpha}{2}$
- (x) The area of triangle is 2437. If a = 79, and c = 97, then find angle β .
- (xi) Show that $\cos(Sin^{-1}x) = \sqrt{1-x^2}$
- (xii) Solve the equation $\sin 2x = \cos x$
- (xiii) Define trigonometric equation. Give one example

SECTION II

NOTE: - Attempt any three questions.

 $3 \times 10 = 30$

5

5

- 5.(a) Show that the set $\{1, -1, i, -i\}$ is an abelian group under multiplication where $i^2 = -1$
 - (b) If $y = \frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + \cdots$ and if $0 < x < \frac{3}{2}$, then show that $x = \frac{3y}{2(1+y)}$
- 6.(a) Prove that $\begin{vmatrix} b + c & a & a^2 \\ c + a & b & b^2 \\ a + b & c & c^2 \end{vmatrix} = (a + b + c)(a b)(b c)(c a)$
 - (b) Find the probability that the sum of dots appearing in two successive throws of two dice is every time 7.
- 7.(a) Use synthetic division to find the values of p and q if x + 1 and x 2 are the factors of the polynomial $x^3 px^2 + qx + 6$
 - (b) If x is so small that its cube and higher powers can be neglected, then show that $\sqrt{1 x 2x^2} \approx 1 \frac{1}{2}x \frac{9}{8}x^2$
- 8.(a) Prove that $\frac{\tan \theta + \sec \theta 1}{\tan \theta \sec \theta + 1} = \tan \theta + \sec \theta$
 - (b) If α , β , γ are the angles of $\triangle ABC$ then prove that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 1$
- 9.(a) Prove that $r_1 + r_2 + r_3 r = 4R$
 - (b) Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$

	are n	oot filled. Do not solve questions on this sheet of OBJECTIVE PAPER. pakcity.org
	(1)	If ${}^{n}C_{8} = {}^{n}C_{12}$, where C stands for combination then value of n is equals to:-
		(A) 4 (B) 20 (C) 8 (D) 12
	(2)	The inequality $n^2 > n + 3$ is true for:- (A) $n \ge 2$ (B) $n \ge 3$ (C) $n \ge 0$ (D) $n \ge 1$
	(3)	The coefficient of the last term in the expansion of $(x-y)^5$ is:- (A) -1 (B) 1 (C) 5 (D) -5
	(4)	$Sin^{2}(5\theta) + Cos^{2}(5\theta) =$ (A) 5 (B) 2 (C) 1 (D) 10
	(5)	For double angle identities $Sin2\alpha =$
0		(A) $1-2Sin^2\alpha$ (B) $2\sin\alpha Cos\alpha$ (C) $2Cos^2\alpha - 1$ (D) $Cos^2\alpha - Sin^2\alpha$
ō	(6)	The smallest positive number p for which $f(x+p)=f(x)$ is called:
.≠	-	(A) Index (B) Domain (C) Coefficients (D) Period
<u>.</u>	(7)	For any triangle $\triangle ABC$, with usual notations r_2 is equals to:
at: www.pakcity.org		(A) $\frac{\Delta}{s}$ (B) $\frac{\Delta}{s-a}$ (C) $\frac{\Delta}{s-b}$ (D) $\frac{\Delta}{s-c}$
≥	(8)	If $\triangle ABC$ is right angle triangle such that $m \angle \alpha = 90^{\circ}$, then with usual notations, the true statement is:-
≶		(A) $a^2 = b^2 + c^2$ (B) $b^2 = a^2 + c^2$ (C) $c^2 = a^2 + b^2$ (D) $a^2 = b^2 = c^2$
ند	(9)	
a a		(A) $-1 < x < 1$ (B) $-1 < x < 1$ (C) $+\pi / \sqrt{x} < \pi / \sqrt{x}$ (D) $-\pi / \sqrt{x} < \pi / \sqrt{x}$
dat	(10)	If $Sinx = \frac{1}{2}$ then $x = $ (A) $-\pi/6$, $5\pi/6$ (B) $-\pi/6$, $5\pi/6$ (C) $\pi/3$, $2\pi/3$ (D) $\pi/6$, $5\pi/6$ If n is prime then \sqrt{n} is:
ore		(A) $-\pi/6$, $5\pi/6$ (B) $-\pi/6$, $5\pi/6$ (C) $\pi/3$, $2\pi/3$ (D) $\pi/6$, $5\pi/6$
Ĕ	(11)	
2	(10)	(A) Rational number (B) Whole number (C) Natural number (D) Irrational number
τ	(12)	
Visi		(A) $a^{-1}b^{-1}$ (B) $b^{-1}a^{-1}$ (C) $\frac{1}{ab}$ (D) $\frac{-1}{ab}$
Please visit for more data		If $A = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$ then co-factor of "4" is:- (A) + 1 (B) - 1 (C) - 4 (D) 3
Ple	(14)	If $A = \left[a_{ij}\right]_{3\times 3}$, then $ KA = $
		(A) $ A $ (B) $K A $ (C) $K^{2} A $ (D) $K^{3} A $
	(15)	If $x^3 + 4x^2 - 2x + 5$ is divided by $x - 1$ then the remainder is:- (A) 10 (B) - 10 (C) 8 (D) - 8
	(16)	Nature of the roots of the equation $2x^2 + 5x - 1 = 0$:- (A) Irrational and unequal (B) Rational and equal (C) Imaginary (D) Rational and unequal
	(17)	The type of rational fraction $\frac{3x^2-1}{x-2}$ is:- (A) Proper (B) Improper (C) Polynomial (D) Identity
	(18)	In geometric sequence nth term is:-

(A) $a_1 + (n-1)d$ (B) $\frac{n}{2}[2a_1 + (n-1)d]$ (C) $\frac{a_1}{1-r}$ (D) a_1r^{n-1}

(A) $\frac{n(n+1)(2n+1)}{6}$ (B) $\frac{n(n-1)}{2}$ (C) $\frac{n(n+1)}{2}$ (D) $\frac{n^2(n+1)^2}{4}$

For two events A and B if $P(A) = P(B) = \frac{1}{3}$ then probability $P(A \cap B) = \underline{\hspace{1cm}}$

(C) $\frac{1}{6}$

(D) 1

(19) For any series $\sum_{n=1}^{\infty} K =$

(B) $\frac{1}{3}$

 $(A) \frac{1}{0}$

Paper Code

Number:

2195

MATHEMATICS PAPER-I

Multan Board-2018

OBJECTIVE Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES

GROUP-I

INTERMEDIATE PART-I (11th CLASS)

Roll No:

TIME ALLOWED: 30 Minutes MAXIMUM MARKS: 20

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I **GROUP-I**

TIME ALLOWED: 2.30 Hours

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, pakcity.org as given in the question paper.

SECTION-I

2. Attempt any eight parts.

- $8 \times 2 = 16$
- Write Closure Law and Commutative Law of Multiplication of Real Numbers. (i)
- Show that $z^2 + (\overline{z})^2$ is a real number, $\forall z \in c$. (ii)
- Show that $z.\overline{z} = |z|^2$, $z \in c$. (iii)
- (iv) Define a semi – group.
- Write number of elements of sets $\{a, b\}$ and $\{\{a, b\}\}$. (v)
- If $A = \{1, 2, 3, 4\}$, then write a relation in A for $\{(x, y) / x + y = 5\}$ (vi)
- (vii) Define Symmetric and Skew Symmetric Matrix.
- If the matrix $\begin{bmatrix} 4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$ is symmetric, then find value of λ . (viii)
- Without expansion, show that $\begin{vmatrix} \alpha & \beta + \beta \\ \beta & \alpha + \beta \end{vmatrix} = 0$ Solve $x^{\frac{1}{2}} x^{\frac{1}{4}} 6 = 0$ (ix)
- (x)
- Show that the polynomial (x-1) is a factor of polynomial $x^2 + 4x 5$ by using factor theorem. (xi)
- Discuss nature of roots of equation $x^2 + 2x + 3 = 0$. (xii)
- Attempt any eight parts.

- Resolve $\frac{1}{x^2-1}$ into partial fractions. (i)
- Write the first four terms of the sequence, if $a_n = (-1)^n n^2$. (ii)
- How many terms of the series -7 + (-5) + (-3) + ---- amount to 65? (iii)
- Find the geometric mean between -2i and 8i. (iv)
- Find the sum of the infinite geometric series $4 + 2\sqrt{2} + 2 + \sqrt{2} + 1 + -----$ (v)
- Write two important relations between arithmetic, geometric and harmonic means. (vi)
- Write the following in factorial form (n+2)(n+1)(n)(vii)
- Find the value of n, when $C_{12} = C_6$. (viii)
- A die is rolled. Find the probability that top shows 3 or 4 dots. (ix)
- Use mathematical induction to verify for n = 1, 2(x) $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{2^{n-1}} = 2 \left[1 - \frac{1}{2^n} \right].$
- Calculate (9.98)4 by means of binomial theorem. (xi)

- Convert the angle 54° 45' into radians. (i)
- Find r, when $\ell = 56 \, cm$ $\theta = 45^{\circ}$ in a circle. (ii)

(iii) Prove that
$$\frac{1}{1 + Sin\theta} + \frac{1}{1 - Sin\theta} = 2Sec^2\theta$$

- If $Cos\alpha = \frac{3}{5}$, find the value of $Cot\alpha$, where $0 < \alpha < \frac{\pi}{2}$ (iv)
- If α , β , γ are angles of a triangle $\triangle ABC$, then prove that $Sin(\alpha + \beta) = Sin\gamma$ (v)
- Prove that $Sin3\alpha = 3Sin\alpha 4Sin^3\alpha$ (vi)
- Find the period of $\tan \frac{x}{3}$ (vii)
- State the Law of Cosines. (viii)
- Find the area of $\triangle ABC$ with a = 200, b = 120 included angle $\gamma = 150^{\circ}$ (ix)
- Find R if a = 13, b = 14, c = 15 are the sides of triangle $\triangle ABC$. (x)
- Find the value of $Sin\left(Cos^{-1}\frac{\sqrt{3}}{2}\right)$ (xi)
- Solve the equation $Sin x = \frac{1}{2}$ (xii)
- Solve Sin x + Cos x = 0(xiii)

NOTE: - Attempt any three questions.

 $3 \times 10 =$

5

5

- SECTION-II Prove that all non-singular matrices of order 2 × 2 over real field form a non-abelian group 5.(a) under multiplication.
 - Find the value of λ for which the following system does not possess a unique solution. 5 Also solve the system for the value of λ .

$$x_1 + 4x_2 + x_3 = 2$$

 $2x_1 + x_2 - 2x_3 = 11$
 $3x_1 + 2x_2 - 2x_3 = 16$

- Show that the roots of the equation $x^2 2\left(m + \frac{1}{m}\right)x + 3 = 0$, $m \neq 0$, are real. 5 6.(a)
 - Resolve $\frac{x^4}{1-x^4}$ into partial fraction. 5 (b)
- Sum the series: $\frac{1}{1+\sqrt{x}} + \frac{1}{1-x} + \frac{1}{1-\sqrt{x}} + ---- \text{ to } n \text{ terms.}$ 5 7.(a)
 - Determine the middle terms in the expansion of $\left(\frac{3}{2}x \frac{1}{3x}\right)^{11}$ 5 (b)
- Prove the following identity: $\sin^6 \theta \cos^6 \theta = (\sin^2 \theta \cos^2 \theta)(1 \sin^2 \theta \cos^2 \theta)$ 5 8.(a)
- Prove that: $\frac{\sin\theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$ 5
- 9.(a) Prove that $(r_1 + r_2) Tan \frac{\gamma}{2} = c$ (with usual notations) 5
 - (b) Prove that $Cos^{-1}\frac{63}{65} + 2Tan^{-1}\frac{1}{5} = Sin^{-1}\frac{3}{5}$ pakcity.org

Multan Board-2018				
1	per Code		2018 (A)	Roll No:
	imber: 2198	J	TE PART-I (11th	
[V]	ATHEMATICS PAI			TIME ALLOWED: 30 Minutes MAXIMUM MARKS: 20
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER. Q.No.1				
(1)				laced by:-
	$(A) \frac{-1}{x}$	(B) $\frac{1}{x^2}$	(C) - x	(D) 1 pakcity.org
(2) (3)	Types of rational fraction	ons are:-	(A) Two	(B) Three (C) Four (D) Infinite
(4)	Harmonic Mean between	en a and b is:-	(A) $\frac{ab}{a+b}$	(B) $\frac{a+b}{ab}$ (C) $\frac{2ab}{a+b}$ (D) $\frac{a-b}{ab}$
(5)			u . <i>v</i>	= A.M and H = H.M)
	(A) - 5	(B) $\frac{-5}{2}$	(C) 5	(D) $\frac{2}{5}$
(6)			(where C is combin	ation)
(7)		$^{11}P_{n} = 11 \times 10 \times 9$ is	:- (where I	(D) C, -2 P(is permutation)
(8)		(B) 1 + x) ⁴ middle term w	(C) 2 (A) $81 \lozenge 0$	B) 54x ² (C) 26x ² (D) x ⁴
(9)	The inequality $4'' >$	$3^n + 4$ is valid if n	is:-	(D) $n = -2$
(1	0) The angle $\frac{\pi}{12}$ in degree	ee measure is:-	%(A) 30° (B) 20	" (C) 45" (D) 15"
(1	1) $\tan (\pi - \alpha)$ equals:-	(B) - tand	(C) $\cot \alpha$	(D) $-\cot \alpha$
(1	(A) $n = 2$ The angle $\frac{\pi}{12}$ in degree that $(A + \alpha)$ equals: (A) $\tan \alpha$ Period of $\cot 8x$ is: (A) $\frac{\pi}{8}$ 3) In any triangle $\triangle ABC$	$\frac{\pi}{2}$	(C) $\frac{\pi}{2}$	
	8	~ 4	s(s-c).	
(1			y ao	
10.0	(A) $\sin \frac{\gamma}{2}$	4	(C) $\sin \frac{\alpha}{2}$ kcity.0	(D) $\cos \frac{\pi}{2}$
(1	(A) 90"	(B) 30°	han:- (C) 45"	(D) 60"
(1	5) The value of sin ⁻¹ co	$\left(\frac{\pi}{6}\right)$ is equal to:-		
	(A) $\frac{\pi}{2}$	(B) $\frac{3\pi}{2}$	(C) $\frac{\pi}{6}$	(D) $\frac{\pi}{3}$
(1	6) If $\sin x = \frac{1}{2}$ then x	is equal to:-		
	$(A) \frac{\pi}{6}, \frac{5\pi}{6}$	0 0		(D) $\frac{-5\pi}{6}$
(1	7) Multiplicative inverse $(A) \left(\frac{\sqrt{2}}{\sqrt{7}}, \frac{\sqrt{5}}{\sqrt{7}} \right)$			$(D)\left(\frac{\sqrt{2}}{7},\frac{\sqrt{5}}{7}\right)$
(1	8) If A, B are two sets	then $A \cap (A \cup B)$ eq	quals:- (A) A	(B) $A \cup B$ (C) B (D) ϕ
(1	9) A square matrix A is	called skew symmetr	ric if A' =	
	(A) A	• •	(C) - A'	(D) - A
{2	$\begin{array}{c c} (20) & \text{if } \begin{vmatrix} 2 & \lambda \\ 3 & 7 \end{vmatrix} = 2, \text{ then} \end{array}$	λ =	(A) 1 (B) 2 (C) 3 (D) 4
		23	にんいいとうてつてつぐう	A DOLD (AAA TOO OO (BATHET AA)

Multan Board-2018

2018 (A)

Roll No:

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I GROUP-II

TIME ALLOWED: 2.30 Hours

SUBJECTIVE

SECTION-I

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

2.

 $8 \times 2 = 16$

- Attempt any eight parts.
 - Prove that $\frac{7}{12} \frac{5}{18} = \frac{-21 10}{36}$ by justifying each step. (writing each property) (i)
 - (ii) Simplify the following $(5, -4) \div (-3, -8)$
 - Prove that $\bar{z} = z$ if and only if z is real. (iii)
 - (iv) Write two proper subsets of the set of real numbers R.
 - (v) Construct truth table for the following $(p \land \sim p) \rightarrow q$.
 - For a set $A = \{1, 2, 3, 4\}$, find the relation $R = \{(x, y) | x + y < 5\}$ in A. (vi) Also state the domain of R.
 - Find 'x' and 'y' if the matrices are as $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$ If $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{3\times 4}$, then show that $I_3A = A$ Without expansion show that $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 3y-4 \end{bmatrix}$ (vii)
 - (viii)
 - (ix)
 - Solve the following equation by factorization x(x+7) = (2x-1)(x+4)(x)
 - Show that $x^3 y^3 = (x \omega y)(x \omega y)$, where ω is a cube root of unity. (xi)
 - Use remainder theorem to find the remainder, when $x^2 + 3x + 7$ is divided by x + 1. (xii)
- Attempt any eight parts. 3.

- Define a Partial Fraction. (i)
- If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in arithmetic progression, show that $b = \frac{2ac}{a+c}$ (ii)
- Find the arithmetic mean between $3\sqrt{5}$ and $5\sqrt{5}$. (iii)
- If the series $y = \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + ---- \infty$ and 0 < x < 2. Then prove that $x = \frac{2y}{1+y}$ (iv)
- If 5 is Harmonic mean between "2" and "b". Find "b". (v)
- Prove that $\sum_{n=0}^{\infty} k = \frac{n(n+1)}{2}$ (vi)
- How many 5 digits multiples of "5" can be formed from the digits 2, 3, 5, 7, 9 (vii) when no digit is to be repeated?
- Find n if ${}^{n}C_{5} = {}^{n}C_{4}$ (C is used for combination) (viii)
- What is the probability that a slip of numbers divisible by 4 is picked from slips (ix) bearing numbers 1, 2, 3, ____, 10?
- Use Binomial Theorem, find (21)3. (x)
- Expand up to four terms $(8-2x)^{-1}$ (xi)
- If x be so small that its square and higher powers can be neglected. Then prove $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3x}{2}$ (xil)

Attempt any nine parts. 4.

Find " ℓ " (arc length) when r = 18mm and $\theta = 65^{\circ} 20'$ pakcity.org (i)

- If $\sec \theta < 0$ and $\sin \theta < 0$, in which quadrant terminal arm of '\theta' lies. (ii)
- Show that $Sin^2 \frac{\pi}{6} + Sin^2 \frac{\pi}{3} + tan^2 \frac{\pi}{4} = 2$ (iii)
- Prove that $Sin(180^{\circ} + \theta)$ $Sin(90^{\circ} \theta) = -Sin\theta Cos\theta$ (iv)
- Find the value of Sin15° (v)
- Prove that $\tan 2\theta = \frac{2 \tan \theta}{1 + \frac{1}{2} + \frac{1}{2}}$ (vi)
- Find the period of $\cos \frac{x}{6}$ (vii)
- In a right $\triangle ABC$, if b=30.8, c=37.2 and $\gamma=90^{\circ}$. Find α and β (viii)
- Find the area of $\triangle ABC$ in which b = 21.6, c = 30.2 and $\alpha = 52^{\circ} 40'$. (ix)
- Define "Inscribed Circle". (x)
- Show that $Cos(Sin^{-1}x) = \sqrt{1-x^2}$ (xi)
- Solve the equation $Sin x = \frac{1}{2}$ where $x \in [0, 2\pi]$ (xii)
- Solve the equation $4\cos^2 x 3 = 0$, where $x \in [0, 2\pi]$

NOTE: - Attempt any three questions.

- 5 5.(a)
- Show that the set $\{1, \omega, \omega^2\}$, (where $\omega = 1$), is an abelian group w.r.t. ordinary multiplication. Without expansion verify that $\begin{pmatrix} a & c \\ 0 & c \\ b & -c \end{pmatrix} = 0$ 5
- Resolve $\frac{x^2+1}{x^3+1}$ into Partial Fraction. 5 6.(a)
- Solve the equation $\sqrt{3x^2 7x 30} \sqrt{2x^2 7x 5} = x 5$ 5
- Find the value of n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the Arithmetic Mean between a and b. 7.(a)
 - Use mathematical induction to prove that the following formula holds for every positive **(b)** integer "n"

$$\frac{1}{2 \times 5} + \frac{1}{5 \times 8} + \frac{1}{8 \times 11} + ---- + \frac{1}{(3n-1)(3n+2)} = \frac{n}{2(3n+2)}$$

- Prove that $\sin^6 \theta + \cos^6 \theta = 1 3\sin^2 \theta \cos^2 \theta$ 5 8.(a)
 - Prove that $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$ 5 (b)
- The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. 9.(a) 5 Prove that the greatest angle of the triangle is 120°
 - Prove that $Cos^{-1}\frac{63}{65} + 2 tan^{-1}\frac{1}{5} = Sin^{-1}\frac{3}{5}$ 5 (b)