

Mathematics

(C)

Bahawalpur Board-2024

Ist - A - Exam - 2024

Paper Code No. 6195

Paper 1 Time

(Objective Type) 30 Minutes

Inter (Part - I)

Session (2022 - 24) & (2023 - 25)

Marks :

Note: Four choices A, B, C, D to each question are given. Which choice is correct fill that circle in front of that Question No. on the Objective Bubble Sheet. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

no accordant	
Q.No.1 (1)	If $A \subseteq B$ and $A - B = \emptyset$, then $n(A - B) = \dots$: ($\nearrow 0$ (B) $n(A)$ (C) $n(B)$ (D) $n(A) - n(B)$
(2)	The Property $\forall a \in R$, $a = a$ is called : (A) Symmetric (B) Transitive (\bigcirc Reflexive (D) Commutative
(3)	Modulus of 5 – 3i is : (A) $\sqrt{4}$ (B) $\sqrt{16}$ (C) $\sqrt{25}$ (D) $\sqrt{34}$
(4)	If p is a logical statement then p ∧ ~ p is always: (A Absurdity (B) Contigency (C) Tautology (D) Conditional
(5)	If $A = \begin{bmatrix} 1 & 1 \\ 1 & x \end{bmatrix}$, and $ A = 4$, then $x =$: (A) 2 (B) 3 (C) 4 (D) 5
(6)	A matrix of order m x 1 is called : (A) Row Matrix (B) Column Matrix (C) Diagonal Matrix (D) Null Matrix
(7)	Set containing elements of A or B is denoted by : (A) $A \cap B$ (B) $A \subseteq B$. (C) $A \cup B$ (D) $B \subseteq A$
(8)	Roots of the equation $x^2 - 5x + 6 = 0$ are: (A) 2, -3 (B) -2, -3 (C) 2,3 (D) -2,3
(9)	The Arithmetic Mean between $\sqrt{2}$ and $3\sqrt{2}$ is : (A) $2\sqrt{2}$ (B) $3\sqrt{2}$ (C) $4\sqrt{2}$ (D) $\sqrt{2}$
(10)	$\frac{x}{2x+3}$ is: : (A) Proper Fraction (B) Improper Fraction (C) Identity Fraction (D) Mixed Fraction
(11)	Degree of Constant Polynomial is (A) n (B) 2 (C) 1 (D) 0
(12)	$\sum_{K=1}^{n} K = \dots \qquad (A) \frac{n^{2}(n+1)^{2}}{4} \qquad (B) \frac{n(n+1)}{2} \qquad (C) \frac{n(n+1)(n+2)}{6} \qquad (D) \frac{n(n-1)}{2}$
(13)	Solution of Cot $\theta = \frac{1}{\sqrt{3}}$ in quad III is: (A) $\frac{5\pi}{3}$ (B) $\frac{7\pi}{6}$ (C) $\frac{4\pi}{3}$ (D) $\frac{7\pi}{3}$
(14)	Numbers of terms in the expansion of $(a + x)^{2n+1}$ are : (A) $2n + 2$ (B) $2n + 1$ (C) $2n$ (D) $n + 1$
(15)	Probability of an impossible event is: (A) 1 (B) 0.5 (C) 0.25 (D) 0
(16)	$Tan(\alpha-90^\circ)= : (A) Cot \alpha (B) - Cot \alpha (C) Tan \alpha (D) - Tan \alpha$
(17)	The Value of Sin ⁻¹ (Cos $\frac{\pi}{6}$) is equal to : (A) $\pi/2$ (B) $3\pi/2$ (C) $\pi/6$ (D) $\pi/3$
(18)	$Sec\left(\frac{\alpha}{2}\right) = \dots : (A) \sqrt{\frac{s(s-a)}{bc}} (B) \sqrt{\frac{bc}{s(s-a)}} (C) \frac{s}{\Delta} (D) \frac{\Delta}{s-b}$
(19)	Period of Cot 3x is : (A) π (B) $\frac{2\pi}{3}$ (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{3}$
(20)	If $\sin x = \frac{\sqrt{3}}{2}$ and $x \in [0, 2\pi]$, then x is : (A) $\frac{5\pi}{3}$, $\frac{4\pi}{3}$ (B) $\frac{\pi}{4}$, $\frac{3\pi}{4}$ (C) $\frac{\pi}{3}$, $\frac{2\pi}{3}$ (D) $\frac{\pi}{6}$, $\frac{5\pi}{6}$
	(A) $\frac{1}{3}$, $\frac{1}{3}$ (B) $\frac{1}{4}$, $\frac{1}{4}$ (C) $\frac{1}{3}$, $\frac{1}{3}$ (D) $\frac{1}{6}$, $\frac{1}{6}$

Roll No. Mathematics (Subjective)

1534 -)_6000 Inter (Part - I) Int - A - Exam - 2024 Session (2022 -24) & (2023 - 25)

Time 2:30 Hours Marks: 80

Note: It is compulsory to attempt any (8 - 8) Parts each from Q.No. 2 and Q.No. 3 while attempt any (9) Parts from Q.No. 4. Attempt any (3) Questions from Part - II , Write same Question No. and its Part No. as given in the Question Paper.

Bahawalpur Board-2024

Part - I

25 x 2 = 50

Baha	ıwa	A STATE OF THE PARTY OF THE PAR	ا ۳	S parcity.org	25 x 2 ≈ 50		
Q.No.2	(1)	Show that $\forall z \in \mathbb{C}$, $z \overline{z} = z ^2$					
	(11)	Show that $\forall z_1, z_2 \in C$, $\overline{z_1}\overline{z_2} = \overline{z_1} \overline{z_2}$			and the second little of the control of the second little of the second little of		
	(111)	Define Polar form of a Complex Number .	100 100 00 000		the street was a read in rock to the street of the street, in		
	(iv)	Prove that $\overline{z} = z$ iff z is real.	ON BUCKERS, MUSIC TO	Afficial control of the control of t	THE RESERVE OF THE PROPERTY OF THE PERSON NAMED TO BE STOLEN.		
	(v)	Write down the Power set of { a , { b ,	c }}		The second secon		
	(vi)	Show that $(p \land q) \rightarrow p$ is a tautology.					
	(vii)	Solve the system of linear equations: $4x_1 + 3x_2 = 5$, $3x_1 - x_2 = 7$	(vili)	Write any two Properties	of Determinant.		
	(ix)	Define Hermitian Matrix .	(x)	Solve the equation by Co $x^2 + 4x - 1085 = 0$	mpleting Square		
	(xi)	Solve the equation by using quadratic formula, $16x^2 + 8x + 1 = 0$	(xii)	Prove that : $(-1 + \sqrt{-3})^4 + (-1 - \sqrt{-3})^4$	$-\sqrt{-3})^4 = -16$		
Q.No.3	(i)	Define Conditional equation and give exar	nple .				
	(ii)	Resolve $\frac{1}{x^2-1}$ into Partial Fraction .					
	(iii)	If $a_{n-2} = 3n - 11$, find the nth term of the Sequence .					
	(iv)	Find A.M between $3\sqrt{5}$ and $5\sqrt{5}$					
	(v)	If $S_n = n(2n-1)$, then find the series.					
	(vi)	With usual notation, show that G ² = AH					
	(vii)	Write $n(n-1)(n-2)(n-r+1)$ in the factorial form.	(viii)	What is the Fundamenta Counting?	l Principle of		
	(ix)	Two Coins are tossed twice each. Find the Probability that the head appears on the first toss and the same faces appear in the two tosses.	(x)	Calculate (0.97) ³ by Binomial Theorem.	means of		
	(xi)	Find the term involving x ⁴ in the	(xii)	Expand upto 4 terms, ta	king the values of		
		expression of $(3-2x)^7$	ty.c	x such that the expansion for $(1-x)^{\frac{1}{2}}$	on in case is valid		
Q.No.4	(i)	Convert $\frac{9\pi}{5}$ into the measure of Sexagesimal System .					
		If $tan\theta = \frac{8}{15}$ and $\theta \in III$ then find $sin\theta$ and $cos\theta$.					
	(ii)	If $\tan \theta = \frac{1}{15}$ and $\theta \in III$ then find $\sin \theta$	and C	Cosθ.			

L.K.No. 1534

Bahawalpur Board-2024

(iv)	Find the Value of tan (105°) .
(v)	Write Triple angle identity for Cos3a .
(vi)	Find the Period of tanθ .
(vii)	Find the Period of Sin $(\frac{x}{3})$.
(viii)	Draw the graph of $y = 2\cos x$, $x \in [0, 2\pi]$
(ix)	Solve the right triangle ABC in which $\gamma = 90^{\circ}$, $\alpha = 37^{\circ} 20^{\prime}$, $a = 243$
(x)	Define Angle of Depression .
(xi)	By using Law of Cosine find the value of C if a = $\sqrt{3}$ – 1 , b = $\sqrt{3}$ + 1 , γ = 60°
(xii)	Find the value of Cos (Sin ⁻¹ ($\frac{1}{\sqrt{2}}$))
(xiii)	Solve the equation 1 + Cosx = 0

	(XIII) Solve the Equation 1 + Cosx = 0	
		Part - II pakcity.org	30
Q.No.5	(a)	Show that $\begin{vmatrix} a+l & a & a \\ a & a+l & a \\ a & a & a+l \end{vmatrix} = \ell^2(3a+l)$	(5)
	(b)	Solve the Equation: $\sqrt{5x^2 + 7x + 2} - \sqrt{4x^2 + 7x + 18} = x - 4$	(5)
Q.No.6	(a)	Resolve $\frac{x^2+1}{x^3+1}$ into Partial Fractions.	(5)
	(b)	If the numbers 1, 4 and 3 are Subtracted from three Consecutive terms of an A.P, the resulting numbers are in G.P. Find the numbers if their Sum is 21.	(5)
Q.No.7	(a)	Find the values of n and r When "C _r = 35, and "p _r = 210	(5)
	(b)	Use Binomial Theorem to show that $1 + \frac{1}{4} + \frac{1 \cdot 3}{4 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12} + \dots = \sqrt{2}$ Prove that $\sin^6 \theta - \cos^6 \theta = (\sin^2 \theta - \cos^2 \theta)(1 - 3\sin^2 \theta \cos^2 \theta)$	(5)
Q.No.8	(a)	Prove that $\sin^6 \theta - \cos^6 \theta = (\sin^2 \theta - \cos^2 \theta) (1 - 3\sin^2 \theta \cos^2 \theta)$	(5)
	(b)	Prove that: $\sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$	(5)
Q.No.9	(a)	Reduce Sin θ to an expression involving only function of multiples of θ, raised to the first power.	(5)
	(b)	The Sides of a triangle are $x^2 + x + 1$, $2x + 1$ and $x^2 - 1$.	(5)
		Prove that the greatest angle of the triangle is 120°.	

Mathematics	(C)	L.K.No.1014	Paper Code No. 6195
Paper I	(Objective Type)	Ist - A - Exam - 2023	Session (2020 – 22) to (2022 – 24)
Time :	30 Minutes	Inter (Part - I)	Marks : 20

Note: Four possible choices A, B, C,D to each question are given. Which choice is correct fill that circle in front of that Question No. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

Bahawalpur Board-2023

	Bahawalpur Board-2023
Q.No.1 (1)	If $A = \begin{bmatrix} -2 & 1 \\ 2 & 5 \end{bmatrix}$ then $A - A^{t}$ is:
	$ (A) \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} (B) \begin{bmatrix} 0 & 4 \\ 4 & 10 \end{bmatrix} (C) \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} (D) \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix} $
(2)	Venn Diagrams are useful only in case of :
(2)	(A) Concrete Sets (B) Abstract Sets (C) Subsets (D) Universal Sets If $Z = 2-3i$, then $ Z ^2 =$ (A) $\sqrt{5}$ (B) 5 (C) $\sqrt{13}$ (D) 13
(3)	If Z = 2-3i, then $ Z ^2$ = (A) $\sqrt{5}$ (B) 5 (C) $\sqrt{13}$ (D) 13 If A is a Square Matrix of Order 3, then $ KA $ = : (A) 3 $ A $ (B) 9 $ A $ (C) K $ A $ (D) $ K^3 A $
35/0.50	An equation in which two Algebraic Expressions are equal for particular values of the
(5)	variable is called: (A) An Equation (B) Conditional Equation (C) Identity (D) Both A and B
(6)	If for a Quadratic Equation $ax^2 + bx + c = 0$, $b^2 - 4ac = 0$, then roots of the equation
	will be : (A) Rational (B) Irrational (C) Equal (D) Unequal
(7)	The Sum of the Roots of the Equation $5x^2 - x - 2 = 0$ is : (A) $\frac{-2}{5}$ (B) $\frac{2}{5}$ (C) $\frac{-1}{5}$ (D) $\frac{1}{5}$
(8)	If $a_n = (-1)^n (2n-3)$, then 5 th term of the sequence is $(A) - 7$ (B) 7 (C) 49 (D) - 49
(9)	A Coin is tossed four times, then the Probability of getting no head is :
	A Coin is tossed four times, then the Probability of getting no head is : (A) $\frac{1}{16}$ (B) $\frac{1}{8}$ (C) $\frac{1}{4}$ (D) $\frac{1}{2}$
(10)	The Number of 4 Digit Numbers that can be formed out of digits 1, 2, 3, 4, 5, 6 when no digit is repeated is (A) 15 (B) 36 (C) 360 (D) 720
(11)	H.M. between $\frac{1}{a}$ and $\frac{1}{b}$ is : (A) $\frac{2ab}{a+b}$ (B) $\frac{a+b}{2ab}$ (C) $\frac{2}{a+b}$ (D) $\frac{a+b}{2}$
(12)	1+3+5++ $(2n+5) = (n+3)^2$ is true for : (A) $n \ge -1$ (B) $n \ge -2$ (C) $n \ge 1$ (D) $n \ge 2$
(13)	$\cos(2x+30^{\circ}) \cdot \cos(2x-30^{\circ}) = : (A) \frac{-1}{2} [\sin 4x - \sin 60^{\circ}] (B) \frac{-1}{2} [\sin 4x + \sin 60^{\circ}]$
	(C) $\frac{1}{2} [\cos 4x + \cos 60^{\circ}]$ (D) $\frac{1}{2} [\cos 4x - \cos 60^{\circ}]$
(14)	Which of the following is a pair of Coterminal Angles:
	(A) 30°, -330° (B) 50°, -330° (C) 30°, 760° (D) 60°, 1480° The Coefficients of the terms equidistant from beginning and end of the expansion
(15)	of $(a+x)^n$; $n \in \mathbb{N}$ are equal as:
	(A) $\binom{n}{r} = \binom{n}{n-r}$ (B) $\binom{n}{r} = \binom{n}{n+r}$ (C) $\binom{n}{r+1} = \binom{n}{r}$ (D) $\binom{n}{r} = \binom{n-1}{r-1}$
(16)	Range of y = $3\sin 2x$ is : (A) $[-1,1]$ (B) $[-3,3]$ (C) $[-5,5]$ (D) $[-6,6]$
(17)	$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) =:$ (A) 0 (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{3}$
(18)	$\frac{abc}{R} = :$ pakcity.org (A) 4 rs (B) 4 Δ (C) $\frac{4}{\Delta r}$ (D) $\frac{\Delta r}{4}$
(19)	Area of a Triangle ABC is equal to :
	(A) $\frac{1}{2}$ bc Sin α (B) $\frac{1}{2}$ ab Sin α (C) $\frac{1}{2}$ bc Cos α (D) $\frac{1}{2}$ ac Sin γ
(20)	Reference Angle of Cosx = $\frac{-1}{2}$ is : (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{3}$

Roll No.	1014 - 27000	Inter (Part - 1)	Session (2020 – 22) to (2022 – 24)	
Mathematics (Subjective)	Ist - A - Exam - 2023		Time 2:30 Hours Marks: 80	

Note: It is compulsory to attempt any (8 - 8) Parts each from Q.No. 2 and Q.No.3 while attempt any (9) Parts from Q.No.4. Attempt any (3) Questions from Part - II. Write same Question No. and its Part No. as given in the Question Paper.

P	a	rt	_	1
•	u			•

25 x 2 = 50

		Part - I]	$25 \times 2 = 50$			
Q.No.2	(i)	Prove that : $\frac{a}{b} = \frac{c}{d} \iff ad = \frac{c}{d}$	= b	C			
	(ii)	Show that $\forall z \in C z^2 + \overline{z}^2$ is a real number.					
(iii) Show A - B and B - A by Venn Diagram, when A and B are Over							
	(iv)	Verify the Commutative Property of	Unio	on and Intersection for the sets			
		A = {1,2,3,4,5} , B = {4,6,8,	10 }				
	(v)	Construct Truth Table for the Statem	ent	$(p \rightarrow \sim p) \vee (p \rightarrow q)$			
	(vi)	If $A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$ verify that (A^{-1})	1) ^t =	$(A^t)^{-1}$			
	(vii)	Find value of 'x' if :	(viii)	Solve the Matrix Equation			
		$\begin{vmatrix} 1 & 2 & 1 \\ 2 & x & 2 \\ 3 & 6 & x \end{vmatrix} = 0$		2X - 3A = B if $-1 2$ $-2 4 5$			
		W.C	160	$B = \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$			
	(ix)	Reduce to Quadratic Form	(x)	Show that :			
		(x+1)(x+2)(x+3)(x+4) = 24		$x^3 - y^3 = (x - y)(x - wy)(x - w^2y)$			
	(xi)		(xii)	If the roots of the equation $x^2 - px + q = 0$			
		$(b-c)x^2+(c-a)x+(a-b)=0$;		differ by unity , prove that P ² = 4q +1			
Q.No.3	(i)	a,b,c ∈ Q will be real. Define Proper Rational Fraction.					
	(ii)	Write the first four terms of the sequence if $a_n - a_{n-1} = n + 2$, $a_1 = 2$					
	Out						
	(lii)	If 5,8 are two A.Ms between 'a'					
	(iv)	2					
	(v)	Find the 11 th term of the Sequence	1+:	i, 2, 2(1 - i),			
	(vi)	Insert three G.Ms. between 2 and 32					
	(vii)	Find the number of the Diagonals of	(viii)	Show that :			
		a 6 – sided figure.		$^{16}C_{11} + ^{16}C_{10} = ^{17}C_{11}$			
	(ix)	Two Dice are thrown. What is the	(x)	If $S_n = n(2n-1)$, then find the Series.			
1		Probability that the sum of the number					
		of dots appearing on them is 4 or 6?					
	(xi)	Expand upto four terms $(1+x)^{\frac{-1}{3}}$	(xii)	If 'x' is so small that its square and higher powers can be neglected then			
				show that $\frac{1-x}{\sqrt{1+x}} \approx 1 - \frac{3}{2}x$			
Q.No.4	(i)	A Railway Train is running on a Circ	ular i				
۷.1۷0.4	117	rate of 30 Km per hour. Through what					
	(ii)	Verify $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$					
	(iii)	Find the period of Sec 9x.		50 , 45			
		•					

Mathematics	(B)	L.K.No. 1112	Paper Code No. 6193
Paper I	(Objective Type)	Inter - A - 2021	Session (2017 - 19) to (2020 - 22)
Time :	30 Minutes	Inter (Part - I)	Marks ± 20

Note: Four possible choices A, B, C,D to each question are given. Which choice is correct fill that circle in front of that Question No. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

Q.No.1 (1)	If $\cos x = \frac{-\sqrt{3}}{2}$, then its Reference Angle is : (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{-\pi}{6}$
(2)	$Cos(Sec^{-1}(1)) = :$ (A) 1 (B) 0 (C) 30° (D) 2
(3)	$\sqrt{\frac{s(s-a)}{bc}} = : (A) \sin \frac{\alpha}{2} (B) \sin \frac{\beta}{2} (C) \cos \frac{\beta}{2} (D) \cos \frac{\alpha}{2}$
(4 <u>)</u>	If ABC be any Triangle and $\gamma = 90^{\circ}$, then : (A) $a^2 + b^2 = c^2$ (B) $a^2 + c^2 = b^2$ (C) $b^2 + c^2 = a^2$ (D) $a^2 + b^2 + c^2 = 0$
(5)	Period of $\sin \frac{x}{5}$ is : (A) 2π (B) $\frac{\pi}{5}$ (C) 10π (D) 5π
(6)	2 Sin12° Sin46° = : (A) Cos34° Cos58° (B) Sin34° + Sin58° (C) Sin34° - Sin58° (D) Cos34° - Cos58°
(7)	$\frac{3\pi}{2}$ Radians equals to : (A) 120 (B) 150 (C) 270 (D) 190 °
(8)	The Vertex of an angle in standard form is at (A) (B) (1,0) (C) (0,1) (D) (1,1)
(9)	(A) (O) (B) (1,0) (C) (0,1) (D) (1,1) In the Expansion of (a+b) ⁷ , the 2 nd term is: (A) a ⁷ (B) 7a ⁶ b (C) 7ab ⁶ (D) 7b ⁶
(10)	${}^{n}P_{n} = \cdots$: (A) $n!$ (B) $(n+1)!$ (C) 1 (D) $(n-1)!$
(11)	Harmonic Mean between x and y is : (A) $\frac{2(x+y)}{xy}$ (B) $\frac{2xy}{x+y}$ (C) $\frac{x+y}{2xy}$ (D) $\frac{x+y}{2}$
(12)	The nth term of the sequence $\frac{1}{3}$, $\frac{2}{5}$, $\frac{3}{7}$, $\frac{4}{9}$ is : (A) $\frac{n}{2n-1}$ (B) $\frac{n}{2n+1}$ (C) $\frac{n}{3n-1}$ (D) $\frac{n}{3n+1}$
(13)	The next two terms of the sequence 1,3,7,15,31 are : (A) 112,288 (B) 122,144 (C) 102,188 (D) 63,127
(14)	Partial Fractions of $\frac{1}{x(x+1)}$ are =: (A) $\frac{1}{x-1} + \frac{1}{x+1}$ (B) $\frac{1}{x-1} - \frac{1}{x+1}$ (C) $\frac{1}{x} + \frac{1}{x+1}$ (D) $\frac{1}{x} - \frac{1}{x+1}$
(15)	If α, β are the roots of the equation $x^2 - 4x + 5 = 0$, then $\alpha\beta$ is equal to :
(16)	(A) 2 (B) 4 (C) 5 (D) −4 (a + b) x = ax + bx is called : (A) Identity (B) Equation (C) Conditional (D) Fraction
(17)	If $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$, then A_{33} equals: (A) -1 (B) 1 (C) 7 (D) -7
(18)	$\begin{bmatrix} K & 0 \\ 0 & K \end{bmatrix}$ is : (A) Zero Matrix (B) Non – Diagonal Matrix (C) Identity Matrix (D) Scalar Matrix
(19)	If $A \subseteq B$ and $B \subseteq A$, then : (A) $A = \emptyset$ (B) $A = B$ (C) $B = \emptyset$ (D) $A \cap B = \emptyset$
(20)	The Multiplicative Inverse of Complex Number $(0,1)$ is : (A) (0,-1) (B) (0,1) (C) (-1,0) (D) (0,0)
	5
	pakcity.org &

Banawaipur Board-2021							
Roll No.	1112 - 2000	Session (2017 - 19)to(2020 - 22)	Inter (Part – I)				
Mathematics (Subjective)	Inter - A - 2021	Time 2:30 Hours Marks: 80					

Note: It is compulsory to attempt any (8 - 8) Parts each from Q.No. 2 and Q.No. 3 while attempt any (9) Parts from Q.No. 4. Attempt any (3) Questions from Part - II. Write same Question No. and its Part No. as given in the Question Paper.

Part -	1

 $25 \times 2 = 50$

		25X2-30			
Q.No.2	(i)	Find the Sum and Product of the Complex Numbers (8,9) and (5,-6).			
	(ii)	Separate into Real and Imaginary Parts $\frac{2-7i}{4+5i}$ and write as Simple Complex Number. For all Complex Numbers Z , show that $Z^2 + \overline{Z}^2$ is a real number.			
	(111)				
(iv) Convert the theorem (A ∩ B) = A U B into logical form and prove by the Truth Table.					
	(v)	If G is a group under the operation $*$ and $a,b \in G$, then solve the equation $a * x = b$			
	(vi)	Write the Descriptive Form and Tabular Form of the Set $\{x \mid x \in 0 \land 3 < x < 12\}$			
	(vii)	If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ find the values of a and b.			
	(viii)	Find the Co-factors A_{12} and A_{22} if $A = \begin{bmatrix} 2 & 3 \\ 2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$			
	(ix)	Find the value of x if (x) If α , β are the roots of $5x^2 - x - 2 = 0$			
		then form an equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$ pakeity.org			
	(xi)	Find Three Cube Roots of Unity. (xli) Solve the Equation 2x4 - 32 = 0			
Q.No.3	(i)	Write $\frac{3x^2 - 4x - 5}{(x - 2)(x^2 + 7x + 10)}$ in form of Partial Fraction without finding the constants.			
	(ii)	Write $\frac{x^2}{(x-2)(x-1)^2}$ in form of Partial Fractions without finding the constants.			
	(III)	Calculate $(2.02)^4$ by means of Binomial Theorem.			
	(iv)	A die is rolled. What is the Probability that dots on the Top are greater than '4'?			
	Use Biromial Theorem to expand $(\frac{x}{2} - \frac{2}{x^3})^6$				
	(vi)	Expand $(4-3x)^{\frac{1}{2}}$ upto three terms taking the values of 'x" such that Expansion is valid.			
	(vii)	Find a _B of the sequence (viii) Sum the Series			
		$\begin{vmatrix} 1,-3,5,-7,9,-11, \end{vmatrix}$ $\begin{vmatrix} \frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + + a_{13} \end{vmatrix}$			
	(ix)	Find two G.M.'s between 2 and 16. (x) Which term of the A.P. 5, 2, -1 is -85?			
	(xi)	Evaluate 20_{P_3} (xii) If ${}^nC_8 = {}^nC_{12}$ find 'n'			
Q.No.4	(i)	What is the circular measure of the angle between the hands of a watch at 40' Clock?			
	(ii)	Verify $\cos 2\theta = 2\cos^2 \theta - 1$, when $\theta = 30^\circ, 45^\circ$			
	(iii) Prove that $\cos^4 \theta - \sin^4 \theta = \cos^2 \theta - \sin^2 \theta$ for all $\theta \in \mathbb{R}$				
	(iv)	Find the value of Cos 105°			
		7 7774 577 544 545 545 545 545 545 545 5			

	[(R)]	L.N.INO. 1117	Paper Code No. 6193
Paper I	(Objective Type)	Inter -A- 2019	Session (2015 -17) to (2018 - 20)
Time :	30 Minutes	Inter (Part - I)	
Marks :	20	· · · · · · · · · · · · · · · · · · ·	

Note: Four possible choices A, B, C,D to each question are given. Which choice is correct fill that circle in front of that Question No. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

10.1	The reference angle for Tan $\Theta = \sqrt{3}$ is : (A) $\frac{\pi}{6}$ (B) $\frac{-\pi}{6}$ (C) $\frac{\pi}{3}$ (D) $\frac{-\pi}{3}$			
2)	$Sin(Tan^{-1}0^{\circ}) = :$ (A) -1 (B) 1 (C) 0 (D) ∞			
3)	Radius of e-circle opposite to vertex "A" of $\triangle ABC$ is: (A) $\frac{\Delta}{s}$ (B) $\frac{\Delta}{s-a}$ (C) $\frac{\Delta}{s-b}$ (D) $\frac{\Delta}{s-c}$			
4)	The angle above the Horizontal Line is called an angle of : (A) Depression (B) Elevation (C) Allied (D) Quadrental			
5)	Period of $\csc \Theta$ is : (A) \overline{A} (B) $-\overline{A}$ (C) $2\overline{A}$ (D) $-2\overline{A}$			
5)	$\cos (\theta - 180^{\circ}) = :$ (A) $\sin \theta$ (B) $-\cos \theta$ (C) $\cos \theta$ (D) $-\sin \theta$			
7)	97 rad in degree measure is : (A) 321° (B) 322° (C) 323° (D) 324°			
3)	Total number of terms in expansion of $(\frac{x}{2}, \frac{2}{2^2})^{16}$ are : (A) 17 (B) 16 (C) 15 (D) 14			
))	The Statement $4^k > 3^k + 4$ is true for . (A) $K < 2$ (B) $K \le 2$ (C) $K \ne 2$ (D) $K \ge 2$			
0)	A die is thrown, what is the probability to get 3 dots: (A) $\frac{1}{3}$ (B) $\frac{1}{6}$ (C) $\frac{2}{3}$ (D) $\frac{5}{6}$ $\frac{8!}{2}$ = (A) 7! (B) 7 (C) 8 (D) 8!			
1)	$\frac{8!}{7!}$ = (A) 7! (B) 7 (C) 8 (D) 8!			
2)	If H is H.M. between "a" and "b" then H = : (A) $\frac{2ab}{a+b}$ (B) $\frac{a+b}{2ab}$ (C) $\frac{a+b}{2}$ (D) $\pm \sqrt{ab}$			
3)	If $a_n = \frac{(-1)^{n+1}}{2^n}$, then $a_5 = :$ (A) $\frac{1}{8}$ (B) $\frac{1}{16}$ (C) $\frac{1}{32}$ (D) $\frac{1}{64}$			
4)	In $\frac{P(x)}{Q(x)}$, if degree of $P(x) \ge$ degree of $Q(x)$, then fraction is : (A) Proper (B) Improper (C) Irrational (D) Identity			
5)	When $x^3 - 2x^2 + 3x + 3$ is divided by $x - 3$, the remainder is : (A) -21 (B) 21 (C) -51 (D) 51			
5)	An equation which remains unchanged when x is replaced by $\frac{1}{x}$ is: (A) Exponential (B) Radical (C) Reducible (D) Reciprocal			
7)	If Order of $X = 3 \times 2$ and that of $A = 2 \times 2$ then order of $XA = (A) 3 \times 2$ (B) 2×3 (C) 2×2 (D) 3×3			
3)	The matrix [a b c d] is : (A) Square (B) Unit (C) Null (D) Row			
")	If $A = \{a, \{a, b\}\}$, then number of elements in P(A) is : (A) 2 (B) 3 (C) 4 (D) 8			
1)	The property used in $(a+1) + \frac{3}{4} = a + (1 + \frac{3}{4})$ is :			
_	pakcity.org (A) Closure (B) Associative (C) Commutative (D) Additive			

KOII INU.] 1117 -	30000	Session (2015 -17)	to (2018 - 20)	Inter (Part - 1)
Mathematics (St	ubjective) Inter-	A -2019	Time 2:30 Hours	Marks: 80	

Note: It is compulsory to attempt any (8 - 8) Parts each from Q.No. 2 and Q.No. 3 while attempt any (9) Parts from Q.No. 4. Attempt any (3) Questions from Part - II. Write same Question No. and its Part No. as given in the Question Paper.

L	No. and its Part No. as given in the Question Paper.						
	Part - I Part - I pakcity.org 25 x 2 = 50						
3.2	(i)	If Z_1 and Z_2 are complex numbers then show that $\overline{Z_1Z_2} = \overline{Z_1} \overline{Z_2}$					
	(ii)	If $A = \begin{pmatrix} 2 & 3 & -2 \\ -1 & 1 & 5 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -3 & 1 \\ 5 & 4 & -1 \end{pmatrix}$ then solve the equation $3x - 2A = B$ for X .					
	(iii)	2-7i 4+5i	(iv)	If A and B are Overlapping Sets then draw the Venn Diagram of A-B			
	(v)	Find the Multiplicative Inverse of -3 - 51	(vi)	Find Four 4th Roots of 81			
	(vii)	Define Intersection of two sets and give an example.	(viii)	Without expansion show that : $\begin{bmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{bmatrix} = 0$			
	(ix)	Define Identity Matrix and give an example.	(x)	Show that the roots of $px^2 - (p - q)x - q = 0$ are rational.			
	(xi)	If α , β are the roots of $x^2 - px - p - c = 0$ then prove that $(1 + \alpha)(1 + \beta) = 1 - c$	(xii)	Define Monoid.			
0.3	(i)	For the identity $\frac{1}{(x-1)(2x-1)(3x-1)} = \frac{1}{3}$	$\frac{A}{x-1}$	$\frac{B(0) > C}{2x < 1}$ calculate the value of A			
	(ii)	Find the indicated term of the sequence	20	11,17, a ₇			
	(iii)	Write the first four terms of the AR 11 8 = 5 and other three consecutive terms are 23, 26, 29					
	(iv)	Find the 12th term of the Geometric Sequence : 1 + i, 2i, -2 + 2i,					
	(v)						
	(vi)	How many words can be formed from the letters of the word "OBJECT" using all letters without repeating any letter?					
_	(vii)						
	(viii)						
	(ix)	Find 6 th term in the expansion of $(x^2 -$	$\frac{3}{2x}$)				
	(x)	Expand $\sqrt{99}$ by using Binomial Expansion to	find	its value upto three places of decimals.			
_	(xi)	Define Improper Rational Fraction.					
	(xli)	Resolve $\frac{1}{x^2-1}$ into Partial Fractions.					
0.4	(i)	Define Degree Measure.	(ii)	Solve Sinx = $\frac{1}{2}$			
	(111)	V3	(iv)	Prove $\frac{S \ln 8x + S \ln 2x}{\cos 8x + \cos 2x} = \text{Tan5x}$			
	(v)	Prove that $Cos(Sin^{-1}x) = \sqrt{1 - x^2}$	(vi)	Find the period of $\cot \frac{x}{2}$			
	(vil)	If $\sin\theta = -\frac{1}{2}$, terminal arm of θ is not	t in I	I Quadrant , find Tan $ heta.$			
	(viii)	The area of a $\triangle ABC$ is 2437. If a = 7	9 and	$I c = 97$, find the angle β .			
	(ix)	Prove that $\Delta = \sqrt{s(s-a)(s-b)}$	(s-a)	:)			
	(x)	Prove that $(Sec\theta - Tan\theta)^2 = \frac{1-Sin\theta}{1+Sin\theta}$					
	(xi)	Prove $Sin(\alpha+\beta).Sin(\alpha-\beta) = Sin^2\alpha - S$	in ² B				
	(xii)	If $\beta = 52^{\circ}$, $\gamma = 89^{\circ}35'$, $a = 89.35$ find th		e b of a ΔARC			
	(xiii) Prove $\sqrt{\frac{1+Sin\alpha}{1-Sin\alpha}} = \frac{Sin\frac{\alpha}{2} + Cos\frac{\alpha}{2}}{Sin\frac{\alpha}{2} - Cos\frac{\alpha}{2}}$						

No.1117 pakcity.org Part - II

			165	
.5	(a)	Convert (AUB)UC = AU(BUC) to logical form and prove by	(5)	
	ĺ	constructing truth table.		
	(b)	Sum to n terms, the series : 3 + 33 + 333 +	(5)	
6	(a)	Solve the equations if possible by Cramer's Rule. (5		
		$2x_1 - x_2 + x_3 = 8$		
		$x_1 + 2x_2 + 2x_3 = 6$		
		$x_1 - 2x_2 - x_3 = 1$		
	(b)	Find the Probability that sum of dots appearing two successive	(5)	
		throws of two dice is every time 7.		
7	(a)	Find the values of "a" and "b" if "2" and "2" are the roots of (5)		
		polynomial x ³ - 4x ² + ax + b		
	(b)	Find the Coefficient of term involving x^{-1} in the expansion of	(5)	
		$(\frac{3}{2}x - \frac{1}{3x})^{11}$ EDUCATION		
8	(a)	Show that the area of a sector of a circular region of radius "r"	(5)	
		is $\frac{1}{2}r^2\theta$, where θ is the circular measure of the central angle of the		
		sector. pakcity.org		
_	(b)	Prove that $\frac{Cos8^o - Sin8^o}{Cos8^o + Sin8^o} = tan37^o$	(5)	
9	(a)	Show that $\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$	(5)	
_	(b)	Prove that $\sin^{-1}\frac{5}{13} + \sin^{-1}\frac{7}{25} = \cos^{-1}\frac{253}{325}$	(5)	

Paper I (Objective Type)

Inter - A - 2018

Time Allowed

Please visit for more data at: www.pakcity.org

: 30 Minutes

Inter (Part - I)

Maximum Marks

Session (2014-16) to (2017-19)

Bahawalpur Board-2018

	Barlawaipur Boaru-2016
Note :	Four possible choices A, B, C, D to each question are given. Which choice is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.
Q. (1)	What is the Multiplicative Inverse of 1 - 2i :
(1)	(A) $\frac{1+2i}{5}$ (B) $\frac{1-2i}{5}$ (C) $\frac{1+2i}{\sqrt{5}}$ (D) $\frac{1-2i}{\sqrt{5}}$
(2)	A Square Matrix A is Skew-Symmetric if $(A)^{t} = : (A) A (B) - A (C) \overline{A} (D) - A^{t}$
(3)	If A is a Matrix of Order 4 x 3, then number of elements in each column of A is: (A) 2 (B) 3 (C) 4 (D) 5
(4)	How many inverse elements correspond to each element of a group:
	(A) At least one (B) Only One (C) Two (D) At least two
(5)	The Roots of the Equation $x^2 + x + 2 = 0$ are : (A) Real, Equal (B) Real, Unequal (C) Equal (D) Imaginary
(6)	The Sum $\sum_{K=1}^{n} 1 = :$ (A) 1 (B) n (C) n^2 (D) n^3
(7)	Partial Fractions of $\frac{x+y}{(x-1)(x^2+2)}$ will be:
	(A) $\frac{A}{x-1} + \frac{Bx+C}{x^2+2}$ (B) $\frac{A}{x-1} + \frac{B}{x^2+2}$ (C) $\frac{Ax}{x-1} + \frac{Bx+C}{x^2+2}$ (D) $\frac{A}{x-1} + \frac{Bx}{x^2+2}$
(8)	If $3^{x} + 2^{2x} = 5^{x}$, then the value of x is (A) 0 (B) 1 (C) 2 (D) 3
(9)	The Geometric Means between -2i and 8i are (A) ± 4 (B) ± 2 (C) ± 3i (D) ± 4i
(10)	If $n \not\in z^+$ and $ x < 1$, then the Expansion $1 + nx + \frac{n(n-1)}{2!}x^2 +$ is : (A) Arithmetic Series (B) Geometric Series (C) Harmonic Series (D) Binomial Series
(11)	The Non-Occurrence of an Event E is denoted by \overline{E} and $P(\overline{E})$ is given by : (A) $P(\overline{E}) - 1$ (B) $1 - P(E)$ (C) $1 - P(\overline{E})$ (D) $P(E) - 1$
(12)	If P(E) is the Probability of an Event E, then :
	(A) $0 < P(E) < 1$ (B) $0 > P(E) > 1$ (C) $0 \le P(E) \le 1$ (D) $0 \ge P(E) \ge 1$
(13)	The 2nd term in the expansion $(1 + 2x)^{\frac{-1}{3}}$ is : (A) $\frac{-2}{3}$ × (B) $\frac{2}{3}$ × (C) -6x (D) $\frac{x}{3}$
(14)	Period of Sec 10 x is : (A) $\frac{\pi}{2}$ (B) π (C) $\frac{\pi}{5}$ (D) 2π
(15)	$\cos\left(\Theta + \frac{3\pi}{2}\right)$ is equal to: (A) $-\sin\Theta$ (B) $\sin\Theta$ (C) $-\cos\Theta$ (D) $\cos\Theta$
(16)	An Angle in the Standard Position whose terminal arm lies on the x-axis or on the y-axis is called :
· _	(A) Obtuse Angle (B) Acute Angle (C) Right Angle (D) Quadrantal Angle
(17)	Radius of Escribed Circle opposite to Vertex C of the Triangle is : (A) $\frac{\Delta}{s}$ (B) $\frac{\Delta}{s-a}$ (C) $\frac{\Delta}{s-b}$ (D) $\frac{\Delta}{s-c}$
(18)	If $\sin x = \frac{\sqrt{3}}{2}$ and $x \in [0, 21]$ then x is : (A) $\frac{51}{3}$, $\frac{41}{3}$ (B) $\frac{11}{4}$, $\frac{31}{4}$ (C) $\frac{11}{3}$, $\frac{211}{3}$ (D) $\frac{11}{6}$, $\frac{511}{6}$
(19)	$2 \tan^{-1} A = (A) \tan^{-1} \frac{2A}{1 + A^2}$ (B) $\tan^{-1} \frac{2A}{1 - A^2}$ (C) $\tan^{-1} \frac{1 - A^2}{2A}$ (D) $\tan^{-1} \frac{1 + A}{2A}$
(20)	In any Triangle ABC, with usual notation $\tan \frac{\delta}{2} =$ (A) $\frac{(s-a)(s-b)}{(s-b)}$ (B) $\frac{(s-b)(s-c)}{(s-b)(s-c)}$ (C) $\frac{(s-c)(s-a)}{(s-b)}$ (D) $\frac{s(s-a)}{(s-b)}$

Roll No.	817 - 27000		
Mathematics (Subjective)	Inter-A-2018	Inter (Part - I)	
Time: 2:30 Hours	Session (2014 - 16) to (2017 -19)	Total Marks : 80	

Note: It is compulsory to attempt (8 - 8) parts each from Q.No.2 and 3 while attempt any 9 parts from Q. No.4. Attempt any (03) questions from Part II. Write same Question No. and its Part No. as given in the question paper.

Bahawalpur Board-2018

Part - I

25 x 2 = 50

Q.No.2 (i) Simplify and justify each step $\frac{4+16x}{4}$ by using its properties.

- (ii) Separate into Real and Imaginary Parts $\frac{i}{1+i}$
- (iii) Find the Inverse of a relation $\{(x,y) \mid y = 2x + 3, x \in \mathbb{T}R \}$
- (iv) If $A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find "a "and "b"
- (v) Show that $\forall z \in C$, $z^2 + (\overline{z})^2$ is a Real Number.
- (vi) If $A = \begin{bmatrix} i & 1+i \\ 1 & -i \end{bmatrix}$, show that $A + (\overline{A})^T$ is Hermitian.
- (vii) Find x , if $\begin{vmatrix} 1 & 2 & 1 \\ 2 & x & 2 \\ 3 & 6 & x \end{vmatrix} = 0$

(viii) Solve $x^3 + x^2 + x + 1 = 0$

- (ix) Write two proper subsets of {0,1}
- (x) Construct the truth Table of P→(pvq)
- (xi) When $x^4 + 2x^3 + Kx^2 + 3$ is divided by x 2, the remainder is 1, find the value of K.
- (xii) If ∞ , β are the roots of $x^2 px p c = 0$, prove that $(1 + \infty)(1 + \beta) = 1 c$
- Q.No.3 (i) Define Proper Rational Fraction.

(ii) Define Harmonic Progression.

- (iii) If a = 3n 11, then find nth term of A.P.
- (iv) How many terms of the given series -7 + (-5) + (-3) + -- amount to 65?
- (v) Find Vulgar Fraction Equivalent 1. 34
- (vi) Write values of: (i) $\sum_{K=1}^{n} K$ and (ii) $\sum_{K=1}^{n} K^3$
- (vii) Find the value of " n " if n_{p_4} : $n-1_{p_3} = 9:1$
- (viii) Find the number of Diagonals of 6-Sided Figure.
- (ix) By using Mathematical Induction show that

 $1 + \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^{n-1}} = 2 \left(1 - \frac{1}{2^n} \right)$ is true for n = 1 and n = 2

(x) Find 6th term in the Expansion of $\left(x^2 - \frac{3}{2x}\right)^{10}$

- (xi) Using Binomial Theorem, find the value of $\frac{1}{\sqrt[5]{252}}$ to three places of Decimals.
- (xii) Let $S = \{1,2,3,\dots 9\}$; Event $A = \{2,4,6,8\}$; Event $B = \{1,3,5\}$; Find $P(A \cup B)$
- Q.No.4 (i) Find the Radius of the Circle in which the arms of a Central Angle of Measure 1 radian cut off an Arc of length 35 cm.
 - (ii) Show that $\cos(\alpha + \beta)\cos(\alpha \beta) = \cos^2 \alpha \sin^2 \beta$
 - (iii) A ladder leaning against a vertical wall makes an angle of 24° with the wall. Its foot is 5 m from the wall. Find its length.
 - (iv) If α, β, δ are the angles of a Triangle ABC, then prove that $\cos\left(\frac{\alpha+\beta}{2}\right) = \sin\frac{\delta}{2}$
 - (v) Evaluate $\frac{\tan \frac{\pi}{3} \tan \frac{\pi}{6}}{1 + \tan \frac{\pi}{3} \tan \frac{\pi}{6}}$ (vi) With Usual Notations show that $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$
 - (vii) Write any two laws of Tangents (viii) Define Period of a Trigonometric Function.
 - (ix) Prove that $\frac{2 \tan \Theta}{1 + \tan^2 \Theta} = 2 \sin \Theta \cos \Theta$ (x) Prove that $\frac{\sin 8x + \sin 2x}{\cos 8x + \cos 2x} = \tan 5x$

- (xi) Evaluate without using Calculator $tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
- (xii) Solve the Equation $\cos x = -\frac{1}{2}$
- (xiii) Find the Solution of $\cot \Theta = \frac{1}{\sqrt{3}}$ which lies in $[0, 2\pi]$

- Q.No.5 (a) Let A, B, C are any non-empty sets, then show that $AU(B \cap C) = (AUB) \cap (AUC).$
 - (b) Define Rank of a Matrix and find Rank of given Matrix : (5)

(5)

$$\left[\begin{array}{ccccc}
1 & -1 & 2 & -3 \\
2 & 0 & 7 & -7 \\
3 & 1 & 12 & -11
\end{array}\right]$$

Q.No.6 (a) Use Synthetic Division to find the values of x + 1 and

$$x - 2$$
 are the factors of the Polynomial $x^3 + px^2 + qx + 6$ (5)

- (5)
- (b) Resolve $\frac{2x^{\frac{n}{2}}}{(x-3)(x+2)^2}$ into Partial Fractions.

 Q.No.7 (a) Find " n " so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the Arithmetic Mean (A.M.) (5)
 - (b) Prove by Mathematical Induction that for all positive integral values of "n" (5) $\frac{1}{3} + \frac{1}{2^2} + \dots + \frac{1}{2^n} = \frac{1}{2} \left[1 - \frac{1}{2^n} \right]$
- Q.No.8 (a) Prove that : (i) $(Sec \Theta + tan \Theta)(Sec \Theta tan \Theta) = 1$

(ii)
$$(\cos^2\Theta - \sin^2\Theta) = \frac{1 - \tan^2\Theta}{1 + \tan^2\Theta}$$
 (5)

- (b) Show that (without using calculator) $\cos 20^{\circ} \cos 40^{\circ} \cos 40^{\circ} = \frac{1}{8}$ (5)
- Q.No.9 (a) Show that $r_3 = 4 R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \sin \frac{\delta}{2}$ with usual notations of $\triangle ABC$ (5)
 - (b) Prove that $\tan^{-1}(\frac{3}{4}) + \tan^{-1}(\frac{3}{5}) \tan^{-1}(\frac{8}{19}) = \frac{\pi}{4}$ (5)