|                                        |                                                                                                                                        | listry Objective Pape                                                            |                                                                 |                                                                                                                                           |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1124                                   |                                                                                                                                        | your Roll No. in the sp                                                          | ace provided and sign                                           | Roll No                                                                                                                                   |
|                                        | (Inter Part – I)                                                                                                                       | (Session 2020-22 to                                                              | _                                                               |                                                                                                                                           |
| Chemi                                  | stry (Objective)                                                                                                                       | ( Group - I                                                                      | ,                                                               | er (I)                                                                                                                                    |
| Time A                                 | Allowed:- 20 minutes                                                                                                                   | PAPER CODI                                                                       |                                                                 | imum Marks:- 17                                                                                                                           |
| that circles result in Answer white co | le in front of that question nu<br>zero mark in that question. W<br>Sheet and fill bubbles according<br>trecting fluid is not allowed. | mber. Use marker or pen to rite PAPER CODE, which ingly, otherwise the student w | s printed on this question will be responsible for the si  Q. 1 | which you think is correct; fill<br>filling two or more circles will<br>paper, on the both sides of the<br>tuation. Use of Ink Remover or |
| 1)                                     | The Cathodic reaction in                                                                                                               | the electrolysis of dil. H                                                       | <sub>2</sub> SO <sub>4</sub> with Pt electrode                  | is                                                                                                                                        |
|                                        | (A) Reduction                                                                                                                          | (B) Oxidation                                                                    | (C) Both reduction an Oxidation                                 | d (D) Neither oxidation nor reduction                                                                                                     |
| 2)                                     | Catalyst for a catalyst is                                                                                                             | also called                                                                      |                                                                 |                                                                                                                                           |
|                                        | (A) Promotor                                                                                                                           | (B) Inhibitor                                                                    | (C) Poisoning                                                   | (D) Retarder                                                                                                                              |
| 3)                                     | 27 g of Al will react cor                                                                                                              | npletely with how much                                                           | mass of O <sub>2</sub> to produce                               | $A\ell_2O_3$                                                                                                                              |
|                                        |                                                                                                                                        |                                                                                  | (C) 32 gm of oxygen                                             | (D) 24 gm of oxygen                                                                                                                       |
| 4)                                     | The mass of one mole of                                                                                                                |                                                                                  | (C) 0.194                                                       | (D) 1.673 mg                                                                                                                              |
|                                        | (A) 1.008 mg                                                                                                                           | (B) 0.55 mg                                                                      | (C) 0.184 mg                                                    |                                                                                                                                           |
|                                        |                                                                                                                                        | (B) R <sub>f</sub> values of solute                                              | (C) Temperature of the experiment                               | ne (D) Size of chromatographic tank used                                                                                                  |
|                                        | slowly to get large size crystals                                                                                                      | (B) Is cooled at a moderate<br>rate to get medium<br>sized crystals              | (C) Is evaporated to gether crystals of the product             | get (D) Is mixed with an immiscible liquid                                                                                                |
| 7)                                     |                                                                                                                                        | O <sub>2</sub> is maximum at                                                     | (C) 00C 1 2-t                                                   | (D) 273°C and 2atm                                                                                                                        |
| •                                      | (A) STP                                                                                                                                | (B) 127°C and latin                                                              | (C) 0°C and 2atm                                                | (D) 273 Calid Zauli                                                                                                                       |
| 8)                                     | Which of the following                                                                                                                 | will have same number of                                                         | (C) Ma of CO and                                                | (D) $28g$ of $N_2$ and                                                                                                                    |
|                                        | (A) $280 \text{ cm}^3 \text{ of } CO_2 \text{ and}$                                                                                    | (b) 11.2 din of $O_2$ and                                                        | 11.2 dm <sup>3</sup> of CO <sub>2</sub>                         | $5.6  \mathrm{dm}^3  \mathrm{of}  \mathrm{oxygen}$                                                                                        |
| 0)                                     | 280 cm <sup>3</sup> of N <sub>2</sub> O • Acetone and chloroform                                                                       | 3½g 01 U2                                                                        | her due to                                                      | 5.0 dili of onygen                                                                                                                        |
|                                        | (A) Intermolecular hydrogen bonding                                                                                                    | (B) Ion dipole interaction                                                       | (C) Instantaneous dipole                                        | (D) Hydrolysis                                                                                                                            |
|                                        | (A) NaNO <sub>3</sub> , KNO <sub>3</sub><br>) Which of the following                                                                   | (B) ZnSO <sub>4</sub> , NiSO <sub>4</sub>                                        | (C) Cu, Ag                                                      | (D) NaCl, CuCl <sub>2</sub>                                                                                                               |
| 11                                     | (A) Electron                                                                                                                           | (B) Proton (C)                                                                   | Neutron _                                                       | (D) Alpha ray                                                                                                                             |
| 12                                     | When 6d orbital is comp                                                                                                                |                                                                                  |                                                                 | -                                                                                                                                         |
|                                        | (A) 7f                                                                                                                                 | (B) 7s pakcity.                                                                  | O(C).7p                                                         | (D) 7d                                                                                                                                    |
| 13                                     | The type of hybridization                                                                                                              |                                                                                  | $(CH_2 = CH_2)$ is                                              |                                                                                                                                           |
| 10                                     | (A) sp                                                                                                                                 | (B) $sp^3$                                                                       | C) $sp^2                                    $                   | isp                                                                                                                                       |
| 14                                     | Which of the following                                                                                                                 |                                                                                  | c bonding                                                       |                                                                                                                                           |
|                                        | (A) CaO •                                                                                                                              | (B) CH <sub>4</sub>                                                              | (C) CH₃Cl                                                       | (D) $C_2H_6$                                                                                                                              |
| . 15                                   | i) The change in heat ener                                                                                                             | gy of a chemical reaction                                                        | n at a constant tempera                                         | ture and pressure is called                                                                                                               |
|                                        | (A) Enthalpy change                                                                                                                    |                                                                                  | (C) Heat of sublimation                                         | (D) Internal energy                                                                                                                       |
| 16                                     | 6) For which system, does                                                                                                              | the equilibrium constant                                                         | t (K <sub>c</sub> ) has units of (Con                           | centration) $(D) 2UE \rightarrow U \perp E$                                                                                               |
|                                        | $(A) N_2 + 3H_2 \rightleftharpoons 2NH_3$                                                                                              | (B) $H_2 + I_2 \rightleftharpoons 2HI$                                           | $(C) 2NU_2 \rightleftharpoons N_2U_4$                           | (D) $2HF \rightleftharpoons H_2 + F_2$                                                                                                    |
| 17                                     | <ul> <li>(A) Dilute solutions which behaves as</li> </ul>                                                                              | (B) Concentrated solution which behaves as near                                  | s (C) Both A and B                                              | (D) Neither A nor B                                                                                                                       |
|                                        | nearly ideal solutions                                                                                                                 | non-ideal solutions                                                              |                                                                 |                                                                                                                                           |

11th Class Chemistry Subjective Paper Group 1 Sargodha Board 2024 1124 (Inter Part - I) Warning: Please, do not write anything on this question paper except your Roll No. (Session 2020-22 to 2023-25) Group (I) Paper (I) (Subjective) Chemistry Section ----- I Time Allowed: 2.40 hours Maximum Marks: 68 Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ 2. Calculate percentage of phosphorus and Nitrogen in (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> (i) 10g of Magnesium and 5g of Carbon have equal number of atoms. Justify. (ii) Define Stoichiometry. Give its basic conditions. (iii) Differentiate between Qualitative and Quantitative analysis. (iv) Write down method to separate iodine from its aqueous solution. (v) How cooling can be done for Crystallization? (Any two methods) (vi) Water vapours don't behave ideally at 273 K. Explain with reason. (vii) Calculate the value of "R" in ideal gas equation. (Any units) (viii) Give characteristics of Plasma. (x) Calculate the pH of 10-4 mol.dm<sup>-3</sup> of Ba(OH)<sub>2</sub> (ix) Write down K<sub>c</sub> units for the following reaction  $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$ (xi) Explain that a Mixture of NH<sub>4</sub>OH and NH<sub>4</sub>Cl gives us a basic buffer. (xii)  $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-3. Why diamond is hard and electrical insulator. (i) Heat of sublimation of substance is greater than it's heat of vaporization, give it's reason. (ii) What are Debye forces. (iv) What is effect of temperature and surface area on evaporation. (iii) Calculate mass of electron from it's charge and e/m value. (v) How does neutron interact with  ${}^{14}_{7}N$  and  ${}^{65}_{29}Cu$ (vi) e/m value of positive rays depends on nature of gas which is used in discharge tube, explain it. (vii) Differentiate between Zeeman effect and Stark effect. (viii) Differentiate between molarity and molality. (x) Justify that aqueous solution of NaCl is neutral. (ix) What is catalytical poisoning. (xii) Differentiate between homogenous catalysis and heterogenous catalysis. (xi)  $6 \times 2 = 12$ Answer briefly any Six parts from the followings:-4. Write down the cause of chemical combination. (ii) Why atoms have no sharp boundary? (i) Why lone pair of electrons occupies more space than a bond pair? (iii) Bond angle in NF<sub>3</sub> shrinks to 102° why? (v) What is meant by internal energy? (iv)

(vi) Define standard enthalpy of formation. Give example.

(vii) Define standard enthalpy of reaction. Give example.

(viii) Calculate oxidation number of Cr in Cr<sub>2</sub>O<sub>3</sub>.

(ix) A porous plate or a salt bridge is not required in lead storage cell. Why?

Section ----- II  $(8 \times 3 = 24)$ 

Note: Attempt any three questions.

5. (a) What is Stoichiometry? Give its assumptions? Mention two important Laws, which help to perform the Stoichiometric calculations?

(b) Define ionic solids. Discuss Any six properties of ionic solids in detail.

6. (a) A sample of Krypton with a volume of 6.25 dm<sup>3</sup>, a pressure of 765 torr and a temperature of 20 °C is expanded to a volume of 9.55 dm<sup>3</sup> and a pressure of 375 torr. What will be its final temperature in °C

(b) Explain Millikan's oil drop experiment to determine the charge of an electron.

7. (a) Discuss sp<sup>2</sup>-hybridization with example of ethene.

(b) Calculate the pH of a buffer solution in which 0.11 molar CH<sub>3</sub>COONa and 0.09 molar acetic acid solution are present.  $K_a$  for CH<sub>3</sub>COOH is  $1.85 \times 10^{-5}$ 

8. (a) Define Hess's law of constant heat summation. How the enthalpy of formation of CO can be calculated with it.

(b) Describe fuel cell in detail with diagram.

9. (a) Explain the terms Molarity and Molality with their formulas.

(b) Write four characteristics of Enzyme catalysis.

1134 - 1124 -- 18000



|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | istry Objective Paper                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1124                           | Warning:- Please write (Inter Part - I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | te your Roll No. in the sp<br>(Session 2020-22 to                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| Chemi                          | istry (Objective)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( Group - I                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Paper                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                                | Allowed:- 20 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PAPER COL                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                     | m Marks:- 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ch objective type question as                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEW PRINCIPAL AND ADDRESS OF THE      | and the in Manuachin desired in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |
| hat circ<br>esult in<br>Answer | le in front of that question n<br>zero mark in that question. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | umber. Use marker or pen to<br>Vrite PAPER CODE, which<br>lingly, otherwise the student v | fill the circles. is printed on thi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cutting or files is question parties. | ling two or mor<br>aper, on the bot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e circles will<br>h sides of the |
|                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | constant is the ratio of th                                                               | e elevation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | boiling poin                          | nt to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| -7                             | (A) Molarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (B) Molality                                                                              | (C) Mole fra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 THE SEC. 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion of                          |
| 2)                             | During a redox reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                                | (A) gains electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) is oxidized                                                                           | (C) loses elec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | etrons                                | (D) Is hydrol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | yzed                             |
| 3)                             | in large excess, then or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is present                       |
|                                | (A) 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B) 3                                                                                     | (C) 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                     | (D) 1 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
| 4)                             | One dm <sup>3</sup> of $N_2$ at S.T.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | contains about (B) $3.01 \times 10^{23}$ atoms                                            | (C) 602 × 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0^{23}$ atoms                        | (D) 2.68 × 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 <sup>19</sup> atoms            |
| <b>5</b> \                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o atoms                               | (D) 2.00 A I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) atoms                          |
|                                | (A) 0.25 The molar volume of Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f CO <sub>2</sub> which contain 8.0g (B) 0.50 On is maximum at                            | (C) 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.                                   | (D) 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
| ŕ                              | (A) STP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B) 127°C and 1atmed<br>der Waals equation will r                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | (D) 273°C as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd 2atm                          |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) 'a' is small and 'b' is large                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | (D) Both 'a' small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| 8)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t which the solutes move (B) Temperature of the experiment                                | in paper chron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | natography<br>of solutes              | depend on (D) Size of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aphic tank use                   |
| 9)                             | In the presence of KI, ic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | odine dissolves in water d                                                                | ue to formatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n of                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| •                              | (A) I <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B)                                                                                       | (C) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | (D) $\mathcal{P}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                |
| 10                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) Change of bond lengths                                                                | (C) Change of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of bond                               | (D) Empty sp<br>in the stru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aces presenucture of ice         |
| 11                             | The molecules of CO <sub>2</sub> i<br>(A) Ionic crystals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n dry ice form the (B) Covalent crystals                                                  | (C) Molecular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r crystals                            | (D) Atomic c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rystals                          |
| 12)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es when atoms are subject                                                                 | ted to strong m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nagnetic fiel                         | ld is called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |
| 12                             | (A) Zeeman effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B) Stark effect of electrons in a subshell                                               | AND ADDRESS OF THE PARTY OF THE | ctric effect                          | (D) Compt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on effect                        |
| 13,                            | (A) $2\ell - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | (C) $2(2\ell-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ĺ                                     | (D) $2(2\ell + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                |
| 14)                            | The second contraction of the second contrac | molecules has net dipole (B) SO <sub>2</sub>                                              | moment? (C) CCl <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | (D) AℓCℓ <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| 15                             | (A) SiH <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , ,                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | anding mal                            | and the second of the second o | <sub>5</sub> 9                   |
| 15                             | (A) $O_2^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (B) $O_{5}^{2-}$                                                                          | (C) $N_2^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | manig mon                             | (D) $F_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) i                              |
|                                | related to each other a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd at consta                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 17                             | (A) q <sub>p</sub> > q <sub>v</sub> • The pH of 10 <sup>-3</sup> mol dm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B) $q_p < q_v$<br>of an aqueous solution                                                 | (C) $q_p = q_v$<br>of $H_2SO_4$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y                                     | (D) $q_p =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · q <sub>v</sub> /2              |
|                                | (A) 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B) 2.7                                                                                   | (C) 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | (D) 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1135 - 1124 1                                                                             | 15000 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |

11th Class Chemistry Subjective Paper Group 2 Sargodha Board 2024 1124 (Inter Part - I) Warning:- Please, do not write anything on this question paper except your Roll No. Chemistry (Subjective) (Session 2020-22 to 2023-25) Group (II) Section ----- I Time Allowed: 2.40 hours **Maximum Marks: 68**  $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-2. Calculate the number of moles in 52 g of Aspartame (C<sub>14</sub> H<sub>18</sub> N<sub>2</sub> O<sub>5</sub>) (i) Write down the two steps to calculate the empirical formula. (iii) Atomic masses of elements show many examples of fractional values. Justify. (iii) How decolourization of undesirable colours can be done during crystallization. (iv) Define Sublimation. Name any two substances that can be sublimed. (v) What is safe and reliable method for drying the crystals? Briefly explain. (vi) Calculate the mass of 10<sup>20</sup> molecules of CO<sub>2</sub> at STP. (vii)

CO<sub>2</sub> is more non-ideal of 0°C than at 100°C. Explain with reason. (viii)

What is Joule-Thomson effect? Give its significance. (ix)

Calculate the pH of 10<sup>-4</sup> mole dm<sup>-3</sup> of Ba(OH)<sub>2</sub> (x)

Write down  $K_c$  units for following reactions.  $Sn_{(aq)}^{+2} + 2Fe_{(aq)}^{+3} \Rightarrow Sn_{(aq)}^{+4} + 2Fe_{(aq)}^{+2}$ (xi)

The solubility of Glucose increases by increasing the temperature. Give reason. (xii)

 $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-3.

Why melting and boiling points of halogens increase down the group. (i)

Give one application of hydrogen bonding. (iii) Define isomorphism with one example. (ii)

Give two uses of Liquid Crystals. (v) Why positive rays are also called cannal rays. (iv)

What is Zeeman's effect. (vii) Give two postulates of Plank's theory. (vi)

State Hund's rule. (ix) Define energy of activation. (viii)

Discuss homogeneous catalysis with example. (x)

What is ebullioscopic constant. (xii) NaCl lowers the melting point of water. Justify. (ix)

 $6 \times 2 = 12$ Answer briefly any Six parts from the followings:-4.

Why the second ionization energy is always greater than first ionization energy? (i)

No bond in compounds is 100% ionic. Why? (iii) Sketch molecular orbital picture of N<sub>2</sub>. (ii)

Define dipole moment. Give relationship between its various units. (iv)

Define heat and temperature Wi What is thermochemical equation? Give two examples. (v)

 $\Delta H \approx \Delta E$  for reaction in solution form. Why? (vii)

Differentiate between oxidation and reduction with examples. (viii)

What electrode reactions occur in nickel cadmium battery? (ix)

#### Section ----- II

Note: Attempt any three questions.

 $(8 \times 3 = 24)$ 

Define empirical formula. Write down any three steps involved in the determination of 5. (a) empirical formula.

empirical formula.

Define ionic solids. Write down its only three properties. (b)

A sample of krypton with a volume of 6.25 dm<sup>3</sup>, a pressure of 765 torr and a temperature of 6. (a) 20 °C is expanded to a volume of 9.55 dm<sup>3</sup> and a pressure of 375 torr. What will be its final temperature in °C?

Explain Millikan's oil drop experiment to determine the charge of an electron. (b)

Define hybridization. Explain sp<sup>2</sup> hybridization by taking example of Ethene. 7. (a)

The solubility of PbF<sub>2</sub> at 25 °C is 0.64 g dm<sup>-3</sup>. Calculate  $K_{sp}$  of  $PbF_2$ . (b)

Describe the measurement of enthalpy of a reaction by Bomb Calorimeter. (a) 8.

Describe fuel cells. Give their uses. **(b)** 

Describe Landsberger's method for the measurement of boiling point elevation. 9. (a)

Write any four characteristics of a catalyst. (b)

#### 1136- 1124- 15000

# Sargodha Board-2023

| 1  | 123 Warning:- Please write your Roll No. in the space provided and sign Roll No  (Inter Part - I) (Session 2019-21 to 2022-24) Sig. of Student |                                                    |                                                                               |                                                           |                                                                              |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| 7  | hami                                                                                                                                           | stry (Objective)                                   | (Group - I                                                                    | , ,                                                       |                                                                              |  |  |  |
|    |                                                                                                                                                | • • •                                              | •                                                                             |                                                           |                                                                              |  |  |  |
|    |                                                                                                                                                | Allowed:- 20 minutes                               | PAPER COD                                                                     |                                                           | imum Marks:- 17                                                              |  |  |  |
|    |                                                                                                                                                |                                                    |                                                                               |                                                           | which you think is correct; fill filling two or more circles will            |  |  |  |
|    |                                                                                                                                                |                                                    |                                                                               |                                                           | paper, on the both sides of the                                              |  |  |  |
|    |                                                                                                                                                |                                                    |                                                                               |                                                           | uation. Use of Ink Remover or                                                |  |  |  |
| vh | ite co                                                                                                                                         | rrecting fluid is not allowed.                     |                                                                               | Q. 1                                                      | pakcity.org                                                                  |  |  |  |
|    | 1)                                                                                                                                             | The volume occupied by                             |                                                                               | •                                                         |                                                                              |  |  |  |
|    |                                                                                                                                                | (A) 1.12 dm <sup>3</sup>                           | (B) 2.24 dm <sup>3</sup>                                                      | (C) $22.4 \text{ dm}^3$                                   | (D) 112 cm <sup>3</sup>                                                      |  |  |  |
|    | 2)                                                                                                                                             | Which of the following                             | is a monoisotopic elemen                                                      | it.                                                       |                                                                              |  |  |  |
|    |                                                                                                                                                | (A) Silver                                         | .(B) Calcium                                                                  | (C) Chlorine                                              | (D) Fluorine                                                                 |  |  |  |
| )  | 3)                                                                                                                                             | Which of the following                             | can be sublime.                                                               |                                                           |                                                                              |  |  |  |
|    |                                                                                                                                                | (A) Calcium                                        | (B) NaCl                                                                      | (C) Naphthalene                                           | (D) $Na_2CO_3$                                                               |  |  |  |
| •  | 4)                                                                                                                                             | Constant factor in charli                          | e's law.                                                                      |                                                           |                                                                              |  |  |  |
|    | 0.000                                                                                                                                          |                                                    | (B) Pressure                                                                  | (C) Tempreture                                            | (D) Both V and T                                                             |  |  |  |
|    |                                                                                                                                                |                                                    | usion of gases NH3, SO2,                                                      |                                                           |                                                                              |  |  |  |
|    |                                                                                                                                                |                                                    | $_{2}$ (B) NH <sub>3</sub> >SO <sub>2</sub> >Cl <sub>2</sub> >CO <sub>2</sub> | (C) Cl <sub>2</sub> >SQ <sub>2</sub> >CQ <sub>2</sub> >NH | $I_3$ (D) NH <sub>3</sub> >CO <sub>2</sub> >Cl <sub>2</sub> >SO <sub>2</sub> |  |  |  |
|    |                                                                                                                                                | Which of the following                             |                                                                               | (0)                                                       |                                                                              |  |  |  |
|    |                                                                                                                                                | (A) NaCl                                           | (B) Glass                                                                     | (C) NaBr                                                  | (D) CaF <sub>2</sub>                                                         |  |  |  |
|    | 7)                                                                                                                                             | Which of the following l                           | has highest vapour pressu                                                     | re at 25°C.                                               |                                                                              |  |  |  |
|    |                                                                                                                                                | (A) Mercury                                        | (B) Ethanol                                                                   | (C) CCl <sub>4</sub>                                      | (D) Chloroform                                                               |  |  |  |
|    | 8)                                                                                                                                             | When 6d orbital is comp                            | olete the entering electron                                                   | goes into                                                 |                                                                              |  |  |  |
|    |                                                                                                                                                | (A) 7f                                             | (B) 7s                                                                        | (C) 7d                                                    | (D) 7p                                                                       |  |  |  |
|    |                                                                                                                                                |                                                    | Maly                                                                          |                                                           |                                                                              |  |  |  |
|    | 9)                                                                                                                                             | Number of bonds in nitro                           | ogen molecule is                                                              |                                                           |                                                                              |  |  |  |
|    |                                                                                                                                                | (A) One $\sigma$ and one $\pi$                     | (B) Three sigma (C)                                                           | Two sigma and one $\pi$                                   | D) One $\sigma$ and Two $\pi$                                                |  |  |  |
|    | 10)                                                                                                                                            | Units of energy in which                           | heat changes in S.I syste                                                     | m are.                                                    | -, one o and t mon                                                           |  |  |  |
|    |                                                                                                                                                | (A) Joule                                          | (B) Torr                                                                      | (C) Erg                                                   | (D) Newton                                                                   |  |  |  |
|    | 11)                                                                                                                                            | The net heat change in a                           | chemical reaction is same                                                     |                                                           |                                                                              |  |  |  |
|    |                                                                                                                                                | several steps. It is know                          | n as                                                                          | also its source                                           | ,                                                                            |  |  |  |
|    | (                                                                                                                                              | (A) Henry's law                                    | (B) Joule's principle (C)                                                     | Hesse's law (D) Lav                                       | w of conservation of energy                                                  |  |  |  |
|    | 12)                                                                                                                                            | Mixture of $NH_4OH$ and                            | NH4Cl makes a buffer w                                                        | hose pH is                                                |                                                                              |  |  |  |
|    | (                                                                                                                                              | (A) less than seven                                | (B) 7                                                                         | (C) More than seven                                       | (D) 4                                                                        |  |  |  |
|    | 13)                                                                                                                                            | For the reaction N <sub>2</sub> +3H <sub>2</sub> = | ≥2NH <sub>3</sub> , The pressure at                                           | optimum condition is.                                     |                                                                              |  |  |  |
|    | (                                                                                                                                              | (A) 100 atm                                        | (B) 600 atm                                                                   | (C) 200-300 atm                                           | (D) 1000 atm                                                                 |  |  |  |
|    | 14)                                                                                                                                            | Molarity of pure water is                          | •                                                                             |                                                           | The second second                                                            |  |  |  |
|    | (                                                                                                                                              | A) 01                                              | (B) 55.5                                                                      | (C) 18                                                    | (D) 8                                                                        |  |  |  |
|    | 15) ]                                                                                                                                          | f a strip of Cu metal is p                         | laced in a solution of FeS                                                    | 5O <sub>4</sub>                                           |                                                                              |  |  |  |
|    | (                                                                                                                                              |                                                    | (B) Fe is precipitated ou                                                     | t (C) Cu and Fe both                                      | (D) No reaction takes                                                        |  |  |  |
|    | 15 9050133                                                                                                                                     | deposited                                          |                                                                               | dissolved                                                 | place                                                                        |  |  |  |
|    |                                                                                                                                                | Oxidation number of Mn                             |                                                                               |                                                           |                                                                              |  |  |  |
|    |                                                                                                                                                |                                                    |                                                                               | (C) +3                                                    | (D) +2                                                                       |  |  |  |
|    |                                                                                                                                                |                                                    | is the same as that of the                                                    |                                                           |                                                                              |  |  |  |
|    | (                                                                                                                                              | A) First order reaction                            | (B) Second order                                                              | (C) Zero order reaction                                   | (D) Third order                                                              |  |  |  |
|    |                                                                                                                                                |                                                    | reaction                                                                      |                                                           | reaction                                                                     |  |  |  |
|    |                                                                                                                                                |                                                    | 1123 - 1123 - 180                                                             | no (1)                                                    |                                                                              |  |  |  |
|    |                                                                                                                                                |                                                    | - 1123 - 10U                                                                  | ···· ( <del>-</del> )                                     |                                                                              |  |  |  |

for more

# Sargodha Board-2023

1123 (Inter Part - I) Warning:- Please, do not write anything on this question paper except your Roll No. Chemistry (Session 2019-21 to 2022-24) Group (I) (Subjective) Paper (I) Time Allowed: 2.40 hours Section ----I Maximum Marks: 68 Answer briefly any Eight parts from the followings:-2.  $8 \times 2 = 16$ N<sub>2</sub> and CO have the same number of electrons, protons and neutrons. (i) 'Mg' atom is twice heavier than that of carbon atom. (ii) How can the efficiency of a chemical reaction can be expressed? pakcity.org (iii) List the four postulates of Kinetic molecular theory of gases. (iv) (v) What are characteristics of plasma? (vi) Throw some Light on the factor  $\frac{1}{273}$  in charle's Law. The e/m value of positive rays for different gases are different but those for cathode rays the e/m (vii) values is the same. Justify it. (viii) What are the defects of Bohr's atomic model. Compare line emission and line absorption spectra. (x) What is a spontaneous process? Give examples (ix) Why is it necessary to mention the physical states of reactant and products in a www.pakcity.org
(ii)
(iii)
(v)
(iii) thermochemical equation? (xii) Define state and state function's with one example for each. Answer briefly any Eight parts from the followings:-What is parts per million. Write its formula? What are the conditions should be fullfiled to observe colligative properties. Define hydrates. Give example. (iv) What is activation of catalyst. Give one example? (iii) How surface area has effect on the rate of reaction? (vi) Catalyst are specific in their action. (v) Why sintered glass crucible is better than gouch crucible? (vii) (iii) Write down major steps involved in complete quantitative analysis. How mixture of sand and naphthalene can be separated? (ix) Earthenware vessel keep water cool. Justify (xi) Define symmetry. What are symmetry elements. (x) Ionic solids are highly brittle in nature (xii) --(02)-- $6 \times 2 = 12$ Answer briefly any Six parts from the followings:-Define Bond Energy? A Salt Bridge maintains the electrical neutrality in the cell. Justify it. (i) Why cationic radius is smaller than atomic radius? (iii) Why 2nd Ionization Energy is always greater than first Ionization Energy? (iv) What is pK<sub>b</sub>? Give its significance. (vi) Define pH? (vi) es (vii) es (viii) pakcity.ord What does mean by chemical Equilibrium? (ix) Define Electrolysis. What is oxidation number? Give example. Note: Attempt any three questions.  $(8 \times 3 = 24)$ Section ----- II Describe combustion analysis for the determination of percentage of C, H and O in an organic compound. (a) 5. Calculate the mass of 1 dm3 of NH3 gas at 30°C and 1000 mm Hg pressure, considering that (b) NH3 is behaving ideally. Describe Manometric method for determination of vapour pressure of a liquid with a diagram.

- (a)
  - What is Enthalpy of a reaction? How  $\Delta H$  of a reaction is measured in Laboratory by glass calorimeter? (b)
- Explain Heisenberg uncertainity principle. 7. (a)
  - The solubility product of  $Ag_2CrO_4$  is  $2.6\times10^{-2}$  at 25°C. Calculate the solubility of compound. (b) Atomic mass of Ag=108 Cr=52 O=16.
- What is orbital hybridization? Explain the structure of CH<sub>4</sub> molecule on the basis of 8. (a) hybridization theory.
  - (b) Describe the construction and working of standard hydrogen electrode (SHE).
- Explain continuous and discontinuous solubility curves. (b) Describe energy of activation in detail. 9. (a)

## Sargodha Board-2023

|                   |                                                                        | 3                                                |                                |                                                                         |        |
|-------------------|------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|-------------------------------------------------------------------------|--------|
| 1125              | Warning:- Please wri<br>(Inter Part - I)                               | te your Roll No. in the s<br>(Session 2019-21 to | -                              | sign.Roll No<br>f Student                                               |        |
| Chemi             | stry (Objective)                                                       | (Group -                                         | , ,                            | aper (I)                                                                |        |
|                   | Allowed:- 20 minutes                                                   | PAPER CO                                         |                                | ximum Marks:- 17                                                        |        |
|                   |                                                                        |                                                  |                                | oice which you think is correct;                                        | fill   |
|                   |                                                                        |                                                  |                                | or filling two or more circles                                          |        |
|                   |                                                                        |                                                  |                                | tion paper, on the both sides of                                        |        |
|                   |                                                                        | dingly, otherwise the student                    | will be responsible for the    | e situation. Use of Ink Remove                                          | r or   |
|                   | rrecting fluid is not allowed. Which of the following                  | has hydrogen bonding?                            |                                | Q. 1                                                                    |        |
|                   | (A) CH <sub>4</sub>                                                    | (B) CCl <sub>4</sub>                             | (C) NH <sub>3</sub>            | (D) SiH₄ 🤏 pakcit                                                       | ty.org |
|                   | The electron affinity of                                               |                                                  | (C) 14113                      | (D) 5114 6                                                              |        |
|                   | A) -349 $kJ \ mol^{-1}$                                                |                                                  | (C) -449 kJ mol <sup>-1</sup>  | (D) $+396  kj  mol^{-1}$                                                |        |
|                   | Acid having $K_a > 1$ wil                                              |                                                  | (c) The light that             | (B) 1370 kg mot                                                         |        |
|                   | (A) Weak                                                               | (B) Very weak                                    | (C) Moderate                   | (D) Strong                                                              |        |
| <b>?</b> 4)       | 18 g glucose is dissolved                                              | d in 90 g of water. The re                       | lative lowering of va          | apour pressure is equal to                                              |        |
|                   | $^{(A)} \frac{1}{5}$                                                   | (B) 5.1                                          | $(C) \frac{1}{51}$             | (D) 6                                                                   |        |
| _                 | Orbitals having same en                                                | erov are called:                                 | /51                            |                                                                         |        |
| b Da              |                                                                        | (B) valence orbitals                             | (C) degenerate orbi            | tals (D) d-orbitals                                                     |        |
|                   | The volume of 1.6g of C                                                |                                                  | (C) degenerate tho             | tals (D) d-orbitals                                                     |        |
| <b>≥</b> (        | (A) $1.12  \text{dm}^3$                                                | (B) $2.24 \text{ dm}^3$                          | (C) 22,41 dm                   | (D) $112  dm^3$                                                         |        |
| <b>≥</b> 7) ]     | (A) 1.12 dm <sup>3</sup> Partial pressure of oxyge (A) 149 torr        | en in air at sea level is.                       | 250                            | (D) 112 dill                                                            |        |
| , a               | A) 149 torr                                                            | (B) 154 torr                                     | (C) 159 torr                   | (D) 164 torr                                                            |        |
| 1 (8 <del>0</del> | n silver oxide battery, th                                             | ne cathode is made up of                         | 101                            | (D) 104 toll                                                            |        |
| dal<br>Oal        | (A) AgO                                                                | (B) $Ag_2O$                                      | (C) $Ag_2O_3$                  | (D) Ag                                                                  |        |
| O<br>O            |                                                                        |                                                  | 3.0                            | (-)8                                                                    |        |
| <u> </u>          | NaOU                                                                   | $+ HCl \rightarrow NoCl + H_2O$                  | he change in enthalp           | y is called:                                                            |        |
| <b>E</b> 9) }     | for the reaction Naum                                                  | (B) Heat of formation                            | (C) Heat of neutraliz          | cation (D) Heat of comb                                                 | ustion |
| (.                | A) Heat of reaction<br>Stronger the oxidizing ag                       |                                                  | 2200AMUN                       |                                                                         |        |
| <b>=</b> 10) 3    | Stronger the oxidizing ag                                              | (B) reduction potential                          | (C) redox potential            | (D) E.M.F of cell                                                       |        |
| <u>v</u> 11)      | The rate of reaction.                                                  | (B) rousenen personal                            | Annie Laudente<br>Annie Tropa  |                                                                         |        |
| - 1               | A) increases as the                                                    | (B) decreases as the                             | (C) remains the sam            | e (D) may decrease or                                                   |        |
| Se                | reaction proceeds                                                      | reaction proceeds                                | as the reaction                | increase as the                                                         |        |
|                   | touction process                                                       | •                                                | proceeds                       | reaction proceeds                                                       | į.     |
| 12)               | The largest number of m                                                | olecules are present in:                         |                                |                                                                         |        |
| (                 | (A) $3.6 \text{ g of H}_2\text{O}$                                     | (B) $4.8 \text{ g of } C_2H_5OH$                 | (C) 2.8 g of CO                | (D) 5.4 g of $N_2O_5$                                                   |        |
| 13)               | Solvent extraction method is                                           | a particularly useful technique                  | for separation when the        | product to be separated is.                                             | (      |
|                   | (A) non-volatile or                                                    | (B) volatile or thermally                        | (C) non-volatile or            | (D) volatile or thermali                                                | У      |
|                   | thermally unstable                                                     | stable                                           | thermally stable               | unstable                                                                |        |
| 14)               | The order of the rate of                                               | diffusion of gases NH <sub>3</sub> , S           | $C_1$ , $C_1$ and $C_2$ is:    | NH <sub>3</sub> (D) NH <sub>3</sub> >CO <sub>2</sub> >Cl <sub>2</sub> > | >SO2   |
| 4 =\              | (A) NH <sub>3</sub> >SU <sub>2</sub> >Cl <sub>2</sub> >CU <sub>2</sub> | ing point of water upto 1                        | $10^{\circ}$ C the external nr | essure should be                                                        | 502    |
| 15)               | (A) between 760 torr                                                   | (B) between 200 torr                             | (C) 765 torr                   | (D) any value of                                                        |        |
|                   | and 1200 torr                                                          | and 760 torr                                     | (6) 703 ton                    | pressure                                                                |        |
| 16)               |                                                                        | molecules has zero dipo                          | le moment?                     | <b>r</b>                                                                |        |
|                   |                                                                        | (B) CHCl <sub>3</sub>                            | (C) H <sub>2</sub> O           | (D) BF <sub>3</sub>                                                     |        |
| 17)               | (A) NH <sub>3</sub>                                                    | $n^{-3}$ of an aqueous solution                  | ` ' -                          | (2) 2.3                                                                 |        |
|                   |                                                                        | (B) 2.7                                          | (C) 2.0                        | (D) 1.5                                                                 |        |
|                   | (A) 3.0                                                                |                                                  | (4)                            | \_/ -/                                                                  |        |
|                   |                                                                        | 1125 1123                                        | 15000 (4)                      |                                                                         |        |

#### Sargodha Board-2023

1423 (Inter Part - I) Warning:- Please, do not write anything on this question paper except your Roll No. (Session 2019-21 to 2022-24) Group (II) Chemistry (Subjective) Time Allowed: 2.40 hours Section -----I Maximum Marks: 68 2. Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ Define gram atomic mass and gram molecular mass. (ii) Define molecular ion. Give one example. (i) Mg atom is twice heavier than that of carbon atom. Give reason. (iii) State Graham's Law of diffusion. Write its mathematical form. (iv) How the process of respiration obeys the Dalton's law of partial pressure. (v) Give verification of Boyle's law from kinetic molecular theory of gases. (vi) Why e/m value of cathode rays is just-equal to that of electron. (vii) State Moseley's law. Give its Mathematical expression. (viii) What is orbital? Draw the shape of p-orbital. (x) Define Enthalpy of Atomization. Give one example. (ix) What are spontaneous and non-spontaneous processes. Give one example for each. (xi) State Hess's law of constant heat summation. Write its mathematical form. **P**(xii) **93.** Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ Define sublimation giving two examples. (i) (ii) Give sailent features of a solvent used in process of crystalization. Describe most safe and reliable method for drying of crystals. a (iii) Why melting point and boiling point of halogens increases down the group. (iv)  $\begin{cases} (v) \\ \end{cases}$ Lower alcohols are soluble in water while hydrocarbons are insoluble. Give reason. **≶** (vi) Cleavage of crystals is anistropic property. Explain Why aquous solution of NH4Cl is acidic in nature. (vii)∟ Define solubility with two examples. (ix) Why NaCl and KNO3 are used to lower melting point of ice. (viii)  $\frac{a}{a}(x)$ Define the term energy of activation. (xi) A catalyst is specific in its action. Justify it. Rate of reaction decreases with passage of time. Justify it. Ö(xii) - 🍇 pakcity.org 🎉 ⊳ --( 02 )--Answer briefly any Six parts from the followings:- $6 \times 2 = 12$ 4. Define electronegativity. How does it vary in the group of periodic table? (i) Pi  $(\pi)$  bonds are more diffused than sigma bonds. Give the reason. (ii) Define coordinate covalent bond. Give an example. (iii) How can we prepare basic buffers? Give an example. (iv) Calculate the pH of  $10^{-4}$  mole dm<sup>-3</sup> of  $Ba(OH)_2$ . (vi) Give two applications of common ion effect. (v) What is standard hydrogen electrode (SHE)? (vii) Give the electrode reactions during the recharging of lead accumulator. (viii) Calculate the oxidation number of Cr in  $Cr_2(SO_4)_3$  and  $Cr_2O_7^{2-}$ (ix)  $(8 \times 3 = 24)$ Note: Attempt any three questions. Section ----Explain evidence of atoms with the help of diagram. 5. (a)

250 cm<sup>3</sup> of hydrogen is cooled from 127°C to -27°C by maintaining the pressure constant. (b) Calculate the new volume of the gas at Low temperature.

Explain molecular solids in detail. 6. (a)

- State and explain Hess's law of constant Heat summation with two examples. (b)
- Write down any four properties of cathode rays. 7. (a)
  - What is the percentage ionization of acetic acid in a solution in which 0.1 Mole of it has been (b) dissolved per dm<sup>3</sup> of the solution.
- Explain paramagnetic nature of oxygen on the basis of MOT. (a)
  - Describe the construction and working of standard hydrogen electrode (SHE). (b)
- 9. (a) Explain phenol-water system in detail.
  - Write down any four characteristics of catalyst. (b)

| Sargodha Board-2021  1121 (Inter Part - I) Warning:- Please, do not write anything on this question Chemistry (Subjective) (Session 2017-19 to 2020-22) Group (I)  Time Allowed: 2.40 hours Section ———————————————————————————————————— | Paper (I)  Maximum Marks: $68$ $8 \times 2 = 16$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Magnesium atom is twice heavier than that of carbon atom.                                                                                                                                                                                | ons.                                             |
| 180 g glucose and 342g of sucrose have same number of molecules but dippresent in them.                                                                                                                                                  | fferent number of atoms                          |

What is difference between partition and adsorption type of chromatography. pakcity.org (iv) Define sublimation by giving one example. (v)

Sate charless law by giving its mathematical expression. (vi)

Do you think that some of the postulates in kinetic molecular theory of gases are faulty? Point out (vii) these postulates. (viii) State Avogadro's law of gases?

(ix) Where is plasma found?

2. (i) (ii) (iii)

Define fractional crystallization by giving one example. (x)

Why  $Na_2SO_4$  .10 $H_2O$  shows discontinuous solubility curve. (xi)

Define colligative properties. (iix)

Answer briefly any Eight parts from the followings:-3.  $8 \times 2 = 16$ 

Define dipole-dipole forces with one example. (i)

What is dipole-induced dipole force? (ii) (iii) Define London dispersion forces.

Why methane is gas while hexane is a horid (iv)

(vi) What is State (vii) Define Heisenberg's uncertainity principle. Define spectrum. (v)

Define atomic orbital. (ix) Define the Lechalius projectile. (viii)

Why catalyst does not affect the equilibrium position. (x)

Define order of reaction. (xi) (xii) What is half life period

Answer briefly any Six parts from the followings:-4.  $6 \times 2 = 12$ Define ionization energy and electron affinity with one example in each case. (i)

Write the Lewis Structures for the following compounds. (ii)

(a) HCN (b) CCℓ<sub>4</sub>

Define hybridization. What type of hybridization is found in CH<sub>4</sub>? (iii)

Write down four postulates of VSEPR Theory. (iv) (v)

Define the following with one example in each (a) Standard enthalpy of reaction. ent a of combustion. (b) Stand Differentiate between internal energy of the system and the nthalpy of the system. (vi)

Why the standard oxidation potential of Zn is+0.76 V and its reduction potential is -0.76 V? (vii)

Why the equilibrium is set up between metal atoms of electrode and ions of metal in a cell? (viii)

Why a salt bridge maintains the electrical neutrality in the cell? (ix)

### Section ----- II

### Note: Attempt any three questions.

 $(8 \times 3 = 24)$ 

Calculate the masses of  $10^{-3}$  moles of  $MgSO_4$  and 2.74 moles  $KMnO_4$ . (a)

(b) Describe any four crystal systems.

(a) Write down eight postulates of Kinetic molecular theory of gases. 6.

Derive the equation for the radius of  $n^{th}$  orbit of hydrogen atom using Bohr's model. (b)

Define ionization energy. Name the factors on which it depends. Also explain its trends in 7. (a) the periodic table.

**(b)** Define enthalpy and prove that  $\Delta H = q_p$ .

What is the percentage ionization of acetic acid in a solution in which 0.1 mol of it has been 8. (a) dissolved per  $dm^3$  of the solution  $(K_a=1.85 \times 10^{-5})$ 

What is Arrhenius Equation? How can you calculate the energy of activation of a reaction (b) from this equation.

Briefly explain the working of Galvanic Cell. 9. (a)

Explain Beckmann method to determine depression of Freezing Point.

|                                                        |                                                                                                                          | Sargodha Boar                                                                                                                            | d-2021                                                                                                             |                                         |                                                                   |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|
| 1121                                                   |                                                                                                                          | your Roll No. in the space                                                                                                               |                                                                                                                    |                                         | No                                                                |
| CI.                                                    |                                                                                                                          | (Session 2017-19 to 2                                                                                                                    |                                                                                                                    |                                         | 711t                                                              |
|                                                        | istry (Objective)                                                                                                        | ( Group - 1                                                                                                                              |                                                                                                                    | per (I)                                 |                                                                   |
| Note:-<br>that circ<br>result in<br>Answer<br>white co | cle in front of that question not zero mark in that question. We sheet and fill bubbles accordance fluid is not allowed. | paper con<br>the objective type question as<br>umber. Use marker or pen to<br>Write PAPER CODE, which<br>lingly, otherwise the student v | A, B, C and D. The cho<br>of fill the circles. Cutting<br>is printed on this questi<br>will be responsible for the | ice which<br>or filling to<br>on paper, | two or more circles will<br>on the both sides of the              |
|                                                        | (A) Decrease rapidly                                                                                                     | used between two half cel (B) Decrease slowly                                                                                            | (C) Does not change                                                                                                |                                         |                                                                   |
| 2)                                                     | If the rate equation of a                                                                                                | reaction $2A + B \longrightarrow p$                                                                                                      | products is, rate = $k[A$                                                                                          | $\Lambda]^2[B]$ an                      | d A is present in                                                 |
|                                                        | large excess, then orde                                                                                                  | r of reaction is                                                                                                                         |                                                                                                                    |                                         |                                                                   |
|                                                        | (A) 1                                                                                                                    | (B) 2                                                                                                                                    | (C) 3                                                                                                              | (D)                                     | 1.5                                                               |
| 3)                                                     | The angle between sides '                                                                                                |                                                                                                                                          | (O) m                                                                                                              | (T)                                     |                                                                   |
|                                                        | (A) Beta                                                                                                                 | (B) Alpha                                                                                                                                | (C) Theta                                                                                                          | (D)                                     | Gamma                                                             |
|                                                        | depend upon mass                                                                                                         |                                                                                                                                          | properties                                                                                                         | ( )                                     | The extent to which they may be affected in electromagnetic field |
| 5)                                                     |                                                                                                                          | 1.79 g of gold and                                                                                                                       |                                                                                                                    |                                         |                                                                   |
| -                                                      | (A) 0.023                                                                                                                | (B) 23                                                                                                                                   | (C) 230                                                                                                            | , ,                                     | 2300                                                              |
| ,                                                      | (A) $R_f$ values of                                                                                                      | t which the solutes move (B) The size of paper                                                                                           | Temperature of experiment                                                                                          | the (D)                                 | Size of the chromatographitank used                               |
| 7)                                                     | Equal masses of methan total pressure exerted by                                                                         | e and oxygen are mixed in methane is                                                                                                     | in an empty container                                                                                              | at 25°C                                 | . The fraction of                                                 |
|                                                        | ,,, 1                                                                                                                    | (B) $\frac{2}{3}$                                                                                                                        | (0)                                                                                                                | (D)                                     | 8/                                                                |
| (                                                      | (A) $\frac{1}{3}$                                                                                                        | (B) 3                                                                                                                                    | (C) $\frac{1}{9}$                                                                                                  | (D)                                     | 79                                                                |
| 8)                                                     | The molar volume of Co                                                                                                   | is maximum at                                                                                                                            |                                                                                                                    |                                         |                                                                   |
|                                                        | (A) 127°C and 1 atm                                                                                                      |                                                                                                                                          | (C) S.T.P                                                                                                          | (D)                                     | 273 °C and 2 atm                                                  |
| 9)                                                     | Intermolecular forces pr                                                                                                 |                                                                                                                                          | Augusta September 1 and August 1                                                                                   |                                         |                                                                   |
|                                                        | (A) Hydrogen bonding                                                                                                     | (B) Ion-dipole forces                                                                                                                    | (C) Dipole-induced dipole forces                                                                                   |                                         | London-dispersion forces                                          |
| 10)                                                    | Quantam number values                                                                                                    | for '3d' orbitals will be                                                                                                                | KCity.org                                                                                                          |                                         |                                                                   |
|                                                        | (A) $n=3$ , $\ell=0$                                                                                                     | (B) $n=3$ , $\ell=1$                                                                                                                     | (C) $n=3$ , $\ell=2$                                                                                               | (D)                                     | $n=3$ , $\ell=3$                                                  |
|                                                        | Orbitals having same en  (A) Valence orbitals                                                                            | (B) Hybrid orbitals                                                                                                                      | (C) d-orbitals                                                                                                     | (D)                                     | Degenerate orbitals                                               |
|                                                        | Bond order of helium m (A) Two                                                                                           | (B) One                                                                                                                                  | (C) Zero                                                                                                           | (D)                                     | Three                                                             |
|                                                        |                                                                                                                          | ows hybridization of                                                                                                                     | (A) (T)                                                                                                            | (D)                                     | $sp^3d^2$                                                         |
|                                                        | (A) Hess's                                                                                                               | (B) Le-chatlier  of an aqueous solution                                                                                                  | (C) Coulomb                                                                                                        | (D)                                     | Pascal                                                            |
|                                                        | (A) 3                                                                                                                    | (B) 2.7                                                                                                                                  | (C) 2.0                                                                                                            | (D)                                     | 1.5                                                               |
|                                                        | The pH of human blood (A) 7                                                                                              | (B) 7.35                                                                                                                                 | (C) 7.95                                                                                                           | (D)                                     | 8.00                                                              |
| 17)                                                    | - 경우 전 전 경우                                                                                                              | constant is the ratio of the                                                                                                             |                                                                                                                    |                                         |                                                                   |
| .6                                                     | (A) Molarity pakcity.org                                                                                                 | (B) Molality                                                                                                                             | (C) Mole fraction of solvent                                                                                       |                                         | Mole fraction of solute                                           |
| ~                                                      | parcity.ug 880                                                                                                           | 102                                                                                                                                      | (1)                                                                                                                |                                         |                                                                   |

(b)

### Sargodha Board-2021

1121 (Inter Part - I) Warning:- Please, do not write anything on this question paper except your Roll No. (Session 2017-19 to 2020-22) Group (II) Paper (I) (Subjective) Section -----I Maximum Marks: 68 Time Allowed: 2.40 hours Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ 2. Justify that 180 g of glucose and 342 g of sucrose have the same number of molecules but different (i) (ii) Define isotopes. Give one example. number of atoms present in them. What is gram atom? How we can calculate gram atom of an element? Give its relationship. (iii) What is chromatography? Write its two uses. (v) Define sublimation. Write two solids which can be sublimed. (iv) Differentiate between natural and artificial Plasma. (vi) Derive the units for gas constant R in general gas equation when the pressure is in atmosphere and volume in dm<sup>3</sup>. (vii) Verify Boyle's law from kinetic theory of gases. (viii) Write two applications of Dalton's law of partial pressure. (ix) Define solubility. How it can be expressed? (xi) What is discontineous solubility curve. Give one example. (x) How do you Justify that freezing points are depressed due to the presence of solutes. (xii) Answer briefly any Eight parts from the followings:-3. Why in a very cold winter the fish in gardens ponds owe their lives to hydrogen bonding? (i) Why water and ethanol can mix easily and in all proportions. (ii) Define unit cell. Give one example. (iv) Define transition temperature. Give one example. (iii) What is hydrogen spectrum. Name four spectral lines. (v) Write down two defects in Bohr's atomic model. (vi) Whichever gas is used in discharge tube, the nature of the cathode rays remains the same. Why? (vii) Give any two properties of cathode rays. (ix) Define (a) Reversible reactions (b) state of equilibrium. (viii) Define Buffer capacity. (xi) Define instantaneous and average rates of reaction (x) Define specific rate constant or velocity constant (xii) Answer briefly any Six parts from the followings:- $6 \times 2 = 12$ 4. Differentiate between polar and non polar covalent bond. (i) Explain the formation of co-ordinate covalent bond between NH<sub>3</sub> & BF<sub>3</sub> (ii) Explain the geometry of H<sub>2</sub>S molecule on the basis of VSEPR theory. (iii) How ionization energy varies in the periodic table. (iv) (v) Define standard enthalpy of formation with two examples. Differentiate between atomization energy and Lattice energy. (vi) How electrochemical series helps to predict the feasibility of a chemical reaction? Give an example. (vii) Write the function of salt bridge in Galvanic cell. (viii) Differentiate between Galvanic cell and electrolytic cell. (ix) Section ---- II Note: Attempt any three questions.  $(8 \times 3 = 24)$ Calculate the number of grams of K<sub>2</sub>SO<sub>4</sub> and water produced when 14 gram of KOH are 5. reacted with excess of H<sub>2</sub>SO<sub>4</sub>. Also calculate the number of molecules of water produced. How does hydrogen bonding explains the following (i) Structure of DNA (ii) Structure of Ice. Write down the postulates of Kinetic molecular theory of gases. 6. (a) Explain Millikan's oil drop experiment to determine the charge of an electron. (b) 7. (a) Draw and discuss the geometry of Ethylene with respect to sp<sup>2</sup>-hybridization. How can you measure enthalpy of reaction by glass calorimetric method. (b) 8. The following reaction was allowed to reach the state of equilibrium (a)  $2A_{(aq)} + B_{(aq)} \longrightarrow C_{(aq)}$  the initial amount of the reactants present in one dm<sup>3</sup> of solution were 0.50 moles of A and 0.60 moles of B. At equilibrium the amounts were 0.20 moles of A and 0.45 moles of B and 0.15 moles of C. Calculate the equilibrium constant K<sub>c</sub>. Define half life period. Explain with two examples. (b) 9. (a) Give differences between Ideal and Non-Ideal solution.

Write different rules for assigning oxidation number by giving one example.

1194-1121 ALP -- 12000

|                            | 1119                                 | Warning:- Please write                                                                                  | your Roll No. in the space<br>(Session 2015-17 to 2                                                                  | c provided and alb-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Roll No                                                                                                                            |
|----------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                      | (Inter Part - I)                                                                                        | (Group - I                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>(I)</b>                                                                                                                         |
|                            |                                      | nistry (Objective)                                                                                      | DARED COD                                                                                                            | F 2487 Maxis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mum Marks:- 17                                                                                                                     |
|                            | Note:-<br>that ci<br>result<br>Answe | ircle in front of that question in<br>in zero mark in that question.<br>er Sheet and fill bubbles accor | ach objective type question as number. Use marker or pen to Write PAPER CODE, which dingly, otherwise the student to | A, B, C and D. The choice of fill the circles. Cutting or file is printed on this question possible for the situation of the circles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | which you think is correct; fill lling two or more circles will paper, on the both sides of the lation. Use of Ink Remover or Q. 1 |
|                            | white                                | correcting fluid is not allowed.                                                                        | Sargodna                                                                                                             | Board-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |
|                            | -                                    | ) Molarity of pure water (A) 1                                                                          | (B) 18<br>statement is correct abou                                                                                  | (C) 55.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (D) 6                                                                                                                              |
|                            |                                      | (A) Anode is negativel                                                                                  | y (B) Reduction occurs a<br>anode                                                                                    | positively charged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (D) Reduction occurs at cathode                                                                                                    |
| ord                        |                                      | (A) Decrease in activation energy of reaction                                                           | on (B) Decrease in the number<br>of collisions between<br>reactant molecules                                         | on doubles. This increase in activation the activation to activation the activati | D) Increase in number of effective collisions                                                                                      |
| city.c                     | 4                                    | (A) 1.008 mg                                                                                            | (B) 0.55 mg                                                                                                          | (C) 05184 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (D) 1.673 mg                                                                                                                       |
| ak                         | 5                                    | ) The largest number of                                                                                 | molecules are present in                                                                                             | (C) 2.8 g of CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D) 5.4 g of $N_2O_5$                                                                                                              |
| 0.                         | -                                    | (A) $3.6 \text{ g of } H_2O$                                                                            | (B) 4.8 g of C₂H₃OH<br>s a particularly useful technique                                                             | a for constration when the pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |
| at: www.pakcity.org        | 6)                                   | (A) Non-volatile or<br>thermally unstable                                                               | (B) Volatile or                                                                                                      | (C) Non-volatile or thermally stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (D) Volatile or themally unstable                                                                                                  |
|                            |                                      | ) Equal masses of methatotal pressure exerted by                                                        | ne and oxygen are mixed                                                                                              | in an empty container at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25°C. The fraction of                                                                                                              |
| e da                       |                                      | $(A) \frac{1}{2}$                                                                                       | (B) %                                                                                                                | (C) 1/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (D) $\frac{16}{17}$                                                                                                                |
| 0                          | 8                                    | ) Pressure remaining cons                                                                               | tant, at which temperature,                                                                                          | the volume of a gas will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | come twice of what is at 0 °C                                                                                                      |
| or m                       | - I                                  | (A) 546°C                                                                                               | B) 200°C                                                                                                             | (C) 546 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (D) 273 K                                                                                                                          |
| Please visit for more data | 9                                    | (A) Cubic structure of ice                                                                              | (B) Empty spaces prese<br>in the structure of ic                                                                     | nt (C) Change of bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D) Change of bond angles                                                                                                          |
| se                         | 1                                    | 0) The molecules of CO2                                                                                 |                                                                                                                      | akcity.org                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (T) A tuma u Cantistala                                                                                                            |
| ea                         |                                      | (A) Ionic crystals                                                                                      | (B) Covalent crystals                                                                                                | (C) Molecular crystal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s (D) Any type of crystals                                                                                                         |
| <u>a</u>                   | 1                                    | <ol> <li>The wave number of the</li> <li>500 nm</li> </ol>                                              | light emitted by a certain so<br>(B) 500 m                                                                           | (C) 200 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | welength of this light will be (D) $5 \times 10^7 m$                                                                               |
|                            |                                      | Orbitals having same of     (A) Hybrid orbitals     Which of the following                              | energy are called,  (B) Valence orbitals  g molecules has zero dipo                                                  | (C) Degenerate orbita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ds (D) d-orbitals                                                                                                                  |
|                            |                                      | (A) NH <sub>3</sub>                                                                                     | (B) CHCl <sub>3</sub>                                                                                                | (C) H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (D) $BF_3$                                                                                                                         |
|                            | 1                                    | 4) Which of the hydroger (A) HCl                                                                        | h halides has the highest (B) HBr                                                                                    | percentage of ionic chara<br>(C) HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ecter.<br>(D) HI                                                                                                                   |
|                            | 1.                                   | 5) The net heat change in                                                                               | a chemical reaction is sa                                                                                            | me, whether it is brough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt about in two or more                                                                                                            |
|                            |                                      | different ways in one<br>(A) Henry's Law                                                                | or several steps. It is known                                                                                        | own as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) Law of Conservation of energy                                                                                                    |
|                            | 1                                    | • •                                                                                                     | of an aqueous solution                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |
|                            | •                                    | (A) 3.0                                                                                                 | (B) 2.7                                                                                                              | (C) 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (D) 1.5                                                                                                                            |
|                            | 1                                    |                                                                                                         | of two liquids boils at a                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |
|                            |                                      | (A) It is saturated pakeity.org                                                                         | (B) It shows positive deviation from                                                                                 | (C) It shows negative<br>deviation from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                    |
|                            |                                      | 0                                                                                                       | Rault's Law                                                                                                          | Rault's Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    |

4.

(i)

(b)

Chemistry

2.

3.

(i)

(i)

#### Sargodha Board-2019

(Subjective) (Session 2015-17 to 2018-20) Group (1)

1119 (Inter Part - I) Warning:- Please, do not write anything on this question paper except your Roll No.

Paper (I)

Maximum Marks: 68

Section ----- I Time Allowed: 2.40 hours Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ Differentiate between atom and molecule Write function of Mg(ClO<sub>4</sub>)<sub>2</sub> and 50% KOH in combustion analysis. Repakcity.org (ii) Differentiate between empirical and molecular formula. (iii) What is  $R_f$  value. Why does it has no units. (v) How is a saturated solution prepared. (iv) Define absolute zero temperature. (vii) Water vapours do not behave ideally at 273K. Justify. (vi) Define one atmospheric pressure. Give its two units. (ix) Prove that  $d = \frac{PM}{PT}$ (viii) Define mole fraction and Parts per million. (x) Define critical solution temperature and conjugate solutions. (xi) Write names of colligative properties of dilute solutions. (xii)  $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-Why ice occupies 9% more volume than liquid water? How Soaps and detergents do their cleansing action? (ii) How vacuum distillation can be used to avoid decomposition of a sensitive liquid? (iii) Define Molar Heat of vapourization. (v) Why e/m value of cathode rays is just equal to that of electron? (iv) Give electronic configuration of 24 Cr and 20 Ca (vii) Write two properties of positive rays. (vi) Why it is necessary to decrease the pressure in the discharge tube to get the cathode rays? (viii) State Lowery-Bronsted acid and base theory. (x) Define the term activation of catalyst. (ix) How does buffer act? (xii) Differentiate between Homogenous and Heterogenous catalysis. (xi)  $6 \times 2 = 12$ Answer briefly any Six parts from the followings:-Define coordinate covalent bond. Give one example. How does molecular orbital theory explain paramagnetic properties of oxygen? (ii) Ionic compounds are mostly soluble in water but insoluble in non-polar solvents. Give reason. (iii) The difference in electronegativity of bonded atoms is an index of polar nature of the covalent bond. (iv) Comment on the statement. Define spontaneous process giving one example. (v) Justify that heat of formation of compound is the sum of all the other enthalpies. (vi) How does electrochemical series explain the displacement of one metal by another from its solution? (vii) Write down reactions involved in the working of NICAD cell. (viii) Write down the construction of standard hydrogen electrode (SHE) (ix) Section ----- II  $(8 \times 3 = 24)$ Note: Attempt any three questions. Define yield of chemical reaction. Also define two types of yields. How these two yields are 5. related by a mathematical expression? (b) Describe covalent solids with reference to (i) hardness, (ii) conductivity, (iii) solubility in water, and (iv) melting points. A sample of nitrogen gas is enclosed in a vessel of volume 380cm3 at 120°C and pressure of 6. **(a)** 101325 Nm-2. This Gas is transferred to 10 dm3 flask and cooled to 27 °C. Calculate the pressure in  $Nm^{-2}$  exerted by gas at 27  $C^{\circ}$ . Define spectrum. Give difference between Continuous and Line spectrum. (b) Write main postulates of VSEPR-theory. 7. (a) How heat of combustion is measured by Bomb calorimeter? (b) Calculate the pH of a buffer solution in which 0.11 molar CH3COONa and 0.09 molar acetic 8. (a) acid solutions are present. Ka for CH3COOH is 1.85×10-5 Describe Half life method for finding order of reaction. (b) Explain the effect of temperature on Phenol-Water System. 9. (a)

Describe the electrolysis of molten sodium chloride

|                     |                              | ( I              | nter Part -                              | · I)                                         | (Ses     | sion 2015-17 to                     | space pro<br>2018-20                                | D) Sig. of                                                                                     |                  | 140                                                                                                                 |
|---------------------|------------------------------|------------------|------------------------------------------|----------------------------------------------|----------|-------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------|
|                     | en                           | nistry           |                                          |                                              | ,        | (Grou                               |                                                     |                                                                                                | er (I)           |                                                                                                                     |
|                     |                              |                  | wed:- 20 r                               | ninutes                                      |          | PAPER C                             | ODE 2                                               | 482 Ma                                                                                         | vimum            | Marks:- 17                                                                                                          |
|                     | result i<br>Answe<br>white c | n zero<br>r Shee | mark in the<br>t and fill buing fluid is | at question. \ abbles accordant not allowed. | Write P  | Use marker or p                     | on as A, B, ben to fill the hich is prident will be | C and D. The choice the circles. Cutting or the circles on this question responsible for the s | e which          | you think is correct; fill<br>two or more circles will<br>on the both sides of the<br>Use of Ink Remover or<br>O. 1 |
|                     | 1)                           |                  |                                          | SO₂ conta                                    |          |                                     |                                                     |                                                                                                |                  | -                                                                                                                   |
|                     | 21                           |                  | oxygen                                   |                                              | •        | of SO <sub>2</sub>                  | cules (C)                                           | 6.02×10 <sup>23</sup> atoms<br>sulphur                                                         | of (D)           | 4 gram atoms of SO <sub>2</sub>                                                                                     |
|                     | 2)                           |                  | 1.008 mg                                 | one mole o                                   |          | ons are<br>0.55 mg                  | (C)                                                 | 0.184 mg                                                                                       | (D)              | 1 (72                                                                                                               |
|                     | 3)                           |                  |                                          |                                              | t which  | h the solutes m                     | ove in pa                                           | o.164 mg<br>sper chromatograp                                                                  | שי (D)<br>hv den | 1.673 mg                                                                                                            |
|                     |                              | (A)              | The size                                 | of paper                                     | (B)      | $R_f$ values of                     | (C)                                                 | Temperature of the                                                                             | ne (D)           | Size of the                                                                                                         |
|                     |                              |                  |                                          |                                              |          | solutes                             |                                                     | experiment                                                                                     |                  | chromatographic tank                                                                                                |
| 12                  | 4)                           | Pres             | sure remain                              | ing constant                                 | , at whi | ch temperature the                  | e volume o                                          | f a gas will becomes t                                                                         | twice of 1       | what it is at 0°C.                                                                                                  |
| g                   |                              |                  | 546 °C                                   |                                              |          | 200 °C                              |                                                     | 546 K                                                                                          |                  | 273 K                                                                                                               |
| 5.                  | 5)                           | Nun              | nber of me                               | olecules in                                  | one a    | dm3 of water is                     | close to                                            |                                                                                                |                  |                                                                                                                     |
| at: www.pakcity.org |                              |                  | $\frac{6.02}{22.4} \times 10^2$          |                                              |          | $\frac{12.04}{22.4} \times 10^{23}$ |                                                     | $\frac{18}{22.4} \times 10^{23}$                                                               | (D)              | $55.6 \times 6.02 \times 10^{23}$                                                                                   |
| ď.                  | 6)                           |                  |                                          |                                              |          | s density decre                     |                                                     |                                                                                                |                  |                                                                                                                     |
| $\geq$              |                              |                  | Cubic stru                               | acture of                                    |          | empty spaces                        | (C)                                                 | Change in bond                                                                                 | (D)              | Change of bond                                                                                                      |
| >                   |                              |                  | ice                                      |                                              | -        | resent in the tructure of ice       | 256                                                 | lengths                                                                                        |                  | angles                                                                                                              |
| at:                 | 7)                           | Diar             | nond is a                                | bad condu                                    |          |                                     | Chi                                                 | (2)                                                                                            |                  |                                                                                                                     |
| ta                  | •                            |                  | It has a tig                             |                                              |          | t has a high der                    | sity (C)                                            | There are no free                                                                              | (19)             | ai supparent to                                                                                                     |
| ore data            | •                            |                  | structure                                |                                              |          | all of Son                          | 120                                                 | electron present in the crystal of the conduct electrons                                       | 16#              | The same same same same same same same sam                                                                          |
| Please visit for mo |                              |                  | tals havin<br>Hybrid or                  | g same en                                    |          | re called;<br>alence orbitals       | (0)                                                 | ATION S.                                                                                       | . (D)            | 1 11 1                                                                                                              |
| ō                   |                              |                  |                                          |                                              | lete. t  | he entering cle                     | ctrons go                                           | Degenerate orbitals                                                                            | (ט)              | d-orbitals                                                                                                          |
| Ħ                   |                              | (A)              |                                          |                                              | (B) 7    |                                     | (C)                                                 |                                                                                                | (D)              | 7d ·                                                                                                                |
| <u>\si</u>          | 10)                          | In th            | c followir                               | ig species                                   | which    | have unpaired                       |                                                     | s in antibonding r                                                                             |                  |                                                                                                                     |
| e                   |                              | (A)              |                                          |                                              | (B) /    |                                     | (C)                                                 |                                                                                                | (D)              |                                                                                                                     |
| ä                   | 11)                          | In th            | e followin                               | ng molecul                                   | es wh    | ich have zero d                     | lipole mo                                           | oment.                                                                                         |                  |                                                                                                                     |
| 8                   | (1)                          | (A)              | $NII_3$                                  |                                              | (B) (    | CHCl <sub>3</sub>                   | (C)                                                 | $H_2O$                                                                                         | (D)              | $BF_3$                                                                                                              |
|                     | 12)                          | For t            | he reactio                               | n NaOH                                       | + HCl    | → NaCl+                             | $H_2O$ the                                          | change in enthalp                                                                              | y is ca          | lled;                                                                                                               |
|                     |                              |                  | leat of rea                              |                                              | (B) F    | leat of formation                   | on (C)                                              | Heat of Neutralizati                                                                           | ion (D)          | Heat of combustion                                                                                                  |
|                     |                              |                  |                                          |                                              |          |                                     |                                                     |                                                                                                |                  | ions in the solution is                                                                                             |
|                     | 1                            | (A) :            | 2.0×10-10                                | nol dm <sup>-3</sup>                         | (B) 1    | .41×10 <sup>-5</sup> mol dn         | 1 <sup>-3</sup> (C)                                 | 1.0×10-10 mol dm                                                                               | 3 (D)            | $4.0 \times 10^{-20}  mol  dm^{-3}$                                                                                 |
|                     | 14)                          | 18 g c           | of glucose i                             |                                              | f in 90  | g of water. The r                   | relative lo                                         | wering of vapour pro                                                                           | essure i         | s equal to                                                                                                          |
|                     | ,                            | (A)              | 5                                        |                                              | (B) 5    | .1                                  | (C)                                                 | 51                                                                                             | (D)              | pakcity.org                                                                                                         |
|                     | 15).                         | An ac            | queous so                                | lution of c                                  | thano    | in water may                        | have var                                            | our pressure;                                                                                  |                  | assepancity.org                                                                                                     |
|                     | (                            |                  | qual to the                              | nat of (                                     |          | Equal to that of thanol             | (C)                                                 | More than that o                                                                               | of (D)           | Less than that of water                                                                                             |
|                     | 223                          |                  |                                          |                                              | laced    | in a solution o                     | f FeSO <sub>4</sub>                                 |                                                                                                |                  |                                                                                                                     |
|                     |                              | d                | u will be<br>eposited                    |                                              | 0        | e is precipitate<br>ut              |                                                     | Cu and Fe both dissolve                                                                        | , ,              | No reaction take place                                                                                              |
|                     |                              |                  |                                          |                                              |          |                                     |                                                     | rate of reaction in                                                                            |                  |                                                                                                                     |
|                     | (                            | A) F             | irst order                               | reaction                                     |          | econd order<br>action               | (C)                                                 | Zero order reaction                                                                            | on (D)           | Third order reaction                                                                                                |

- 1119 (Inter Part I) Warning:- Please, do not write anything on this question paper except, em. (Subjective) (Session 2015-17 to 2018-20) Group (II) Chemistry Maximum Marks: 68 Section ----- 1 2.40 hours Time Allowed:
- Answer briefly any Eight parts from the followings:  $8 \times 2 = 16$ Define macromolecules give examples. (ii) Differentiate between cation and Anion. 2.
- (i) Atomic mass of elements are in fraction give reason.
- Write four properties of best solvent. (v) Why is there need to crystallize crude products. (iii)
- State charles law, write its mathematical form. (vii) Write any four properties of liquid. (iv)
- Derive the value of "R" in "SI" units. (ix) Define Avogadros Law give examples. (vi) (viii)
- Define Molality. Also write its formula. (x)
- Write two difference between Ideal and Non Ideal solutions.
- Ageous solution of CH3COONa is basic and ageous solution of CuSO4 is acidic give reason. (xi) (xii)
- Answer briefly any Eight parts from the followings:-3.

 $8 \times 2 = 16$ 

- Write down any two uses of liquid crystals in daily life.
- (i) One feels sense of cooling under the fan after bath. Comment on it. (ii)
- Ionic crystals donot conduct electricity in the solid state. Justify it. (iii)
- Why sodium chloride and caesium chloride have different structures.
- State Moseley Law, Also write its two importance in periodic table.
- Write down two defects of Rutherford's Atomic model.
- Describe any two properties of canal rays.
- How 'N is converted into B. Give equation. (ix) State Le-chatelier's principle. (viii)
- Define pH and pOH. (xi) Describe Heterogeneous catalysis with an example.
- Write note on (a) Auto catalyst (b) Promotor (xii)
- Answer briefly any Six parts from the followings:-

 $6 \times 2 = 12$ 

- Define ionization energy. Give an example.
- Why does the lone pair occupy more space than bond pair.
- MOT is superior to VBT. Explain (iv) Why dipolement of  $CO_2$  is zero but  $H_2O$  1.85 Debye.
- Define heat of neutralisation Give an example. (vi) State Hess's Law. (v)
- (vii) Differentiate between electrolytic and Galvanic cell.
  - How is the impure copper purified. (ix) Explain the electrolysis of fused PbCl<sub>2</sub> (viii)

Note: Attempt any three questions. Section ----- II  $(8 \times 3 = 24)$ (a) Define empiral formula. Write down various steps to calculate the empirical formula of a compound.

- (b) Differentiate between isomorphism and polymorphism with suitable examples.
- (a) One mole of methane gas is maintained at 300 K. Its volume is 250 cm3. Calculate the pressure exerted by the gas when gas is behaving as ideal.
  - (b) Describe J.J. Thomson experiment to determine the e/m value of an electron.
- (a) Explain para magnetic behaviour of  $O_2$  on the basis of Molecular orbital theory.
  - (b) Describe bomb Calorimeter method for calculation of enthalpy of a substance.
- The solubility of PbF<sub>2</sub> at 25°C is 0.64 g dm<sup>-3</sup>. Calculate solubility product constant  $(K_{SP})$  of 8. (a)  $PbF_2$  Molar mass of  $PbF_2 = 245.2 \text{ g mol}^{-1}$  Repare pakeity.org
  - (b) Define order of a chemical reaction. How does half-life method can be used for its measurement.
- (a) Give graphical explanation for depression in freezing point. 9.
  - Define electrochemical series of elements. Give its two applications. (b)

|                                | Sargodha Board-2018 |                                   |                                                           |                                                                                                                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |
|--------------------------------|---------------------|-----------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------|
| 118                            | 3                   | War                               | ning:- Please write                                       | your Roll No. in the space                                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Roll           | No                               |
|                                |                     | (In                               | ter Part - I)                                             | (Session 2015-17 to 2                                                                                                                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tude           | ent                              |
| Che                            | mi                  | stry                              | (Objective)                                               | ( Group - I                                                                                                                               | )               | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>(I)</b>     |                                  |
| Note<br>hat o<br>esult<br>Ansv | eirc<br>t in<br>ver | You h<br>le in i<br>zero<br>Sheet | front of that question nu<br>mark in that question. W     | PAPER CODI<br>th objective type question as a<br>mber. Use marker or pen to<br>rite PAPER CODE, which in<br>ngly, otherwise the student w | A, B,<br>fill t | C and D. The choice whe circles. Cutting or file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hich<br>ling t | on the both sides of the         |
|                                | 1)                  | The                               | order of reaction for                                     | the reaction $NO + O_3$                                                                                                                   |                 | $NO_2 + O_2$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |
| :                              | 2)                  | The                               | Two<br>number of isotopes                                 |                                                                                                                                           |                 | One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5, 5<br>7      | Zero                             |
|                                | 2)                  | (A)                               | orbic Acid is                                             | (B) 2                                                                                                                                     | (G)             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (D)            | 11                               |
|                                |                     | (A)                               | Vitamin A comparative rates at which                      | (B) Vitamin B<br>ch the solutes move in paper of                                                                                          | hrom            | Vitamin C<br>atography depends on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (D)            | Vitamin D                        |
| ity.o                          |                     | (A)                               | Size of paper                                             | (B) $R_f$ value of solute                                                                                                                 | (C)             | Temperature of experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (D)            | None of these                    |
| 5                              | 5)                  | The                               | order of rate of diffu                                    | sion of gases $NH_3$ , $SO_2$ ,                                                                                                           | $Cl_2$          | and $CO_2$ is.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                  |
| v.pa                           | (                   | A) 1                              | $/H_3 > SO_2 > Cl_2 > CO_2$                               | $(\mathbf{R}) / \mathbf{N}H_3 > CO_2 > SO_2 > Cl_2$                                                                                       | (Ċ)             | Cl <sub>2</sub> > SO <sub>2</sub> > CO <sub>2</sub> > NH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D)            | $NH_3 > CO_2 > Cl_2 > SO_2$      |
| >                              | 6)                  |                                   | lesteryl benzoate tur.<br>140°C                           | n into milky liquid at                                                                                                                    | (D)             | 148 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (D)            | 149 °C                           |
| g                              | 7)                  | Ace                               | tone and chloroform                                       | are soluble in each other                                                                                                                 | due             | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                  |
| data at:                       |                     |                                   | Ion dipole interaction                                    | (B) Intermolecuter hydrogen bonding                                                                                                       | (C)             | Instantaneous dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ं ह            | All of the above                 |
|                                | 8)                  | The                               | ion that is isoelectro                                    | nic with CO's                                                                                                                             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | pakcity.org                      |
| Ĕ                              |                     | (A)                               | $C\bar{N}$                                                | (B) (Q)                                                                                                                                   | (C)             | 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (p)            | $N_2^+$                          |
| Please visit for mo            | 9)                  |                                   | yelocity of photon is<br>Independent of its<br>wavelength | (B) Depend on its source                                                                                                                  | (C)             | Nature of discharge tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (D)            | Equal to square of its amplitude |
| >                              | 10)                 | Wh                                | ich of the Hydrogen                                       | halides has the highest pe                                                                                                                | ercer           | A TOTAL CONTRACT OF THE PARTY O | ter?           |                                  |
| ase                            |                     | (A)                               | HCI                                                       | (B) HBr                                                                                                                                   | B               | <b>HF</b> rg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | т́НІ                             |
| <u>6</u>                       | 11)                 |                                   | bond order of $N_2$ m                                     | olecule is                                                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |
| ш                              | 121                 |                                   | Zero                                                      | (B) I                                                                                                                                     | (C)             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (D)            | 3                                |
|                                | 12,                 |                                   | unity                                                     | ts in their standard states (B) Zero                                                                                                      |                 | Always Positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D)            | Always negative                  |
|                                | 13)                 |                                   | total heat content of                                     |                                                                                                                                           | (4)             | Aiways I ositive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ט)            | Always negative                  |
|                                |                     | (A)                               | Entropy exothermic process                                | (B) Enthalpy                                                                                                                              | (C)             | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (D)            | Internal energy                  |
|                                |                     | (A)                               | Evaporation                                               | (B) Sublimation                                                                                                                           | (C)             | Combustion of methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D)            | Boiling                          |
|                                | 15)                 | Wh                                | ich one of the follow                                     | ring is an ideal solution.                                                                                                                |                 | mediane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                  |
|                                | •                   | (A)                               | $C_2H_5-OH$ and                                           | (B) $C_6H_6$ and $CCl_4$                                                                                                                  | (C)             | CHCl <sub>3</sub> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D)            | None of these                    |
|                                |                     |                                   | $H_2O$                                                    | • •                                                                                                                                       | 15875           | $(CH_3)$ , CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.             | 5.6                              |
|                                | 16)                 | Wh                                |                                                           | ed in water form a soluti                                                                                                                 | on v            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7              |                                  |
|                                |                     |                                   | CuSO <sub>4</sub>                                         | (B) NaCl                                                                                                                                  |                 | NH <sub>4</sub> Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | Na <sub>2</sub> CO <sub>3</sub>  |

(C) Cu foil

17) Standard Hydrogen Electrode (SHE) is made of (A) Ag foil (B) Au foil

(D) Na<sub>2</sub>CO<sub>3</sub>

(D) Pt foil

Sargodha Board-2018

1118 (Inter Part - I) Warning:- Please, do not write anything on this question paper except your Roll No. (Session 2015-17 to 2017-19) Chemistry (Subjective) Paper (I) Time Allowed: 2.40 hours Maximum Marks: 68 Group (I) Section ---Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ Write only names of any four methods employed for the separation of Isotopes. (i) Define gram atom giving an example. (ii) (iii) Why is theoretical yield greater than actual yield? Differentiate between stationary and mobile phase. (v) Write uses of Chromatography. (iv) Justify that the volume of given mass of a gas becomes theoretically zero at -273 °C. (vi) Hydrogen and Helium are ideal at room temperature, but SO2 and Cl2 are non ideal explain it. (vii) Write two applications of Plasma. (viii) (ix) Define common Ion effect with one example. Define solubility product giving at least one example. (x) (ix) Define Law of Mass action. (xii) Define Lowry Bronsted acid and base concept. Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ What are Hydrates? Give an example. (ii) Define ppm and Mole fraction. (i) How electron affinity changes in a group? o(iii) (iv) Why sigma bond is stronger than  $\pi$  bond? What is meant by dipole moment and what are its units? ○ (v) How a co-ordinate covalent bond differs from a covalent bond? ≥(vi) What is meant by internal energy of a System? (viii) Define System and Surrounding. (vii) (xi)  $HC\ell$  is stronger acid than HF. Why? (x) Iodine dissolves readily in CCl4. Why? Define Polymorphism and Allotropy. **≥(xi)** (xii) Why vapour pressure of CCl<sub>4</sub> is 87 torr while isopentane is 580 torr at 20 °C? Answer briefly any Six parts from the followings:  $6 \times 2 = 12$ Describe Zeeman's and Stark's effect: Calculate the mass of an electron,  $\frac{e}{m} = \sqrt{3588 \times 10^{11}}$  coulombs/kg  $\frac{e}{6}$  iii) The  $\frac{e}{1}$  values of positive rays obtained from hydrogen gas is 1836 Time less than that of Cathode rays. Justify. Differentiate between frequency and wave number. (iv) 'Zn' can displace Hydrogen from dilute acid solution but 'Cu' cannot. Justify. (v) Calculate oxidation number of 'Cr' in (a)  $CrCl_3$  (b)  $K_2Cr_2O_7$ (vi) What is difference between Primary and Secondary Cell. (vii) What is Zero order reaction? Give one example. Kelly.org (viii What is specific rate Constant or Velocity Constant. dix) Section ———— II Note: Attempt any three questions.  $(8 \times 3 = 24)$ Ethylene glycol is used as automobile antifreez. It has 38.7 % carbon, 9.7 % hydrogen and 5. 51.6 % oxygen. Determine its empirical formula. Explain the term molecular solid. Give three properties of molecular solids. (b) Give explaination of applications of Dalton's Law of Partial Pressure of gases. 6. (a) Derive an expression for radius of nth orbit of Hydrogen atom with the help of Bohr's atomic model. **(b)** Write down main points of Valence Shell electron pair repulsion (VSEPR) theory. 7. (a) Describe Bomb Calorimeter, for calculation of enthalpy of a substance. (b) State Law of mass action. Derive an equilibrium constant expression for a general reaction. 8. (a) Write a note on Fuel cells. **(b)** What is Catalyst? Write its three characteristics? 

pakcity.org 9. (a) The freezing point of pure Camphor is 178.4 °C. Find the freezing point of a solution **(b)** containing 2.0 g of non-volatile compound, having molecular mass 140, in 40 g of Camphor. The molal freezing point constant of Camphor is 37.7 °C kg mol-1

2.

3.

4.

(i) <del>o</del>

dii)

|                                                        |                                                     |                                                                                                                      | Sargodha Boar                                                                                                          | d-2018                                         |                                                                                                                                    |
|--------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | Warn                                                | ing:- Please write y                                                                                                 | our Roll No. in the space                                                                                              | e provided and sign.                           | Roll No                                                                                                                            |
|                                                        |                                                     | er Part – I)                                                                                                         | (Session 2015-17 to 201                                                                                                | 17-19) Sig. of St                              | udent                                                                                                                              |
| Chemi                                                  | stry                                                | (Objective)                                                                                                          | ( Group - I                                                                                                            |                                                | <b>(I)</b>                                                                                                                         |
| Time A                                                 | llowe                                               | d:- 20 minutes                                                                                                       | PAPER COD                                                                                                              | E 2482 Maxii                                   | mum Marks:- 17                                                                                                                     |
| Note:-<br>that circ<br>result in<br>Answer<br>white co | You ha<br>le in fr<br>zero m<br>Sheet a<br>rrecting | ve four choices for each ont of that question nut that question. We and fill bubbles according fluid is not allowed. | ngly, otherwise the student v                                                                                          | is pribled on this duestion b                  | which you think is correct; fill lling two or more circles will paper, on the both sides of the pation. Use of Ink Remover or Q. 1 |
| 1)                                                     | (A) 3                                               | argest number of materials, $6 \text{ g of } H_2O$                                                                   | olecules are present in (B) 4.8 g of $C_2H_5OH$                                                                        | (C) 2.8 g of CO                                | (D) 5.4 g of $N_2O_5$                                                                                                              |
| 2)                                                     | The v                                               | olume occupied by                                                                                                    | $1.4 \text{ g of } N_2 \text{ at S.T.P is}$                                                                            |                                                |                                                                                                                                    |
| •                                                      | (A) 2                                               | $2.24  dm^3$                                                                                                         | (B) $22.4  dm^3$                                                                                                       | (C) $1.12 \ dm^3$                              | (D) $112 cm^3$                                                                                                                     |
| •                                                      | Solve                                               | ent extraction is an e                                                                                               | equilibrium process and                                                                                                | (C) Distribution Law                           | (D) The amount of solute                                                                                                           |
| _4)                                                    | Equa                                                | l masses of methane                                                                                                  | and oxygen are mixed                                                                                                   | in an empty container at                       |                                                                                                                                    |
| 5,                                                     | total                                               | pressure everted by                                                                                                  | oxygen is                                                                                                              |                                                |                                                                                                                                    |
| >.                                                     | LOTAL                                               | pressure exerced by                                                                                                  | o/                                                                                                                     | 1/                                             | _ 16/                                                                                                                              |
| kcit                                                   | A) -                                                | 3                                                                                                                    | e and oxygen are mixed oxygen is  (B) 8/9  O <sub>2</sub> is maximum at  (B) 127 °C and 1 atm are soluble in each othe | (C) 1/9                                        | (D) $\frac{16}{17}$                                                                                                                |
| <u>8</u> 5)                                            | The r                                               | nolar volume of Co                                                                                                   | $O_2$ is maximum at                                                                                                    | 26                                             |                                                                                                                                    |
| ≥                                                      | (A) S                                               | STP                                                                                                                  | (B) 127 °C and 1 atm                                                                                                   | (C) 0 °C and 2 atm                             | (D) 273 °C and 2 atm                                                                                                               |
| €6)                                                    | Aceto                                               | one and chloroform                                                                                                   | are soluble in each othe                                                                                               | r due to                                       |                                                                                                                                    |
| at: \                                                  |                                                     | ntermolecular<br>nydrogen bonding                                                                                    | (D) Ion-dipole                                                                                                         | (C) Instantaneous dipole                       | (D) All of the above                                                                                                               |
| <del>ag</del> 7)                                       | Mole                                                | cules of CO2 in dry                                                                                                  | ice form the                                                                                                           |                                                |                                                                                                                                    |
| 9                                                      | (A) I                                               | onic crystals                                                                                                        | (B) Covalent crystals                                                                                                  | (C) Molecular crystals                         | (D) Any type crystal                                                                                                               |
| <b>2</b> 8)                                            | The                                                 | wave number                                                                                                          |                                                                                                                        | a certain source is 2×10°                      |                                                                                                                                    |
| E .                                                    | of th                                               | is light will be                                                                                                     | Why I                                                                                                                  |                                                |                                                                                                                                    |
|                                                        | (A) 5                                               | 500 nm                                                                                                               | (B) 500 m                                                                                                              | (C) 200 nm                                     | (D) $5 \times 10^7 \ m$                                                                                                            |
| <u>                                      </u>          | (A) 7                                               | 7f                                                                                                                   | plete, the entering electron (B) 7s molecules has zero dipo                                                            | (C) 7p                                         | (D) 7d                                                                                                                             |
| ase                                                    | (A)                                                 |                                                                                                                      | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                | (C) H <sub>2</sub> O                           | (D) $BF_3$                                                                                                                         |
| 911                                                    |                                                     | •                                                                                                                    |                                                                                                                        | 4                                              | 790 ( 1970 )                                                                                                                       |
| ₫                                                      | (A) I                                               | HCl                                                                                                                  | (B) HBr                                                                                                                | ercentage of ionic character (C) HF            | (D) HI                                                                                                                             |
| 12)                                                    |                                                     | rie is equivalent to<br>0.4184 J                                                                                     | (B) 41.84 J                                                                                                            | (C) 4.184 J                                    | (D) 419 4 T                                                                                                                        |
| 121                                                    |                                                     |                                                                                                                      |                                                                                                                        | ` '                                            | (D) 418.4 J                                                                                                                        |
| 13,                                                    | ) The                                               | ph of to mot am                                                                                                      | -3 of an aqueous solution                                                                                              | of $H_2SO_4$ is                                |                                                                                                                                    |
|                                                        | (A) 3                                               | 3.0                                                                                                                  | (B) 2.7                                                                                                                | (C) 2.0                                        | (D) 1.5                                                                                                                            |
| 14)                                                    | The s                                               | solubility product of Ag                                                                                             | Cl is $2.0 \times 10^{-10} \ mol^2 d$                                                                                  | $m^{-6}$ . The maximum conc of                 | of $Ag^+$ ions in the solution is                                                                                                  |
|                                                        | (A)                                                 | $2.0 \times 10^{-10}  mol  dm^{-3}$                                                                                  | (B) $1.41 \times 10^{-5} \text{ mol } dm^{-3}$                                                                         | (C) 1.0×10 <sup>-10</sup> mol dm <sup>-3</sup> | (D) $4.0 \times 10^{-20}  mol  dm^{-3}$                                                                                            |
| 15)                                                    |                                                     | urity of pure water i                                                                                                |                                                                                                                        |                                                |                                                                                                                                    |
| 16                                                     | (A)                                                 | ` '                                                                                                                  |                                                                                                                        | (C) 55.5                                       | (D) 6                                                                                                                              |
| 10,                                                    |                                                     |                                                                                                                      | (R) Degrees slewly                                                                                                     |                                                | (D) Duranta anno                                                                                                                   |
| 17\                                                    |                                                     |                                                                                                                      | <ul><li>(B) Decreases slowly<br/>t is the same as that of the</li></ul>                                                | (C) Does not change                            | (D) Drops to zero                                                                                                                  |
| 117                                                    |                                                     |                                                                                                                      |                                                                                                                        |                                                | on (D) 2nd and                                                                                                                     |
|                                                        | ₩<br>P                                              | akcity.org                                                                                                           | 173A 1118-                                                                                                             | 9000 (1)                                       | on (D) 3rd order reaction                                                                                                          |
|                                                        | 3                                                   |                                                                                                                      |                                                                                                                        |                                                |                                                                                                                                    |

Explain with diagram how enthalpy of a reaction can be measured by glass Calorimeter.

The boiling point of water is 99.725 °C. To a sample of 600 g of water are added 24 g of a solute

How does Arrhenius equation help us to calculate the energy of activation of a reaction?

having molecular mass of 58 g mole<sup>-1</sup>, to form a solution. Calculate the boiling point of the solution.

Sargodha Board-2018

1118 (Inter Part - I) Warning:- Please, do not write anything on this question paper except your Roll No.

Section ---- I

Answer briefly any Eight parts from the followings:  $8 \times 2 = 16$ 

(Session 2015-17 to 2017-19) Group (II)

Paper (I)

Maximum Marks: 68

(Subjective)

2.40 hours

(i)  $BeCl_2$  (ii)  $BF_3$  (iii)  $NH_3$  (iv)  $H_2O$ 

Define common ion effect. Give its two applications.

Give four Industrial Importance of electrolysis process.

Time Allowed:

2.

data

more

**(b)** 

(a)

(b)

(a)

8.

9.