

15. In 98g of sulphuric acid H ₂ SO ₄ number of O atoms: (A) 1.2 × 10 ²⁴ (B) 6.02 × 10 ²⁴ (C) 6.02 × 10 ²³ (D) 2.408 × 10 ²⁴ 16. Mass of one mole of chlorine(Cl ₂) gas is: (A) 44g (B) 23g (F) 71g (D) 35.g 17. Many elements have fractional atomic masses. This is because: (A) Atomic masses are average masses of isobars. (B) Atomic masses are average masses of isotopes. (C) The mass of the atom is itself fractional. (D) Atomic masses are average masses of isotopes proportional to their relative abund. 18. 22g of CO ₂ sample has: (A) 1.5 moles of O atoms (B) 1 mole of O atoms (C) 6.02×102 molecules of CO ₂ (D) ½ mole of O atoms (D) 1 times 19. How many times Na atom is heavier than H-atom? (A) 23 times (B) 32 times (C) 46 times (D) 11 times 20. The phenomenon of isotropy was first discovered by:
 A 1.2 × 10²⁴
16. Mass of one mole of chlorine(Cl ₂) gas is: (A) 44g (B) 23g (C) 71g (D) 35.g 17. Many elements have fractional atomic masses. This is because: (A) Atomic masses are average masses of isobars. (B) Atomic masses are average masses of isotopes. (C) The mass of the atom is itself fractional. (D) Atomic masses are average masses of isotopes proportional to their relative abund. 18. 22g of CO ₂ sample has: (A) 1.5 moles of O atoms (B) 1 mole of O atoms (C) 1.5 moles of O atoms (C) 1.5 moles of O atoms (D) 1/2 mole of O atoms (E) 1.5 moles
 A 44g B 23g O 71g O 35.g Many elements have fractional atomic masses. This is because: A Atomic masses are average masses of isobars. B Atomic masses are average masses of isotopes. The mass of the atom is itself fractional. Atomic masses are average masses of isotopes proportional to their relative abund. 18. 22g of CO₂ sample has: 1.5 moles of 0 atoms 0 6.02×102 molecules of CO₂ 1 mole of 0 atoms 1 mole of 0 atoms 1 mole of 0 atoms 2 mole of 0 atoms 19. How many times Na atom is heavier than H-atom? 23 times B 32 times C 46 times D 11 times 20. The phenomenon of isotropy was first discovered by:
17. Many elements have fractional atomic masses. This is because: A Atomic masses are average masses of isobars. Atomic masses are average masses of isotopes. The mass of the atom is itself fractional. Atomic masses are average masses of isotopes proportional to their relative abund. 18. 22g of CO ₂ sample has: A 1.5 moles of 0 atoms 6 0.02×102 molecules of CO ₂ 19. How many times Na atom is heavier than H-atom? 23 times B 32 times C 46 times D 11 times 20. The phenomenon of isotropy was first discovered by:
A Atomic masses are average masses of isobars. B Atomic masses are average masses of isotopes. The mass of the atom is itself fractional. Atomic masses are average masses of isotopes proportional to their relative abund. 18. 22g of CO ₂ sample has: A 1.5 moles of 0 atoms 6 6.02×102 molecules of CO ₂ 19 How many times Na atom is heavier than H-atom? 23 times B 32 times C 46 times D 11 times 20. The phenomenon of isotropy was first discovered by:
 B Atomic masses are average masses of isotopes. The mass of the atom is itself fractional. Atomic masses are average masses of isotopes proportional to their relative abund. 18. 22g of CO₂ sample has: 1.5 moles of 0 atoms 6.02×102 molecules of CO₂ 1/2 mole of 0 atoms 19. How many times Na atom is heavier than H-atom? 23 times 32 times 46 times 11 times 20. The phenomenon of isotropy was first discovered by:
© The mass of the atom is itself fractional. ① Atomic masses are average masses of isotopes proportional to their relative abund. 18. 22g of CO ₂ sample has: ② 1.5 moles of 0 atoms ② 6.02×102 molecules of CO ₂ ① ½ mole of 0 atoms ② pakcity.org ② 19. How many times Na atom is heavier than H-atom? ② 23 times ③ 32 times ⑤ 46 times ⑤ 11 times ② 11 times
18. 22g of CO ₂ sample has: (A) 1.5 moles of O atoms (B) 1 mole of O atoms (C) 6.02×102 molecules of CO₂ (D) ½ mole of O atoms (D) pakcity.org 19. How many times Na atom is heavier than H-atom? (A) 23 times (B) 32 times (C) 46 times (D) 11 times 20. The phenomenon of isotropy was first discovered by:
 A 1.5 moles of O atoms © 6.02×102 molecules of CO₂ D ½ mole of O atoms pakcity.org pakcit
© 6.02×102 molecules of CO ₂ ① ½ mole of O atoms pakcity.org 19. How many times Na atom is heavier than H-atom? ② 23 times ③ 46 times ② 11 times 20. The phenomenon of isotropy was first discovered by:
19. How many times Na atom is heavier than H-atom? ② 23 times ③ 32 times ⑤ 46 times ⑤ 11 times 20. The phenomenon of isotropy was first discovered by:
23 times © 46 times © 11 times 20. The phenomenon of isotropy was first discovered by:
20. The phenomenon of isotropy was first discovered by:
TAN TRANSPORTED TO THE PROPERTY OF THE PROPERT
(A) Rutherford (B) Dalton (C) Berzelius (D) Soddy
21. Mass in grams of 2.74 moles of KMnO ₄ : (a) 294 g (b) 0.715g (c) 432.92 g (d) 1416.2 g
22. Which is a molecular ion?
\bigcirc CH ₄ ⁺ \bigcirc Ca ²⁺ \bigcirc \bigcirc Na ⁺ \bigcirc Al ³⁺
23. Nickel has isotopes:
(A) 4 (B) 6 (C) 8 (D) 5
24. Which of the following is a mono-isotopic element? (A) Calcium (B) Chlorine (C) Fluorine (D) Silver
25. The mass of 10 moles of electrons is:
(a) 5.5 mg (b) 1.84 mg (c) 16.73 mg (d) 10.08 mg
26. 1 amu is equal to:
27. Atoms of which one of the following element have independent existence:
(A) Oxygen (B) Krypton (C) Nitrogen (D) Flourine
28. Which of the following element can exist in monoatomic form?
Melium B Nitrogen © Chlorine D Oxygen
29. The atomic masses of elements were determined by:
🙉 Soddy 📵 J. Berzelius © Moseley 📵 John Dalton
30. Haemoglobin is a macromolecule and consists of approximately atoms:

		www.pake	hty.01g		Class 11	": Chemistry McQs	
	A	Distribution coef		В	Distribution la		
	(c)	Low partial press	ures	(D)	Boiling point of	of the solvent	
64.	In p	aper Chromatogra	phy the point at w	hich the	solvent rises th	e maximum extent	is called
	A	Solvent front	[®] Base line	0	Chromatogran	n 🛈 Eluent	
65.	A	Two stationary p	: • :	B	stationary ph	of a solute between ase and mobile pha hases	
66.	In p	aper Chromatogra	aphy mobile phase	is:			
	_	Solid	B Liquid	(c)	Gas + Liquid	© Gas	
67.		ich of the followin	g technique is use	ful in or	•••••••••••••••••••••••••••••••••••••••	for separation, pu	rification
	A	Chromatography	B Solvent extra	ction ©	Filtration	Sublimatio	n
68.	_	•	rmed on paper in C and Chromatogram		graphy is calle Chromatogra Chromatopho	ph	
69.	Chr	omatography is:			to identify	colorless compo	
	(A)	HCl	Ninhydrim	(c)	H ₂ S	Rubeanic A	cid
70.	Solv (A) (C)	ent extraction is a The amount of so The amount of so	<0	cess and	it is controlled Distribution l Law of mass a	aw	
71.	pro	duct to be separate	ed is:	rly useful		separation when th	e
	(A)	Volatile or therm Non-volatile or the		(D)		ermally unstable or thermally unstab	ole
72.	The A ©	comparative rates	s at which the solutation	tes move	in paper chron	natography, depend	····
73.	One	of the following s	ubstances does not	t undergo	sublimation:		
	A	Iodine	B NH ₄ Cl	©	Naphthalene	D KMnO ₄	
74.	Whi	ich one of the follo	wing compound is	purified	by sublimation	:	
	A	Benzoic acid	B Nal	· ©	CS_2	© SiO ₂	
7 5.	Dire	ect conversion of s	olid into its vapour	r is called			
, 01	(A)	Distribution	Vapourization		Crystallization	© Sublimation	on
76.	Whi	ich of the following NaCl and KCl Sand and broken	g pairs can be sepa pieces of glass	rated by B D	sublimation? Sand and napl Sand and NaC		
77.	Whi	ich of the following	g substances is a su	ıblime m	aterial?		
	_	Acetic acid	Benzoic acid		NaCl	Potash alui	n

www.pakcity.org

Class 11th: Chemistry MCQs

	www.pakcity.org	Class 11th : Chemistry MCQs
106.	In a better method, the process of subli	
	(A) normal finger (B) cold finger	© hot finger D None of these
107.	One of the following substances does no	
	(A) iodine (B) NH ₄ CI	© naphthalene D KMnO ₄
108.	In CCl ₄ solvent I ₂ shows:	
•	ping colour purple colour	© blue colour © brown colour
109.	$\frac{[I_2CC_4]}{[I_1-\ldots]}:$	
	[¹ 3 (aq)] (A) equilibrium constant	distribution co-efficient
	© rate constant	distrution constant distrution constant
110.	Paper chromatography was discovered	by Consdon in:
	A 1944 B 1744	© 1844 © 1644
111.	Proteins and amino acid can be separat	ed by:
	A chromatography B mobile phase	© mixed phase 🕞 stationary phase
112.	Substances produced by body like urin	e can be separated by:
	(A) mixed phase (B) chromatogra	phy © stationary phase D mobile phase
113.	Thin film of absorbed water on cellulos	e acts as:
	🔼 stationary phase 📵 sublimation	mixed phase D none of these
114.	In paper chromatography the rate at w	hich solute move depend on:
	A distribution law law of partial pressure	distribution coefficients
	O law of partition processing	law of definite proportions
1115.	A partition chromatography	adsorption chromatography
	© decending chromatography	© coloumn chromatography
116.	In chromatography, the point at which	solvent maximum rises called:
	element	akci © chromatogram 🕞 base line
117.	The components of which mixture can	be separated by chromatography:
	NaCl and CaCl ₂ Call potential	blue and red inks
110	© Cell potential	sand and naphthalene
1118.	Plasma is: Note: The property of the property	Third state of matter
	© Second state of matter	First state of matter
119.	Plasma consists of mixture of neutral p	articles , positive ions and:
	Positron B Electrons	© Neutrons D Protons
120.	Kinetic theory was proposed by:	
	A Bernoulli B Newton	© Maxwell © Coulomb
121.	If 10 g of a gas at one atmospheric p	ressure is cooled from 273 °C to 0 °C at consta
	volume, its pressure would become:	

	WWW	.pakcity.org		Class 11 th : 0	Chemistry MCQs
	A 273 atm	B 1 a	atm ©	0.005 atm	0.5 atm
122.	4 gm of H ₂ gas	at STP occupie	s:		
	(A) 60 lit	B 44	.8 lit ©	35.5 lit	② 25.5 lit
	3		nt T at which pres	sure its volume c	doubles, when the initia
	pressure is 2 a (A) 4 atm		corr	101325 Nm ⁻²	101325 torr
124					© 101323 tol1
124.	For an ideal ga	s , the compres	sibility factor is eq	uai to: 1.5	(D) 0.5
	CII :				
	density at 0.5 a		and I atm pressu	re. Its density is 0	$0.714~{ m g~dm^{-3}}$. What is its
	\bigcirc 0.35 dm ⁻³	B 7.2	$14 \mathrm{dm^{-3}}$	1.428 dm ⁻³	\odot 0.714 dm ⁻³
126.	A graph is p	lotted between	n two variable th	at is pressure a	nd volume at constan
	temperature a	nd fixed numbe	er of moles of the g	as, the graph is cal	lled:
	Adiabat	B Iso	ochor ©	Isobar	Isotherm
				xed in an empty	container at 25 °C. The
	fraction of tota	il pressure exei	ted by oxygen is:	1	15
	$\bigcirc \frac{1}{8}$	В	$\frac{1}{3}$ ©	9	
128.	The gases show	v more deviatio	on at:		
		erature and lo	(0)	* *** ********************************	re and high pressure
A	<u>.</u>	erature and hig		Low temperature	e and low pressure
129.	gas has l	owest rate of d	iffusion.		
	(A) H ₂	(B) N ₂		O_2	① He
130.	The molar volu				
	(A) 127 °C and	d1atm B0°	C and 2 atm ©	273 °C and 2 atm	ı 🕑 STP
131.	The unit millib	ar is commonly	y used by: akcity.o	rg	
	A Engineers	B Me	eteorologists ©	Dalton	Astronauts
		emperature at	which a substant	ce can exist as li	quid state at its critica
	pressure is: (A) Critical te	mperature	(B)	Transition tempe	erature
		temperature	<u>D</u>	Absolute zero	
133.	The temperate	of natural plas	sma is about:		
	♠ 10,000 °C	® 50	00 °C	20,000 °C	
134.	Temperature a	nd number of	moles are kept con	stant in:	
2	(A) Charles's l	aw 📵 Bo	yles law ©	Dalton's law	Avogadro's law
135.	Value of R at S'	TP:		างการการการการการการการการการการการการการก	
		n ³ atm K ⁻¹ Km		0.00821 dm ³ atm	
a		dm ³ atm K ⁻¹ K	skirki Sula Moodul Ministria kalanda kaland	8.21 dm ³ atm K ⁻	' Kmol ⁻¹

136.	Kin	etic energy of gas n	nolecules is zero at:				
	A	−1 °C	B 0 F	©	0 °C	(D)	0 K
137.	At v	what temperature d	loes the gaseous state	of a	ny type of matter c	an't	exist?
	A	−237.15 °C	® 273.15 °C	(C)	−273.15 °C	D	100 °C
138.	Den	sity of an ideal gas	can be calculated by i	usin	g equation:		
	A	PM = dRT	\bigcirc PM = dPV	©	PV = dRT	D	$d = \frac{RT}{MP}$
139.	Dalt	ton's law of partial	pressure can be deriv	ed fi	rom:		
	A	Charles's law	B General gas equa	tion	© Boyles law	D	Avogadro's law
140.	At a	ibsolute zero total l	Kinetic energy of gas r	nole	cules is:		
	A	Zero	Minimum	©	Maximum	D	Lower than 20 KJ
141.	Kin	etic equation PV =	$\frac{1}{3}$ m $\overline{Nc^2}$ is derived by	/:			
	A	Bernulli	B Clausius	©	Boltzmann	D	Maxwell
142.	The	sun is a ball	of plasma heated by n	ucle	ar fusion process.		
	A	1.5 million Km	B 3 million Km	©	1.5 billion Km	D	3 billion Km
143.	Gas	es deviate from ide	al behavior at high pr	essu	re because:		
	V		he gas molecules mov	-11			
		Both A & B	here are significant at	crac >	tive forces		
	D	At high pressure, t	he gas molecule move	in o	ne direction only	*	pakcity.org
144.			ditions be changed t	o p	revent the volum	e of	a given gas from
	=	anding when its ma Temperature and i	oressure both are incr	ease	dal		
			wered and pressure is				
		55	reased and pressure		A		
	•••••		oressure both are low	ty.o	rg	C 11	
145. 		es deviate from ide i-ideality?	eal behavior at high p	oress	sure. Which of the	tollo	owing is correct for
		G 1	he collisions between		315		
			the intermolecular att he volume of the gas b			ficar	nt
			he gas molecules mov		-		
146.			breathing in unpress	0.			
	A	high pressure of O		200	low pressure of C high pressure of C		
117	Cnit			٣	mgn pressure or (2O2	
14/.	(A)	ical temperature of 73.0 atm	B 217.0 atm	(c)	111.5 atm	(D)	39.6 atm
14Ω		ical temperature of					
170.	(A)	647.6 K	(B) 405.6 K	(c)	384.7 K	(D)	304.3 K
		0171011	O 103.0 K				0011011

			www.pakci	ty.o	rg		Class 11 th : Ch	nemi	stry MCQs
	140	1 (55 m)		4-					
	149.	_	mosphere is equal 500 cm	_	760cm of Hg	©	1000 mm of Hg	(D)	760mm of Hg
1 1 1 1	150.	Con	stant factor in Cha	rlie's	s law:				
		A	Temperature	В	Both V and T	©	Pressure	(D)	Volume
	151.	The	S.I unit of pressur	e is:					
		A	m ⁻²	B	Nm ⁻²	©	mm Hg	D	torr
	152.		mula used for conv						
		A	$^{\circ}\text{C} = 5/9[^{\circ}\text{F} - 32]$	В	$^{\circ}F = 5/9[^{\circ}C] + 32$	©	$^{\circ}\text{C} = 9/5[^{\circ}\text{F} - 32]$	(D)	$^{\circ}F = 9/5[^{\circ}C] + 32$
	153.	: - \	al masses of metletion of total pressu		5 , 5 ,		ed in an empty o	onta	ainer at 25 °C. The
		0.00	1/9		16/17		8/9	(D)	1/3
	154.	Part	tial pressure of oxy	gen	in human lungs in	ı tor	r is:		
S		A	760	B	116	©	161	D	159
	155.	The	spreading of fragr	ance	e of scent in air is o	due t	to:		
F 1 6		A	Density	В	Diffusion	©	Osmosis	D	Effusion
	156.		nber of molecules i			clos	ed to:		
		A	$55.6 \times 6.02 \times 10^{2}$	3 B	$\frac{18}{22.4} \times 10^{23}$		$\frac{12.04}{22.4} \times 10^{23}$	D .	$\frac{6.02}{22.4} \times 10^{23}$
1 1 1 1	157.	Nor	mal human body t	emp	erature is:	>			
1 1 1		A	27 3K	В	37 °F	0	98.6 °C	D	37 °C
1 1	158.		en water freezes at Change of bond a	^				tin 4	-bo atmostuma of ica
		(A) (C)	Cubic structure of	\mathbf{U}			ange of bond lengt		the structure of ice
1 1 E	159.	Mas	ss of 22.4 dm 3 of N $_2$	at S	TP is:	Tasanan Tasanan			
		A	2.8 gm	B	28 gm	©	14 gm	D	1.4 gm
	160.		molar volume of C			ty.ol	g	33.57	
		A	127 °C and 1 atm	В	0°C and 2 atm	©	273 °C and 2 atm	D	STP
1 8 1 A	161.	Esca	ape out of gas mole		-	\sim	THE RESERVE OF THE PROPERTY OF		TICC :
		(A)	Osmosis	(B)	Diffusion	(C)	Both A & B	(ம	Effusion
	162.		ich gas will diffuse SO ₂	mor	e rapidly? HCl		NH ₃	(n)	CO_2
	163	Whi	ich of the following	<u> </u>		of o		0	CO ₂
1 10	103.	(A)	NH ₃	(B)	SO ₂	©	CO ₂	D	O_2
	164.	Whi	ich of the following	g will	have the same nu	ımb	er of molecules at S	STP?)
		A	28 g of N ₂ and 5.6	dm ³	of oxygen		44 g of CO ₂ and 1	1.2	dm ³ of CO
	165	(c)	11.2 dm ³ of O ₂ and			P	280 cm ³ of CO ₂ and	na Z	ou ciii- in2U
	102.	ın 1	879, plasma was id	ient!	med by scientist:				ř

			www.pakc	ity.org		Class 11th : Cl	hemistry MCQs	
	J-							
		A) Chadwick	Soddy	<u></u>	William Crookes	D John Dalton	
1 1 1	166.	_	ne order of rate of c	<u> </u>	s NH ₃ , SO ₂ ,			
		(C)	$NH_3 > SO_2 > CO_3$ $NH_3 > CO_2 > Cl_2$		(B)	$Cl_2 > SO_2 > CO_2$ $NH_3 > CO_2 > SO_3$		
	4							
8	167.		real gas obeying Va) "a" is large and "	\$=	1	semble ideal gas if "a" is small and "		
			both "a" and "b"		<u> </u>	if both "a" and ""		
9 6 1 9	168.	If'	"a" and "b" are zero	o for certain gas t	***************************************	••••••		
		_) May be any diato		_	Non-ideal	Ideal	
	169.	Th	ne deviation of gas	from ideal behav	ior is maxi	mum at:		e e e e e e e e e e e e e e e e e e e
		A) 100 °C and 2.0 a		B	0 °C and 2.0 atm		
	×	(C	−10 °C and 5.0 a	atm	<u> </u>	-10 °C and 2.0 at	tm 🎇 pakcity.org	
			n ideal gas has voluments its voluments.			eping pressure co	nstant. At which Ke	lvin
1 1 1		A) 303 K	® 330 K	<u>©</u>	606 K	D 240 K	
			absolute temperat	prox.	oubled an	d the pressure is	reduced to one half,	the
		A	Reduced to 1/8	B increase fo	our times	© be doubled	Remain unchang	ged
			ne pair of gases w	hich does not o	bey Dalto	n's law of partial	pressure under nor	mal
F 3 G		A	NH ₃ and HCI	B He and Ne	900 O	H ₂ and He	D H ₂ and O ₂	July Spanners & S
			essure remaining of what it is at 0 °C:	constant, at whic	h tempera	ture the volume of	a gas will become tw	wice
		(A)) 200 °C	® 273 K		456 °C	546 K	
	174	Pa	rtial pressure of ox					
	1/T:	(A	157 torr	(B) 158 torr		159 torr	① 156 torr	
		<u>ن</u> -					- 130 (011	
	175.	$\overline{}$	ndon dispersion fo				drogen chloride god	
3 1 3			Atoms of helium i Molecules of solid	C	100 Get	Molecules of nyMolecules of wa	drogen chloride gas ater in liquid state	
4 3 K	176		norphous solids:					*************
2 6 4	,	=	Have perfect arra	ngement of atom	S			
	(В	Undergo clean cle	<u></u>	with knife.			
	(Have sharp points		.lv. a	mont of at-		
	A	**********	Can possess small			ment of atoms.		*********
10 10 10	177.	_ '	pole-dipole interac	ction are present		Atoma of the II.	an C	
A 20 16 21	(4) (c)	Molecules of NH ₃ Molecules of solid	liodine	(B)	Atoms of the He g Molecules of CCl ₄	a5	
F 1 SE	170	 ጥ៤						,, <u>.</u>
	τ/α.	A)	ne structure of NaC Octahedral	i ci ystai is:	В	Square planar		
3 1 2 6		©	Face centered cub		D	Body centered cul		
	****							***********

		www.pakc	ity.org			Class 11th: Chemistry MCQs	
179.	<u> </u>	h of the followir					
	A Br ₂	2	B H ₂ O	©]	HBr	① HCl	
180.	The s	trongest acid ar	nong Halogen a	cids is:			
	A HI	F	B Hl	©	HBr	① HCl	
181.	Which	h of the hydroge	en halides has t	he highest p	ercenta	age of ionic character?	
	(A) HI	F	[®] HBr	©	Hl	D HCl	
182.	H-bor	nding is maximı	ım:				
	2-4	ethyl ether	(B) Benzene	(c)	Water	© Ethanol	
102						<u> </u>	
183.		ty of ice is maxi ger bond length		ie to:	Oxidat	ion potential	
		npty spaces in s		(D)	Cell vo	A	
184	Aceto	ne and chlorofo	rm are soluble	in each oth	er due t	n:	
		n dipole forces	or in are soluble			taneous dipoles	
	© Di	pole-dipole inte	eraction	(D)	Inter	molecular hydrogen bond	ling
185.	When	water freezes	at 0ºC, its densi	tv decreases	s due to		
	122	npty spaces pre		13-0	<u></u>	nange of bond length	
	© Ch	ange of bond ar	ngles		© Ei	bic structure of ice	
186.	The r	epulsions of ele	ectronic clouds	of molecule	es are r	esponsible for the attrac	tive force:
	amon	g the molecules	. These forces a	are:	>		
	1.170	n-dipole forces	1 C	(.0)		neous dipole-induced dip	oole force
		pole-induced di			Dipole-c	dipole forces	
187.	Whicl	h of the given ha	as hydrogen bo	nding:	300		
	(A) 1	NH_3	® NaCl	©	CCl ₄	© CH ₃	
188.	The fo	orce which are p	oresent betwee	n the ions a	nd the p	oolar molecular of the solv	vent are:
	15-51 10-62	pole-dipole for		A 11-		-induced dipole forces	
**	© Lo	ndon dispersio	n forces		Ion-dip	pole forces	
189.	Hydro	ogen bonding is	extensively pro	esent in pro	teins be	etween:	
		rbon and hydro	•	· · · · · · · · · · · · · · · · · · ·	_	en and hydrogen atoms	
	© Ox	ygen and hydro	ogen atoms	(D)	Nitrog	en and oxygen	
190.	_	oats on water be			Emanatur	anagaga aya nyagaytin iga	
	50 500	ot empty spaces e has two-dimer		re (D)	1 Sec. 180	spaces are present in ice drogen bonding in ice is s	
101	100000000000000000000000000000000000000						011901
191.		ong chains of an in der Waal's fo				other into a spiral by: pping of orbitals	
		nic bond				gen bonding	
192	The w	veakest intermo	lecular forces r	present in a	liauid n	nav be:	
	_	pole-dipole for	•	В		ostatic forces between ior	is in ionic
	© Lo	ndon Dispersio	n forces	D	Dipole	-induced dipole force	
193.	Whicl	h of the followir	ng has stronges	t hydrogen l	oonding	5 ?	

	www.pal	city.org		Class 1	1th : Chemistry MCQs	
A	HF	В НС	©	NH ₃	© CH ₄	
194. Va	an-der Waal's for	ces are weak inter	molecular	forces, they i	nclude:	
	Ion-Dipole force		B	All of the the		
(C)	טוףole-induced	dipole forces only	(D)	טוףole-Dipo	le forces only	
		becomes stronger		* **	; _ ;	
A	Density of mole	cules is large ns in a molecule ar	e large ①	Molecules a Size of atom	re homo atomic	
					i 13 3IIIAIICI	
196. W	hich of the follow Dipole-induced	ving forces exist in Dipole forces		es? Hydrogen b	onding	
©	Dipole-madead Dipole-dipole fo		(D)	London disp	2	ř I
197. W	hich of the follow	ving is not a type o	f liquid crv	stal?		
(A)	Smectic	B Enteric	(c)	Nematic	© Cholesteric	
10Ω Ι:		used to find the po	nint of			
A)	Potential failure		(B)	In electric Both A & D	car circuito.	
©	None		<u>D</u>	Potential di	fference	
199. Li	quid crystals can	diffract				
A	Heat	B Both A & D	©	None (D Light	
200. In	chromatography	y liquid crystal are	used as	10 (0) v		
A	Solvent	Substrate		Solute	None of the	ese
201. TI		perature of KNO ₃ i	SAROLLA			
(A)	32.02 °C	B 95.5 %		13.2 °C	□ 128 °C	
202 TL						
	e sona wnich has Dry ice	no definite crysta Glass		Salt	Sugar	

203. Is	omorphism is pro 100% equal ion	esent in K ₂ SO ₄ and ic Character.	K2CrO4. Th	ese two com	ipounas:	
B	•	ration of the atom	is in them.	ra		
©		sical and chemical		9		
(D)	The shapes of b	oth SO_4^{2-} and CrO_4^2				
	*	those solids, which			1 • • •	
(A)	₩	& chemical propert out different chemi			me chemical properties me physical properties	
205	<u> </u>				ne physical properties	
∠U5. W		ving substances is	-		D1	
(A)	Graphite	(B) KCl	© Su	gar	D Plastic	
	astics are amorp		lon- 1' ·		notunda	1 * * * * * * * * * * * * * * * * * * *
(A)		arrangement over cleavage when cut			not undergo clean clea ve sharp melting point	•
207 14		following will show	••••••			
1207. VV	Paper	Glass	anisotrop © Wo		(D) BaCl ₂	
	4	Ulass	<u> </u>			***************************************

ř	7																	
	208	Th	ie ex	ister	ice o	fan	elem	ent ir	ı mor	e than o	one fo)rn	n is called:					
8 8 8				imet				Polyr			©		llotropy	and the second s	(D)	Isomo	orphis	m
	209.	Va	riati	ion o	fap	hysi	cal p	roper	ty in	a crysta	l in d	iffe	erent direc	ctions	is ca	lled:		
1 0 1		A	An	isotr	ору	В	Ab	sence	e of sy	mmetr	у ©	Is	somorphis	sm	D	Poly	morph	iism
0 1 0	210.	Th	ie cr	ystal	s of	Na ₂ S	0 ₄ a	nd Na	₂ SeO ₂	should	l be:							
		_						opes other	of eac	ch other	B D	J.	omorphs llotropes	of eacl	n oth	ner		
18 18 6	 211								200 0	n hoati		••••••	omes turb	id lia	d	On f	furthar	hooting
1 1 1	211.							e sub			ng b	CCC	mes turb	nu nq	ulu	On	urtifer	neating
4 6 4 4		A		meri							В		omorphic		al			
0 1 0	,,	©		uid c		**********		11.00			<u>(D)</u>		llotropic c					
1 1 1	212.	Th	· ·			iich s	_		_	-			ties from (\sim			called:
1 6 8 1	240			isotr						rystal	O I	-01	ymorphis	111	(D)	Sylli	metry	
1 1 1	213.	_ `	-	ls ca: rysta			sified	l into			(B)	1	4 crystal s	vstem	S			
1 1 L				rysta			5				W	10	crystal sy	•				
1 1 1	214.	Mo	ost c	rysta	als sł	now	good	l cleav	vage l	oecause	their	at	oms fons	and m	nole	cules	are:	
1 1 1				0.5			~	gethei	C		B	(M)	leakly bou					
1 3 1/4	215			ange						- C N - C	10	·	pherically	symm	etri	cai	•••••	••••••
1 1 1	215.	Th	ie nu La	ımbe	er of	CI. 10	ons p	er un	it cell	of NaC	Lare:	Ω			(n)	2		
	216	TЪ	o Cl		c pr	ocon	t at t	ho có	W.	of the u	nit co	11 6	and NaCl o	wyctal	cor	tribu	ıtogı	
	210.	Tn	1.,	101	is pr	esen	t at t	ne co	riter (or the u	int ce	11.0	ind NaCl c	rystar,	, cor	ıtrıbu	ites:	
		(A)	-tl 2	h			ⅎ	-th 8	183		(C)	-t 4	h		(D)	1		
	217.			as fa	iced	cent	ered	cubi	c stru	cture. T	he N	a+	ion at the	faces	of th	ne un	it cell	is shared
		by		v one	ııni	t cel	B	2 111	nit ce	lle	G 4		nit cells		(D)	8 uni	it cells	
	210				*******					***************************************	********			aCl aw				
	210.	\widehat{A}	12.	шре	er 01	INA'	B	Willer 6	ısurı	ouna ea	8 (3)	1 10	n in the N	aci cry	(Stai	4	ce is:	
1 2 1 4	219	Tr	anci	tion	tomi	10ra	tura	of Sol	mon	oclinic) —		— S ₈ (Rh	ombic	·) ic			
	21).			.5 °C	×-	Jera	_	128	_	iocillic	_		— 38 € Kii 10 °C	Ombic	(D)	13.2	⁰ С	
1 2 1	220			•••••		llow	ing n	netals	shov	vs hexa	gonal	σe	eometry?					
		A	Zn	01 61			B	Na		vo mena,	©	A	g		D	Cu		
3 1 3 N	, 221.	Gr	aphi	ite be	elong	es to	the	crysta	al svst	tem?	·····		<u></u>	•••••••••••••••••••••••••••••••••••••••				
7 N W H			•	xago	98	5	В	Cubi			©	Т	etragonal		(D)	Mon	oclinic	
	222.	Wl	hich	of th	ne fol	llow	ing c	rystal	l syste	ems rep	reser	nt t	he structu	ire of s	suga	r:		
	i soze	A		rago				ubic	7 7 8		©	Tı	riclinic		(D)		noclini	С
	223.	Wl	hich	crys	tal s	yste	m is			gNO₃?								
) Tri i

www.pakcity.org

Class 11th: Chemistry MCQs

	(A)	Cubic and orthorhombic	(B)	Monoclinic and he	exagonal
R.S.	<u>o</u>	Cubic and tetragonal	(D)	Orthorhombic an	
224.	Lo	ondon dispersion forces are the only force	es pr	esent among the:	
	A	Atoms of helium in gaseous state at high		· S	rogen chloride gas
	©	Molecules of water in liquid state	(D)	Molecules of solic	d iodine
225.	Ac	cetone and chloroform are soluble in each	oth	er due to:	
_	A	Instantaneous dipole	B	All of the above	
	<u></u>	Intermolecular hydrogen bonding	<u> </u>	Ion-dipole interac	ction
226.	NI	H, shows a maximum boiling point among			
	A	Enhanced electronegative character of r		_	STER
	(C)	lone pair of electrons present on nitroge	en	Pyramida	l structure of NH ₃
227	Di	ipole-induced dipole forces are also called	\sim	 ≅	
	(A)	Debye Forces Huckel Forces	(B)	Hydrogen boundi	ing on Forces pakcity.org
					MILOICE2 & Leading
228.	Po	olarizability is responsible for the intermo	·		ao anolin
	(A)	Almost remains the same Increases along a period	(B)	Decrease down the Increases down the	
				A SOUTH CO	0. o. p
229.	Th	ne order of acidic strength: HBr>HF>HI>HCI	(P)	MECHENTON	
	0	HF > HCI> HBr>HI	1	HI>HBr> HCI> HF	3
230	\\\	hich one of the following is an example of	fcuh		
	(A)	lodine B Graphite	(c)	Borax	Diamond
231	Th	ne angle between sides 'b' and 'c' is:			
	(A)	Alpha B Theta	(c)	Gamma	© Beta
222	<u> </u>				
232.	De	ensity of ice is minimum at 4 °C due to: Empty spaces in structure of ice	(B)	Large bond lengtl	hs
	©	Tetrahedral shape of crystal of	0	Large bond angle	
233	A-	ring has 6.0 g of diamond in it. Calculate 1	the n		
		1.8 x 10 ²⁴ B 9.03 x 10 ²³	©	6.02 x 10 ³	3.01 x 10 ²³
234.	Lic	quid hydrocarbon is:			
	A	Hexane B Ethane	©	Propane	Methane
235	Th	ne charge on proton is:			
255.	(A	1.6022 × 10^{+19} C	C (a)	1.6022×10^{-11} C	\bigcirc 16022 × 10 ⁻¹² C
226	TI				
Z36.	In	ne maximum number of unpaired electron	ns ar		© T- 26
	A	Cr = 24 (B) Na = 11	(C)	Ni = 28	⑤ Fe = 26
237.	Qu	uantum number values for '3d' orbitals w	ill be		
	A	n = 3, I = 3 $n = 3, I = 0$	0	n = 3, I = 1	① $n = 3, I = 2$
238.	Th	he value of quantum number is $n = 1,2,3,4$	4.5	for:	

	<u> </u>	www.pakcit	y.org		Class 11 th : C	hemis	try MCQs	
255.		nature of the position. The nature of the a		B D	The nature of the			
256.	Wh	en α –particles stril	ke on the nucleus of $\frac{9}{4}$	Be 1	then the emitted p	articl	e is:	
	A	γ –radiations	Neutrino	©	Neutron	(D)	Proton	······
257.	Catl	node rays cause a ch	nemical change becau	se th	ney have eff	ect.		
	A	Diffusing	Reducing	©	Conducting	D	Oxidizing	
258.	The	mass of a proton is	how much times mor	re th	an that of an elect	ron:		
	A	1836	® 8136	©	6138	D	1386	
259.		velocity of photon in equal to square of depends on its way	its amplitude	В	depends on its so independent of i			
260.	Boh	r's model is contrac	dicted by:					
17		Dual nature of mat		B	Compton effect	, than	my anakcity	ora &&
264		Heisenberg's unce			Planck's quantum	••••••	3	
261.	wn	en fast neutron carr	y nuclear reaction wi	ith n	itrogen it ejects pa	rticle	es:	
	(A)	O	Β γ		p (3)	(e)	α	
262.	\bigcirc	_	shell are filled accordi	ing to			NI C.I	
	(A)	(2l +1)	(B) 2n ²		2(2l +1)	(D)	None of thes	e
263.	Catl		nerated at the pressu	re of				
	(A)		(B) 0.01 torr	(0)	0.1 torr	(D)	1 torr	
264.	Who	3 <u></u>	plete the entering ele	ctro	_ 26//			
	(A)	7d	(B) 7s	(C)	7p	(D)	7d	
265.	(A) (B) (C)	There is actually no It did not account fo It did not account fo	atom failed because: space between nucle or the stability of the a or the attraction between a nucleus and elec	aton veen	proton and neutro	on		
266.	Afte	er filling of 4f the en	tering electron goes i	nto:				
	A	6s	B 5d	©	4d	(D)	6р	
267.	A	en one beta (β) part atomic number inc atomic number de	ž.	B	ucleus of an atom atomic mass decr action mass decre	eases	Š	
268.	Wh	en 5d orbital is com	pleted then entering	elect	tron goes into:			
	A	6p	B 6s	©	6f	(D)	6d	
269.	Nan	ne the electron is gi	ven by:					
	A	Chadwick	B William Crooks	0	Stoney	(D)	J.J. Thomson	
270.	Orb	itals having equal e	nergy are called:					

	4	www.pakcit	y.org		Class 11 th : Cl	1emi:	stry MCQs
303.	Not		stable and least react	$\widehat{}$		D.	
	(C)	Their valence shel	•	(B)	They are gasses	e	
	······································	They are present i		u)	They are gasses		•
304.	Oct	et rule is not obeye	ed during its formation	1:			ATT
	(A)	CCl4	B PCl ₅	(c)	CF ₄	(D)	NF ₃
305.	Wh	ich of the following	Molecule Obey Octet	Rule	9:	e de la companya de	
	A	NF ₃	B) SF ₆	©	BCl ₃	D	BF ₃
306.	Mol	lecule in which the	distance between two) car	bon atoms is the la	ırges	it is:
	A	C_2H_2		©	C ₆ H ₆	(D)	C_2H_6
307.	The	e radius of Na ⁺¹ ion	is:				
	A	93 pm	95 pm	©	94 pm	D	92 pm
308.	Tot	al number of bonds	s in C ₂ H ₄ molecule are	•			
	A	Eight	Five	©	Six	(D)	Four
309.	The	number of bond in	n oxygen molecule is:				
	-	n en	B One σ and one π	(c)	One σ and two π	(D)	Three sigma only
310			in nitrogen molecule a		~ (O)		
		Two sigma only			One σ and one π	(D)	Three sigma only
211			ween carbon and oxyg	Che	33)		
	111 I	Polar	B Co-ordinate	(C)	S: Ionic	(D)	Nonpolar
212	Car		~1~~				
312.	CSF	has ionic character 100%		6	70%		92%
040	(v)		ive element is:		7070	٣	J 4 / U
313.		e most electronegat	EBA A			<u></u>	Nit
		Hydrogen	B Fluorine	(C)	Oxygen	<u>D</u>)	Nitrogen
314.	===	e shielding effect is a		no	avon the real-	oct-	anc.
	-		clear attractive influe iclear attractive influe	-3	. 3		
			raction between nucle				
	D	The decrease repu	lsion between nucleus	s and	d inner electrons.		
315.	The	value of third ioniz	zation energy of Mg is): 			
	A	7850 kJ mol ⁻¹	B 1890 kJ mol^{-1}	©	7730 kJ mol ⁻¹	D	1450 kJ mol^{-1}
316.	Firs	st ionization Energy	of Mg atom is:				
	A	$+738 \text{ KJ mol}^{-1}$	$^{\odot}$ -500 KJ mol ⁻¹	©	$+1450 \; {\rm KJ} \; {\rm mol}^{-1}$	D	-349 KJ mol^{-1}
317.	Ion	ic and co-ordinate o	covalent bonds are pr	esen	tin:		
	A	C_2H_5	B NH ₄ CI	<u> </u>	H ₂ O	D	SO ₂
318.	Wh	ich of the following	has coordinate coval	ent l	ond?		
	A	AlCl ₃	B HCl	©	NH ₄ CI	D	NaCl
			cannot form co-ordina				

	www.pakcity.org	Class 11 th : Chemistry MCQs
	In endothermic reactions, the heat content Products is more than that of reactants Reactants is more than that of products	B Reactants and products are equal
354.	Which of the following is not a state function B Temperature	on: © Volume © Pressure
355.	Standard enthalpy change is measured at: (A) 273K (B) 298K	© 373K © 273°C
	(q _v) are related to each other as:	constant pressure (q_p) and at constant volume
	 (A) (q_p)² = q_v B) q_p < q_v For reaction NaOH + HCI — NaCl + A) Heat of formation of NaCl ©) Heat of reaction 	$q_p = q_v$ $q_p > q_v$ Heat of neutralization Heat of formation of water
358.	For the reaction, H ⁺ & OH ⁻ the change in er Solution B Neutralization	nthalpy is called heat of: © Combustion © Reaction
	The internal energy of a system is equal to: A Kinetic energy of the particles C P.E. of the particles	Sum of K.E and P.E Enthalpy
	The change in heat energy of a chemical recalled: A Bond energy Internal energy change	eaction at constant temperature and pressure i Enthalpy change Heat of sublimation
<u> </u>	Heat of combustion can be determined by: A Heat calorimeter B Copper calorimeter	r © Glass calorimeter 0 Bomb calorimeter
362.	In bomb calorimeter the reactions are carri Constant temperature Constant pressure	ried out at: Constant volume Constant enthalpy
363.	Calorie is equivalent to: 4.184J B 418.4J	© 41.84J © 0.418J
	several steps. It is known as:	n is same, whether it is brought about in one o
365.	of the surrounding air:	© Boyle's law Decrease
	The change in the heat energy of a chepressure is called: A Heat of sublimation Internet energy change	emical reaction at constant temperature and Enthalpy change Decrease Emperature and Bond energy

		大	www.pako	city.org		Class 11 th :	Chemis	try MCQs	
j									
0 2	367.	Th	e pressure of oxy	gen inside the bo	omb calori	meter is:			
1 11 1		A	20 atm	8	0	50 atm	D	100 atm	
	368.	ΣΔ	AH (Cycles) = 0 Th	ie above law is k	mown as:				
0 8		A	Hess's law	Darwin's la	aw ©	Kohlrausch law	, (b)]	Henry's law	
3 8 8	369.	Th	e enthalpy of solu	tion of sodium o	arbonate i	S:			
		A	–285.8 KJmol ^{–1}	■ –25.0 KJn	nol ⁻¹ ©	–16.2 KJmol ^{–1}	D -	+16.2 KJmol ⁻	1
E .	370.	At	constant volume	q _v is equal to:					
0 1 0	200	A	ΔΡ	_B ΔV	0	ΔΗ	(D)	ΔΕ	
	371.	En	thalpy of atomiza	tion of Na-metal	is:				
	Į.	A	108 KJmol ^{–1}	[®] 90 KJmol⁻	1 <u>©</u>	120 KJmol ⁻¹	D	130 KJmol ⁻¹	
() ()	372.	Th	e heat of atomizat	ion of chlorine i	s:				
		A	110 KJmol ⁻¹	121 KJmo	l ⁻¹ ©	95 KJmol ⁻¹	(b) 9	90 KJmol ⁻¹	
1 1	373.	Th	e study of heat ch	anges accompar	nving a che	mical reactions is	known	as:	
A 1 K		_	Analytical chemis		B	Thermochemis			
1 6 1		©	Physical chemist	ry	0	Electrochemist	ry		
() ()	374.	Wl	nen a bond is form	ned energy is:					
() ()			Remains constan		B	Released			
9 1 1		©	Absorbed		D	Neither absorbe	d nor re	eleased	
	375.	Un	its of energy in w	hich heat change	es in S.l sys	stem are:			
1 2 1 3		A	Newton	B Erg	(C)	Torr	(D)	Joule	
	376.	Sp	ontaneous reactio	ns are:	133				
	J.	A	Irreversible	® Reversible	©	No irreversible	D	None of these	2
3 1	377.	Th	e study of heat ch	anges accompar	nying a che	mical reaction is l	known	as:	
	54.	A	Biochemistry	B Chemistry	©	Physical chemistr	у 📵	Thermochem	istry
	378.	Th	e number of funda	amental ways of	transferri	ng energy into or	out of s	system is:	
		A	One	Two	C	Three	D I	Four	
	379.		is not state fu	nction.					
		A	Heat	Temperatu	ıre ©	Volume	D	Pressure	
	380.	Th	e Born-Haber cyc	le is the best app	olication of	f law.			
		A	Graham's	Hess's	©	Dalton's	O I	Boyle's	
	381.		e amount of hea ement is called ent		en one mo	ole of gaseous ato	oms ar	e formed fro	m the
3 3 3 5		A	Reaction	Combustio	n ©	Formation	(D)	Atomization	
	382.		e property of a s lled:	system which h	as some d	efinite values for	initial	and final sta	ates is
		A	State function	State	0	Surroundings		System	
A B F									

Ţ									
1 1	399.	Equ	ilibrium constant f	for th	ne reaction at 2000	o°C	$2HF_{(g)} \longrightarrow H_{2(g)}$	+ F2	2(g) is:
9 1 9		A	10-5		10-13	~	10-9	D	10-7
	400.	A so	lution which resis	ts to	change its pH is ca	alled	d as:		
		A	Buffer solution	B 9	Standard solution	©	Basic solution	D	Acid solution
	401.	Cata	llyst used in conve	rsior	n of SO ₂ into SO ₃ in	ı cor	ntact process is:		
		A	SiO ₂	B	V_2O_5	©	Al_2O_3	D	MgO
	402.	The	value of pH of pur	e wa	ter at 25°C is:				
		A	7	В	14	©	1×10^{14}	D	1×10^{-14}
	403.	Mix	ture of NH ₄ OH and	NH ₄	Cl makes a buffer	who	ose pH is:		
	ì	A	4	В	more than seven	©	less than seven	D	7
1 1	404.	PH o	of the soft drink is:						
1 1 1	,	A	3.0	В	4.6	©	5.6	(D)	2.0
1 1 1	405.	-	tion increases the or principle:	deg	ree of dissociatio	n, is	s the statement of	whi	ch of the following
9 11 15			Law of mass actio	n		В	Hess's law		
		0	Ostwald dilution			D	Le-Chatelier princ	iple	
1 8 1 1	406.	The	pH of tomato is:			^			
1 1	,	A	9.2	B	4.2		7. 2	(D)	10
	407.	The	reaction for synth	esis	of NH3 the value o	fΔn	is: $N_2 + 3H_2 =$	= 2	NH_3
		A	-2		+2	(C)	+4	(D)	+1
	408.						in temperature will rward direction, th		our which: n reverse direction
			Forward Direction				will not disturbed		
	409.	The	law of mass action	ı was	s given by Guldber	g ar	nd P.Waage in:		
		A	1909	B	1946	©	1846	(D)	1864
	410.	The	law of mass action	ı was	s given by: pakcit	y.o	rg		
1 1		A	Bodentein	В	Vant Hoff	0	Gulderg and Waag	ge (D Berthelot
	411.	The	units of K _C for rea	ction	$1 N_2 + O_2 $ $\longrightarrow 2 N_1$	0 w	rill be:		
	,	A	moles ⁻² dm ⁺⁶	B	No unit	©	moles ⁻¹ dm ⁻³	D	moles dm ⁻³
	412.			222		200	ction $N_2 + 3H_2 =$	<u>200</u> 5	
	,	(A)	Mol ⁻² dm ⁺⁶	В	Mol ⁺² dm ⁻⁶	(c)	Mol dm ⁻³	(D)	Having no unit
	413.		relationship betw			16.5454)			
	,	A	$K_c = K_p \left(\frac{P}{N}\right)^{\Delta n}$	В	$K_c = K_p(P)^{\Delta n}$	©	$K_{p} = K_{c} (RT)^{-\Delta n}$	(D)	$K_p = K_c (RT)^{\Delta n}$
	414.	Acid	l having Ka > 1 wi	ll be:					
	,	A	Very weak	В	weak	©	strong	D	moderate

	*	www.pakcit	y.or	g		Class 11 th	: Chemis	stry MCQs
415.	A B C	ich statement abou The value of K _p fall The value of K _p fall The value of K _p is 6 Adding V ₂ O ₅ cataly	ls wi s wit equal	th increase in preth rise in temperal t_{c} .	essur	e.	2SO ₂ + ($O_2 \longrightarrow 2SO_3$
416.		the reaction $2SO_2$ $K_c = K_x$		$\leq 2SO_3$: $K_c > K_p$	©	$K_c < K_p$	D	$K_c = K_p$
417.	The	units for K _w of H ₂ 0 Mol ⁺² dm ⁻⁶		: Mol ⁻² dm+ ⁶	©	Mol ⁻² dm ⁻³	D	Mol dm ⁻³
418.	æ :	ction of BiCl3 with appears by: Adding HCI Decreasing tempe			t. of B D	BiOCl and HCl Adding BiCl ₃ Increase temp		ned. The white ppt
419.		value of K_w at 25° 0.30 × 10 ⁻¹⁴		3 × 10 ⁻¹⁴	<u>©</u>	0.11×10^{-14}	(D)	1 × 10 ⁻¹⁴
420.		optimum tempera 500°C		for the synthesis	of N	H₃ by Haber's p	process i	is: 200°C
421.	Cata	alyst used in prepa V ₂ O ₅		on of NH3 from N2 Fe	and	H ₂ is:	D	Pt
422.		ynthesis of ammon 200-300atm	_			_		_
423.		en KCI is added to a Forward Direction	^5			2.0 11		hifted to the: Backward Direction
424.		which system does $2HF \longrightarrow H_2 + F_2$ $2NO_2 \longrightarrow N_2O_4$		equilibrium cons	B	K_C has the Unit $H_2 + I_2 $	HI	
425.	An a	aqueous solution o Less than that of v Equal to that of w	wate		y hav	e vapour press More than tha Equal to that	t of wat	
426.	A	increase in dilution. Decreases the degrease the degree the deg	gree (of dissociation				gree of the solute gree of dissociation
427.	A so	olution with pH = 0		icates molar conc 10 ⁻⁷	entr ©	ation of H+ ions	: •	10-14
428.	Mol	larity of pure water		55.5	©	10	Ō	18
429.	The	nature of milk is: Acidic	В	Normal	©	Basic	D	Neutral
430.	Sun	n of pK_a and pK_b is						

		www.pako	city.org			Class 11 th : C	hemi	istry MCQs
478.	Th	e mass of glucose	required to pre	pare 1 di	n^3 (of 20% glucose so	lutio	n is:
	A	100 g	® 180 g	(©	200 g	D	50 g
479.	Re	lative lowering of	vapour pressur	e is equa	l to	:		
	A	Mole fraction of			В	Molality		
	(c)	Mole fraction of	solvent		(D)	Molarity		
480.		g of glucose is disual to:	ssolved in 90 g	of water	. T	he relative loweri	ng o	f vapour pressure is
-	A	5.1		(©	6.0	(D)	<u>1</u> <u>5</u>
481.	Me	lting point of ice	can be lowered l	by the us	e o	f.		
	A	NaCI	B AgCl	(<u></u>	BeCl ₂	D	LiCI
482.	A t	hermometer used	l in Lands Berge	r's meth	od (can read up to:		
	A	0.01F	® 0.01°C	(©	0.1K	(D)	0.01K
483.	Εle	evation of boiling	point is:					
	A	Colligative prope	= 2	j	В	Substitution prop	erty	8
	©	Constitutive pro	perty		(D)	Additive property	У	- akcity.org
484.	Wł	nich of the followi	ng solutions has	highest	boi	ling point elevatio	n:	
	A	18% solution of (0.000	34.2% solution of		rose
	(C)	5.85% solution of	of NaCl			6% solution of U	rea	
485.			G	0/2	7	iperature depende	ent?	
	A	percentage w/w	mole fracti	ob or	©	molarity	(D)	molality
486.	Th	e Number of Mole	es of Solute per l	g of Solv	ent	is called:		
	A	Normality	Molality		<u>C</u>	Molarity	D	Mole Fraction
487.	On	e molar solution o	of glucose (C ₆ H ₁ ;	$_2O_6$) cont	ain	s the amount of so	olute	in 500 cm ³ solution:
	A	90 g	® 180 g		0	270 g	D	45 g
488.		used as antifr	eeze in radiator	of auton	nob	ile.		
17-	(A)	Hydrazine	Serotenin			Aspartame	(D)	Ethylene glycol
489	Th	e number of wate				attacked with Cu²+		
	(A)	two	B) three	(20 t	four		one
1400	1.1.				<u> </u>	TOUT		One
490.	Tae	eal solutions obey				A		TT
	(A)	Smith's law	Raoult's la	aw (င္	Avogardo's law	(b)	Henry's law
491.	_	10 0 3	of ethanol in w	ater may	ha	ve vapour pressur		L
		equal to ethanol less than that of v	water		(D)	more than that o equal to water	i wa	ter
1402				ot of water			mal r	maganna ahanld ha
492.	$\overline{}$	any value of pres		it oi wate	_	765 torr	пагр	ressure should be:
	©	between 760 tor	r and 1200 torr		(D)	between 200 tori		
493.	Th	e least value of re	A	2 100		***************************************		
	A	Li+1	® Na ⁺¹	(©	K+1	(D)	F_2
4			a da a companies est					

	السلحل								
	1 04	TP1	o olootuodat	tial of atom day d land	Name - 1	oatnodo io seleit	ailer 40 leans		
1 1 1 1	494.	_	e electrode poten Negative	tial of standard hydro B Zero		ectrode is arbitraifary with situation	<u>.</u>		
	495.	Th	e overall positive	values for cell potent	ial pre	dicts that the proc	ess is energetica	ılly:	
		A	Not feasible	Not possible	© Can	not be predicted	Feasible		
	496.			series , the electrodes	are co	mpared with SHE	and they are ar	ranged	
	T.	$\widehat{}$	the decreasing ordent Ionization potent		В	Oxidation potent	ial		
		2200	Reduction potent		D	Cell voltage			
	497.			cell stop's working a		metime because:			
1 3 6 1		 One of electrode completely vanishes. Electrode potentials of both the electrodes become zero. 							
0		© The reaction reverses its direction.							
5 7 1		(D)	Electrode potenti	ials of both the electr	odes e	qualize.			
	498.	Th		n in the electrolysis o	f dil. H				
		(C)	Reduction Neither oxidation	and reduction	(B)	Both oxidation ar Reduction	nd reduction		
	<u></u> 490	ΤΛ/1	***************************************	ng statements is not o	COrrect		<u>-117</u>		
	1,00	A	Reduction occurs	~	B	Reduction occur			
	gara.	©	Cathode is positiv	vely charged	0	Anode is negativ	ely charged		
	500.	Str	ong the oxidizing	agent, greater is the					
	J	A	Reduction poten	tial B E.M.F of cell	<u></u>	Redox potential	Oxidation p	otential	
	501.		O ,,	ot used between two		- 1 II	ige:		
	ar	A	Does not change	Decreases slowly		Drops to zero	Decreases r	apidly	
	502.		. ≡	is placed in a solution			20 ma 2 marrows		
		_	Cu and Fe both di Fe is precipitated		B B				
	503.		redox reaction is:	pak	city.o	rg			
	ae ae a e	A	Proton combinat	ion reaction	B	Electron transfer	r reaction		
		©	Proton transfer r	eaction	D	Ion combination	reaction	••••••••••	
	504.	W]	70)	ng process always inv	_		₩ 88 59		
		(A)	Reduction	Oxidation	(c)	Decomposition	Hydrolysis		
	505.	Th	e oxidation numb	er of C in C_{12} H_{22} O_{11} i	s:				
		(A)	12	B Zero	(c)	-6	(D) +6		
0 000	506.	Th	e oxidation numb	er of chromium in K ₂	Cr_2O_7	is:			
		(A)		B) 3	(c)	4	© 6		
	507.	Ox	idation number of	f Cr in K ₂ CrO ₄ is:		. 1			
35 6 3		(A)	+8	(B) +6	(C)	+4	D) +Z		
4 4	508.	Th	e oxidation state o	of oxygen in OF2 is:					

	www.pakcit	y.org		Class 11 th : (Chemistry MCQs	
	A +1) -1	© - 2		D +2	
509.	The oxidation state of N	Mn in KMnO4 is:				
	(A) +5	+7	© +6		D +2	
510.	The reduction potentia	l of Zn is:	••••••	••••••		***************************************
	(A) - 0.76V		© 0.3	4V	(D) + 0.76V	
511.	The electrolysis of aq	ueous solution of N	aCl is	emploved to r	orepare caustic	soda on
	commercial scale. The					
	Reduction of Na ionOxidation of Cl ions		2012	eduction of H io		
				rmation of wat		
512.	Cu metal can be purifie		1. 4 .0			
***	(A) SHE			aking its CuSO	O Anode	
513.	The electrode reaction A Temperature is incr		e rever	sed when:		
	B Electrodes are inter					
	© Concentration of so	<u> </u>		C 1		
		mployed to supply the	e sourc	e of electricity.		
	A salt bridge contains: A Gelatin + H ₂ SO ₄		(B) Ge	elatin + HCl		
	© Gelatin + NaOH			latin + HCl		
515.	Which one of the follow	ving is not an example	e of vol	taic cell:		
	Ni - Cd cell	Fuel cell ©	Silver	oxide battery	Down's cel	
516.	Which of the following					
	Oxidation occurs atReduction occurs at			node is negative thode is positiv		
 E17		A EDUG				
31/.	If a salt bridge is not us A Does not change				e:	midly
			•			ipidiy
518.	The cell in which electr					11
	A Electrolytic cell			aniel cell	Galvanic ce	
519.	When Non-spontaneou the process is called:	is redox reaction is ca	arried (out by using the	e electrical curre	nt , then
(A Hydrolysis		B El	ectrolysis	3	
(Decomposition of the	ie substances	© Ex	othermic proce	ess 🤏 pakci	ty.org
520.	The standard electrode	potential (in volt) o	f SHE i	s taken as:		
	A 1.00 B) 10.0	© 100		0.00	
(The standard reduction of the following conclus A Zn will always act as	sions can be drawn fr s a reducing agent.	om the	e data?	0.76V respectively	y. Which
	Ag displaces Zn fronAg is a poor Oxidizin	n a solution containin ng agent.	ig Zn ic	n.		
		ency than Ag to from	positiv	ely charged ior	1.	
						100

	www.pako	city.org		Class 11 th : (Chemistry MCQs	
522. In		- Cl ₂	© N	one of these	⑤ Fe is reduced	
523. W	e super	electrolyzed when: he anode		ead is deposited romine appears	d at the cathode s at cathode	
524. D	uring electrolysis of Anode	of KNO3, H2 is evolved a B Cathode	<u> </u>	ne of these	Both a and b	
525. A (A)	n electrochemical on Nuclear reaction Acid-base reaction			edox reaction one of these		
526. W (A)	Which one of the following Chloroform Pure distilled was	lowing is good conduct	B M	ectricity: lolten NaCl ilute solution of	f glucose	
	uring a redox react Loses electrons	ion, an oxidizing agent Gains electrons		ydrolyzed	Is oxidized	
528. Ir	n an oxidation proc	ess the oxidation numb B Increases		ne element: ne of these	Does not char	nge
4	Vhich element acts and the H ₂ SO ₄ ————————————————————————————————————	as a reducing agent in t ZnSO ₄ + H ₂	30			
<u></u>	_	es through both molte		olution form of		
	<mark></mark>	B Hydration of ions \mathbb{B}_2 Sulphur in $S_2O_3^{2-}$ is:		ons of water	(D) lonic bonding	5
	letallic conduction Movement of ions	w pako	ity.	Movement o None of thes		
-	eaction is called:	ch electric current is B Metallic conductor			non-spontaneous None of these	
534. T		ch ionic compound w	200			
_	Conduction he metallic conduct Down cell	B Ionization tors in contact with the B Insulator	e solutio	dration on are called: ectrolyte	© Electrolysis © Electrodes	•••••••••••
536. T	he reaction in a gal Non-spontaneous	B Spontaneous		id base	None of these)
						Ĭ

	www.pakcity.org	Class 11 th : Chemistry MCQs
537.	Sodium metal is obtained by the electrolys	sis of fused NaCl in a cell is called:
	Danicll cell B Voltaic cell	© Nelson's cell Down's cell
538.	The branch of chemistry which deals chemical reaction is called:	with the relationship between electricity and
	Stoichiometry B Electrochemistry	y © Thermochemistry D Chemical kinetics
539.	A cell in which spontaneous redox reaction A Voltaic or galvanic cell C Electrochemical cell	n generates an electric current is called: Biological cell Electrolytic cell
540.	A cell in which an electric current drives a	non-spontaneous reaction is called:
	Voltaic cell	B Electrolytic cell
	© Electrochemical cell	Biological cell
541.	A process for converting one metal with a	thin layer of another metal is called:
	Electrode potential Electrode potential	B Electroplating
	© Electrolysis	Standard electrode Mean pakeity.org
542.	Greater the value of standard reduction po	
	© Lesser tendency to accepted electrons.	ron: [®] Greater tendency to lose electrons. [®] None of these
		(PS)
543.	In lead accumulator the electrolyte H ₂ SO ₄	
-	(A) 30% (B) 70%	© 60% H ₂ SO ₄ © 80%
544.	In alkaline battery, the electrolyte contain	\$.5°
•••	A MnO ₂ B KOH	© NaCl © NaNO ₃
545.	Metals which are above SHE in electroches	mical series:
	A Cannot always liberate H ₂ from acid	Can liberate H ₂ from acid
	© None of these	© Cannot liberate H ₂ from acid
546.	Corrosion reactions are:	A STATE OF THE STA
	 Spontaneous acid-base reactions. Non-spontaneous acid-base reactions. 	Spontaneous redox reaction None of these
,		Titolic of these
547.	In SHE the standard is the atom.	
	(B) N	© U
548.	In cells metal oxides usually act as:	
	A Anode B Solution	© Cathode D All of these
549.	In alkaline battery, the electrolyte contain	S:
4751	(A) MnO ₂ (B) KOH	© NaCl D NaNO3
550.	The tendency of an element to form ions in	n solution is called:
	Ionization potential	B Electrode potential
	© Cell potential	Standard electrode
551.	While balancing an equation by ion electron balanced by:	tron method the number of oxygen atoms are

		←	www.pak	city.org		Class 11 th : C	hemistry MCQs
4 8 4 8	(27)	(A)]	H+	® OH-	©	H_2O	D O ₂
1 1 1	552.	Zin	c-Copper galvani	c cell may be formed by	y:		
F 1 3		(A)]	Porous partition	Both a and c	©	Salt bridge	NaNO₃
(4) (4) (5)	553.	Oxi	dation occurs at:				
4 4 E 4		(A) (Cathode	[®] During movement	©]	None of these	O Anode
F 3 3 F	554.	The	e oxidation numb	er of free element is alv	ways	taken to be:	
8 K B		(A) 2	2	B 0	©	1	D -1
	555.		e reaction rate car Hit and trial meth	· ·	В	Graph method	
F 1 9 E		©	Both a and b		D	None of these	
F F T F T S			zero order reaction Pressure of reaction	on , the rate is independ on	lent (of: Concentration of	reactants
8 K K B		©]	Temperature of re	eaction	<u>D</u>	Concentration of	products
K 31 K K	557.	3Fe	$e^+ 4H_2O \Longrightarrow Fe_3$	$_{3}O_{4} + 4H_{2}$ is an exampl	e of .	Equilibrium	•
1 1 1 1		A	Heterogeneous	B Isogeneous	© ,	All of these	D Homogeneous
1 1 1	558.	The	e order of the read	ctions is $2NO + 2H_2$ —		> 2H ₂ O + N ₂ .	
3 K A 3	***	(A) Z	Zero	Three	© '	Two	One
1 1 K	559.	As	econd order rate	constant can have the	anits		
N 18 18 18		A	dm³ mole-1 s-1	B dm³ mole s-1	<u></u>	dm ⁻⁶ mole ⁻² s ⁻¹	D dm-6 mole ² s-1
A W 3	560.	The	e rate of a reaction	n depends upon:	*		
4 A E	- 50	(A) (Concentration		0	All of these	D P
N S S N	561.	If t	he rate of reactio	n for 2A + B> p	orodi	ucts is rate = k [A]	[B] ² and A is present in
F # 3		lar	ge excess , then or	rder of reaction is:	or Massiani		
A 1 A		(A) 4	4	B 3	© :	2	1
4 A K	562.			istry which deals with t		740	
F # 71 F			Chemical kinetics Chemistry of reve		B	Mechanistic studi Thermodynamics	
A K A A							
1 K 3	563.	$\widehat{}$	e unit of the rate of Third order react	constant is same as that	$\widehat{}$	he rate of reaction Second order rea	
E 38 E			Zero order reacti		0	First order reaction	
1 L 1 3	564.	Vel	ocity constant is 1	the rate of reaction who	en th	e concentrations o	of reactants are:
F 3 3 1		_	Гhree	B Two	©	Unity	D Zero
10 10 10 11	565	Wh	en a reaction pro	ceeds in more than one	e stei	os the overall rate	is determined by:
N 8 3 K		_	Any step can be us		B	Slowest step	is decermined by
		© F	Rate cannot be de	termined	D	Fastest step	
3 3 8	566.	The	e half-life period f	for the decomposition o	of N ₂	O ₅ is:	
A 1 3 W		\smile	50 minutes	B 54 minutes	©	24 minutes	48 minutes
111							

	www.pal	kcity.org	Class 2	11 th : Chemistry MCQs
567.	. If the energy of the reactions is:	he activated comple	x lies close to energ	y of reactants , it means that
	(A) Endothermic	® Exothermic	© Fast	© Slow
568	. The rate of a react	ion is given by the re	lation:	
	\land dx/dt	® dx/dv	⊙ dx/dT	① dx/dp
569	 A The number of B The number of © The number of 	reaction depends up molecules taking par total collisions per se fruitless collisions per fruitful collisions per	rt in a chemical reacti econd. er second.	on.
	reactants, the rate Always increas First decreases	of a chemical reactions es , than increases	on: B Remains sa D Always dec	rease
5/1	undergo reaction i		e average energy r	equired for the molecules to
	A Kinetic energy	Activation ence	ergy © Free energy	Internal energy
572		₹ .	rily determined by: oducts © Collision Tempera	
573.	. After 2 half-lives o		, the % fraction of the	e amount left is:
	(A) 50	B 12.5	© 75	⊕ 6.25
574.		integration nuclear r		
	(A) Zero order	® 3 rd order	© 2 nd order	First order
575.		iary butyl bromide ha	Zah	
	(A) Third order	Second order	Pseudo first	order ① First order
576	Final concentra	d order reaction in in tion of products ation of reactants		l to: ntration of reactants entration of products
577.	. In the hydrolysis o	of CH3COOC2H5 the ac	id produce act as:	
	(A) Inhibitor	Catalyst	O Auto cataly	st 💿 none of above
578.	. The factors which (A) Surface area	affect rate of reaction B light	n: Nature of reactants	s Light D All of above
579	. Arrhenius equatio <a>Arrhenius equatio <a>On ressure on rate <a>On rate <a>On rate <a>On rate		All of these	rate of reaction
580	. The reaction rate i	may be measure by:		
	(A) Chemical metho	od ® Physical meth	od © None	Both a and b

	www.pakcity.org		Class 11 th : Chemistry MCQs		
581.	By the use of catalys	sts the energy of activa	tion is:		
	Not affected	B Decreased	© Increased	All of these	
582.	The addition of small amount of catalyst in a reaction is called:				
	Catalytic poisoning		Catalytic deactivation		
	None of these		Both a and b		
583.	Catalysis may be:				
	(A) Heterogeneous	B Homogeneous	Both a and b	None of these	
584.	For a hypothetical reaction $A + 2B \longrightarrow products$, the rate law is rate = k [A] [B]. the order of reactions is:				
	A 4	B 3	© 2	D 1	
585.	Decrease in concent	tration is denoted by:			
	A -dt/dx	B -dx/dt	© +dx/dt	dx/dt	
586.	The number of ato called:	ms molecules or ions	whose conc. determi	ne the rate of reaction is	
	Order of reaction	n ® Value or reaction	n © None	Rate constant	
587.	The unit of rate constant depends on:				
	Concentration terms		Molecularity of reaction		
	Order of reaction		Number of reactants		
588.	For a forward react	ion according to collisi	on theory the molecul	es must have energy:	
	A Less than Ea	B Equal to Ea	© None	Greater than Ea	
589. The change in the conc. of reactants and products in a unit time is called:				is called:	
	A Rate constant	Diffusion	© None	Reaction rate	
590.	An increase in conc	is related to number o	of collisions:		
	(A) All	® Indirectly	© No more	Directly	
591	The energy of activa	ation is usually express	ed in:		
	A Joules	Moles	© Calories	© Ergs	
LO2					
1392.	A Entropy	talyst to a reaction cha	nges the:	ants	
	© Energy of activat	tion	© Enthalpy		
593.	Pt is poisoned by:				
	(A) Argon	B Zinc	© Silver	Arsenic	
594	The minimum amount of energy required to convert reactants into product is called:				
	Activated state		Activated complex		
	© Energy of activation		© Energy barrier		
595.	The reaction may be	e:			
	A 2nd order	® 1st order	© Forth order	D Third order	
596.	The main function o	of a catalyst is to:			

- 597. are called biocatalysts.
- 598. With increases in $100\,^{0}$ C temperature, the rate of reaction doubles. This increase in rate of reaction is due to:
 - (A) Increase in activation energy of reaction.
 - Increase in number of effective collisions.
 - © Decrease in the number of collisions between reactant molecules.
 - Decrease in activation energy of reaction.
- 599. The rate of reaction:
 - (A) May decrease or increase as the reaction (B) Remains the same as the reactions procee
 - Decreases as the reaction proceeds
 Decrease as the reaction proceeds

