

Work and Energy

What is work? Calculate the Work done on constant force.

<u>Work</u>: "The dot product of force and displacement is called work". OR The product of the magnitudes of the displacement and the component of the force in the direction of displacement is called work.

Mathematically: $W = \vec{F} \cdot \vec{d} = d (F\cos\Theta) \text{ or } F (d\cos\Theta) = Fd \cos\Theta$

<u>Unit</u>: As W=Fd= (kgms⁻²) (s) =Kgm²s⁻² which is equal to joule. Its SI unit is Nm=joule. It is scalar quantity.

<u>Definition of joule</u>: When one newton force acts on a body and it cover distance of 1m in the direction of force, than work is said to one joule. 1N*1m=1 J

<u>Dimension</u>: The dimension of work are W=Fd= [MLT⁻²] [L] = [ML²T⁻²] <u>Important points about work</u>: Important points about work are

a) If Θ<90°, work is positive

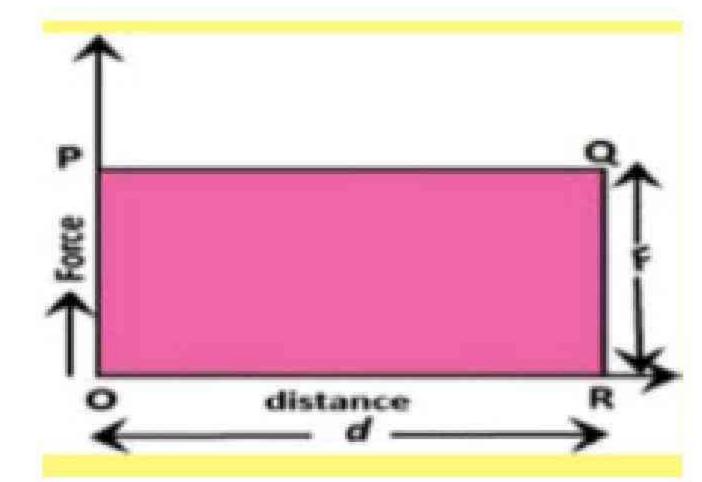
(As $W = Fd \cos\Theta$, as angle $Cos\Theta$ is positive at less than 90°)

b) If Θ>90°, work is negative

(As W= Fd cos\theta, as angle Cos\theta is negative at greater than 90°)

c) If Θ =90°, no work is done

(As W= Fd cos\theta, as angle Cos\theta is zero at 90\circ)


d) If $\Theta=0^{\circ}$, work is maximum

Constant force: Such a force whose magnitude and direction remains same is called constant force.

Work done by constant force graphical representation: When a constant force acts through a distance d then it can be shown graphically by plotting graph b/w F and d, taking d along x-axis and F along Y axis Graph for work done by constant force is horizontal straight line parallel to X-axis

Work from graph: Area under the force-displacement curve shows the work done by force graphically.

Area of rectangle=Length*width= Fd=Work

What is variable force? Calculate the work done by variable force.

<u>Variable force</u>: If the magnitude or direction or both of force changes then it is called variable force. For example.

a) Force of gravity on rocket moving away from earth

b) Force exerted by spring.

Work done by variable force: Consider a particle in XY plane moving from short interval into displacements $\Delta \vec{d}_1, \Delta \vec{d}_2, \Delta \vec{d}_3, \dots, \Delta \vec{d}_n$ and forces \vec{F}_1, \vec{F}_2

Work done by first interval = $\Delta W_1 = \vec{F}_1 . \Delta \vec{d}_1 = F_1 \Delta \vec{d}_1 \cos \theta_1$

Work done by 2nd interval = $\Delta W_2 = \vec{F}_2 \cdot \Delta \vec{d}_2 = F_2 \Delta d_2 \cos \theta_2$

Work done by 3rd interval = $\Delta W_3 = \vec{F}_3 \cdot \Delta \vec{d}_3 = F_3 \Delta d_3 \cos \theta_3$

Work done by nth interval = $\Delta W_n = \vec{F}_n . \Delta d_n = F_n \Delta d_n \cos \theta_n$

 $Total Work = \Delta W_1 + \Delta W_2 + \Delta W_3 + \dots \Delta W_n$

 $W = F_1 \Delta d_1 \cos \theta_1 + F_2 \Delta d_2 \cos \theta_2 + F_3 \Delta d_3 \cos \theta_3 + \dots + F_n \Delta d_n \cos \theta_n$

 $W = \sum_{i}^{n} F_{i} \Delta d_{i} \cos \theta_{i}$

This is the work done by variable force.

 F_1 O_1 Ad_2 Ad_1 O_2 Ad_3 Ad_4 Ad_5 Ad_6 $Ad_$

<u>Graphical Representation</u>: We can calculate the work graphically by plotting graph b/w Fcos and d. Area under the graph is divided into n rectangle for each interval. Area of each rectangle show the work done during that interval.

What is gravitational field? Calculate the Work done by gravitational field.

Gravitational field: The space around the Earth in which its gravitational force acts on a body is called gravitational field. age pakcity.org

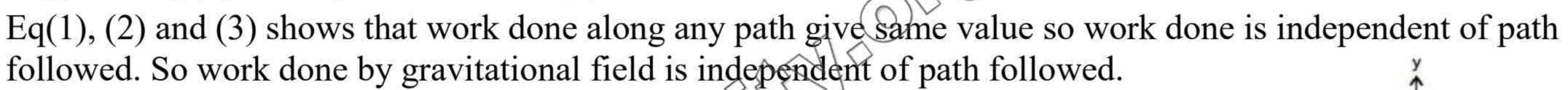
Sign conventions for work done in gravitational field:

- If displacement is in the direction of gravitational force work is positive
- If displacement is against the direction of gravitational force, work is negative
- If displacement is perpendicular to the direction of gravitational force, work is zero

Work done by gravitational field: let us consider a body of mass m being displaced with constant velocity from point A to point B along different path in the presence of gravitational force.

<u>Path-1 Work done along path ADB</u>: This work done is divided into two parts $W_{ADB} = W_{A \to D} + W_{D \to B}$

<u>Path-1 Work done along path ACB</u>: This work done is divided into two parts $W_{ACB} = W_{A \to C} + W_{C \to B}$


Path-3 Work done along the curved path AB: Work done along the path AB is divided into small intervals upon which work done is calculated by adding work of each interval

$$W_{AB} = mg\Delta y_1 \cos 180^o + mg\Delta y_2 \cos 180^o + mg\Delta y_3 \cos 180^o + \dots + mg\Delta y_n \cos 180^o$$

$$W_{AB} = -mg\Delta y_1 + (-mg\Delta y_2) + (-mg\Delta y_3) + \dots + (-mg\Delta y_n)$$

$$W_{AB} = -mg(\Delta y_1 + \Delta y_2 + \Delta y_3 + \dots + \Delta y_n)$$
 as $h = \Delta y_1 + \Delta y_2 + \Delta y_3 + \dots + \Delta y_n$

$$W_{AB} = -mg(h) = -mgh, -----(3)$$

Work done along closed path:

$$W_{ADBCA} = W_{A \to D} + W_{D \to B} + W_{B \to C} + W_{C \to A}$$

$$W_{ADBCA} = Fd\cos 90^{\circ} + Fd\cos 180^{\circ} + Fd\cos 90^{\circ} + Fd\cos 90^{\circ}$$

$$W_{ADBCA} = 0 + (-mgh) + 0 + (mgh) = 0$$
, This shows that work done along closed path is zero

Conservative field: The field in which work is independent of path followed" OR the field in which work done along closed path is zero is called conservative field for example, gravitational field, electric field, magnetic field etc.

Non conservative forces: like frictional force, air resistance, tension in string etc.

What is Power? What is average and instantaneous power?

Power: The rate of doing work is called power. Work done per unit time is called power. P=Work/time=W/t SI unit of power is J/S= watt. It is scalar quantity.

Average power: Total work done divided the total time taken is called average power. $\langle P \rangle = \frac{\Delta W}{\Delta W}$

Instantaneous power: The value of power at any instant of time in which time approaches to zero instantaneous

power.
$$P_{ins} = Lim\Delta t \rightarrow 0 \frac{\Delta W}{\Delta t}$$

Watt: The power is said to be one watt if one joule of work is done in one second. 1 J/1sec= 1 watt

Prove that $P = \vec{F}.\vec{v}$

let F is the force acting on moving body with velocity v then power

$$P = \lim \Delta t \to 0 \frac{\Delta W}{\Delta t} = \lim \Delta t \to 0 \frac{\vec{F} \cdot \Delta \vec{d}}{\Delta t}$$

$$P = \vec{F}.(\lim \Delta t \rightarrow 0 \frac{\Delta \vec{d}}{\Delta t}) =$$

 $P = \vec{F}.\vec{v}$, which show that Scalar product of force and velocity is called power.

Define KWh. Prove that 1kwh=3.6 MJ.

The work done in one hour by a source whose power is 1000 watt is called Killo watt hour. KWh is unit of energy.

1KWh = 1000W * 3600sec

1 KWh = 1000 * 3600 Wsec

$$1 \text{KWh} = 36 * 10^5 \text{ J} = 3.6 * 10^6 \text{ J}$$

1KWh = 3.6 M J

What is Energy? define the types of energies.

Energy: The ability of body to do work is called energy.

Types of Energy: It has two types a) kinetic energy b) potential energy.

<u>Kinetic energy</u>: Energy possessed by a body due to its motion is called kinetic energy. Formula is $K.E = \frac{1}{2}mv^2$.

Potential energy: Energy possessed by a body due to its position is called P.E. Its formula P.E=mgh.

<u>Gravitational potential energy</u>: The potential energy due to gravitational field at a height h from surface of earth is called gravitational potential energy P.E=mgh

Elastic potential energy: The energy stored in a compressed stretched string is called elastic potential energy it is $\frac{1}{2}$ Kx².

State and explain Work Energy principle.

Statement: work done on a body is equal to change in Kinetic energy, $W = \Delta K.E$

<u>Derivation</u>: let us consider a body mass m moving with initial vi and after some distance d its velocity becomes vf by applying force F then we can calculate the work

According to the equation of motion

$$2ad = v_f^2 - v_i^2$$

also
$$F = ma - - - - - - - - (3)$$

puttingin equation (1)

$$W = ma(\frac{v_f^2 - v_i^2}{2a})$$

$$W = m(\frac{{v_f}^2 - {v_i}^2}{2}) = \frac{1}{2} m {v_f}^2 - \frac{1}{2} m {v_i}^2 = K.E_f - K.E_i = \Delta K.E$$

Work = $\Delta K.E$, which is required result

Similarly if a spring is compressed, the work done on it is equals the increase in its elastic potential energy.

What is Absolute Potential Energy? Derive its relation.

Definition: The work done by gravitational force in displacing an object from a position to infinity where the force of gravity becomes zero is called absolute P.E. $U = \frac{-GMm}{D}$. pakcity.org

Derivation: As the relation for work done by gravitational force P.E=mgh is true when object is near the surface of Earth and gravitational force remains constant. But if the body is displaced through a large distance, gravitational force does not remain constant, it varies inversely proportional to square of distance. In order to calculate the work done by it the distance b/w 1 to N is divided small steps so that the value of force remains constant for each step. The work done displacing a body from point 1 to point 2 can be calculated as

The distance b/w the center of this step and center of Earth will be $r = \frac{r_1 + r_2}{2}$

$$\mathbf{r}_2 - \mathbf{r}_1 = \Delta r$$
 then $\mathbf{r}_2 = \Delta r + \mathbf{r}_1$

$$r_2 - r_1 = \Delta r$$
 then $r_2 = \Delta r + r_1$

$$r = \frac{r_1 + \Delta r + r_1}{2} = \frac{2r_1 + \Delta r}{2} = \frac{2r_1}{2} + \frac{\Delta r}{2} = r_1 + \frac{\Delta r}{2}$$

$$r^{2} = (r_{1} + \frac{\Delta r}{2})^{2} = r_{1}^{2} + (\frac{\Delta r}{2})^{2} + 2(r_{1})(\frac{\Delta r}{2}) = r_{1}^{2} + r_{1}(\Delta r)$$

$$r^2 = r_1^2 + r_1(r_2 - r_1) = r_1^2 + r_1r_2 - r_1^2 = r_1r_2$$

Force becomes
$$F = G \frac{Mm}{r^2} = G \frac{Mm}{r_1 r_2}$$

$$W_{1\to 2} = \vec{F}.\Delta \vec{r} = F\Delta r \cos 180^{\circ} = -G \frac{M \, \text{m}}{r_1 r_2} (\Delta r) = -G M \, \text{m} \frac{\Delta r}{r_1 r_2} = G M \, \text{m} \frac{r_2 - r_1}{r_1 r_2}$$

$$W_{1\to 2} = -GM \, m(\frac{r_2}{r_1 r_2} - \frac{r_1}{r_1 r_2}) = -GM \, m(\frac{1}{r_1} - \frac{1}{r_2}) - \sqrt{r_2} - -(1)$$

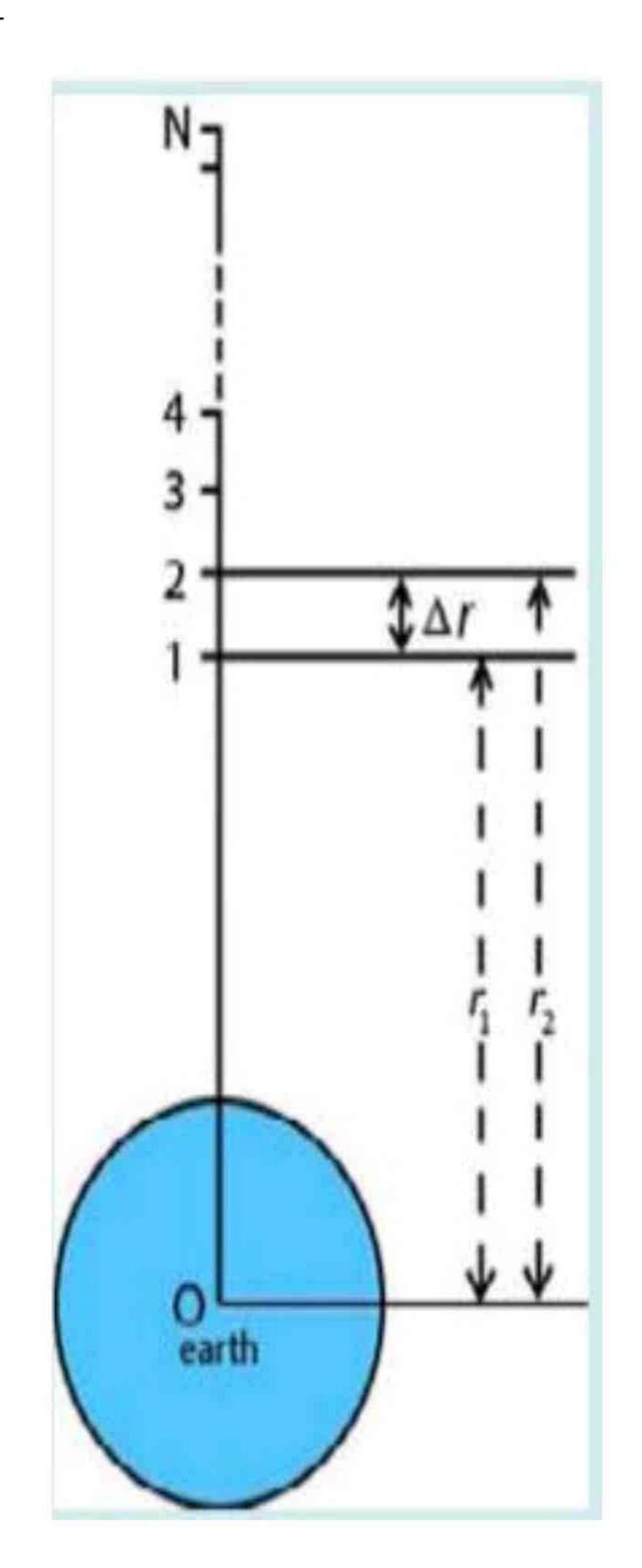
Similarly
$$W_{2\to 3} = -GM m(\frac{1}{r_2} - \frac{1}{r_3})$$
 ----(2)

$$W_{3\to 4} = -GMm(\frac{1}{r_3} - \frac{1}{r_4}) - ----(3)$$

Adding all above equations to calculate the total work

$$W_{total} = W_{1\to 2} + W_{2\to 3} + \dots + W_{N-1\to N}$$

$$W_{total} = -GMm(\frac{1}{r_1} - \frac{1}{r_2} + \frac{1}{r_2} - \frac{1}{r_3} + \frac{1}{r_3} - \frac{1}{r_4} + \dots + \frac{1}{r_{N-1}} - \frac{1}{r_N})$$


$$W_{total} = -GMm(\frac{1}{r_1} - \frac{1}{r_N}) \qquad \qquad r_N = \infty, then \quad \frac{1}{r_N} = \frac{1}{\infty} = 0$$

$$W_{total} = -GMm(\frac{1}{r_1} - 0) = -\frac{GMm}{r_1}$$
, this work is stored in form of gravitational P.E

$$U=-\frac{GM\,m}{r_{_{1}}}$$
 , the general expression for distance r from center of earth is $U=-\frac{GM\,m}{r}$

When r increases U also increase and absolute potential on the surface of Earth is r = R

$$U = -\frac{GMm}{R}$$
, – ive sign shows that Earth's gravitational field for mass is attravitve.

What is Escape velocity? Derive its relation.

Definition: The velocity of a body with which it goes out of Earth's gravitational field is called escape velocity. Its formula $V_{esc} = \sqrt{2gR}$. It depends upon radius and g of planet. Its value for earth 11.2 km/sec.

Derivation:

The initial K.E carries an object to infinite distance from surface of Earth

As work done in lifting a body from Earth's surface to infinity is equal to increase in P.E.

Increase in P.E =
$$(P.E)_f - (P.E)_i = 0 - (-G\frac{Mm}{R}) = G\frac{Mm}{R} - - - - (2)$$

The body willescape out the gravitational field when both energies are equal

comparing the forces which are acting $mg = G \frac{Mm}{D^2}$

 $GM = gR^2$, putting in equation (3)

$$v_{esc} = \sqrt{\frac{2gR^2}{R}} = \sqrt{2gR}$$
, This is the formula for escape velocity

for Earth
$$g = 9.8 \text{ ms}^{-2}$$
, $R = 6.4 * 10^6 \text{ m}$

$$V = \sqrt{2gR} = \sqrt{2*9.8*6.4*10^6} = 11.2*10^3$$

$$V = 11.2 \text{ km/s}$$

Explain Interconversion of potential energy and kinetic energy and Conservation of Energy.

Statement: "Energy cannot be created nor destroyed but it can be transformed from one form to other".

Equation: Total energy= P.E.E.E.

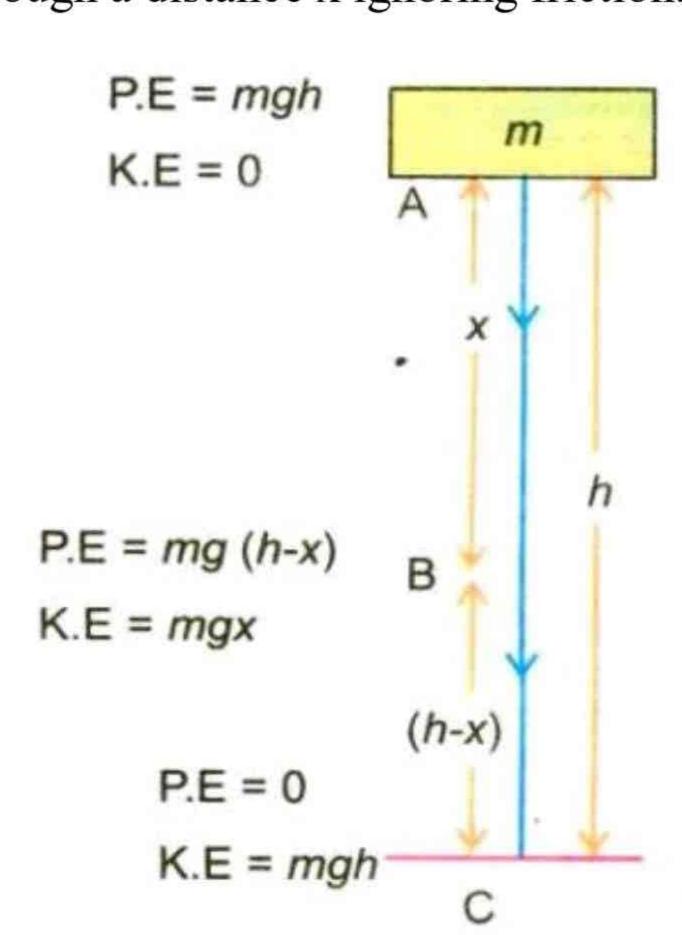
Consider a body of mass mat rest, at a height h above the surface the Earth. To calculate the P.E and K.E at different position can be calculated as follows

At position A: The body has P.E=mgh and K.E=0, Total Energy= P.E+K.E=mgh+0, total Energy=mgh ... (1)

At position B: To calculate the Total Energy at position B when body has fallen through a distance x ignoring friction.

pakcity.org

$$P.E = mg(h - x)$$
 ----(i)


$$K.E = \frac{1}{2}mv_B^2$$
 to calculate V_B at point B using equation

$$2aS = V_f^2 - V_i^2 \implies 2gx = (0)^2 - V_B^2 \implies V_B^2 = 2gx$$
 put in equation of K.E

K.E =
$$\frac{1}{2}$$
m(2gx) = mgx ----(ii) adding (i) and (ii)

$$E = P.E + K.E = mg(h - x) + mgx = mgh - mgx + mgx$$

$$E = mgh$$
 -----(2)

At point C: Just before strikes the Earth, P.E=0 and K.E= $\frac{1}{2}$ mv_c², to find the value of Vc using the equation

$$2gh = V_C^2 - (0)^2 \implies V_C^2 = 2gh$$
 put in equation of K.E

$$K.E = \frac{1}{2}m(2gh) = mgh - - - - (ii)$$
 adding K.E and P.E at point C

$$E = P.E + K.E = 0 + mgh =$$

$$E = mgh$$
 -----(3)

From equation (1), (2) and (3) it is clear that energy can be changed from one form to other but total remains same. As

Loss in P.E = Gain in K.E
$$\Rightarrow$$
 mg(h₁ - h₂) = $\frac{1}{2}m(v_2^2 - v_1^2)$

<u>In case of frictional force present during downward motion</u>: In this case a part of P.E is used in doing work again friction equal to W=fh the remaining P.E= mgh-fh is converted into K.E

$$\operatorname{mgh} - \operatorname{fh} = \frac{1}{2}\operatorname{mv}^2 \implies \operatorname{mgh} = \frac{1}{2}\operatorname{mv}^2 + \operatorname{fh}.$$

Loss in P.E= Gain in K.E+ work done against friction

What are Non-conventional Energy sources? Explain.

Definition: The sources which are not commonly used are called non-conventional energy sources.

Names of sources: i) Energy from tides ii) Energy from waves iii) Solar Energy iv) Energy from biomass Energy obtained from tides: Gravitational force of the moon produces tides in the sea twice a day which can be trapped in a basin by constructing a dam at high tide then water is released in control way to run the turbine and generate electricity

Energy obtained from waves: The tides and winds blow across the surface of ocean water waves produce and energy of these wave can generate electricity.

<u>Salter's duck</u>: The device which converts energy of waves into electricity is called salter duck. It has two parts <u>Duck float and balance float</u>: The wave energy produce the movement in duck float relative to balance float which generate electricity.

Solar energy: The energy obtained from sun is called solar energy.

Solar constant & its value: Solar energy at normal incidence outside the earth's atmosphere per second per unit area is called solar constant. Its value 1.4 KWm⁻².

Solar cell: The device which converts sunlight into electrical energy is called solar cell.

Uses of solar cell: They are used in remote ground based weather stations and in solar calculators.

Energy obtained from biomass: Biomass include organic materials such as crops residue, natural vegetation, trees and animal dung and sewage. There are two methods for conversion of biomass into fuel. (i) Direct combustion (ii) Fermentation.

Geothermal energy: The heat energy extracted from inside the earth in the form of hot water or steam is called geothermal energy.

Digester: Rotting of biomass in a closed tank is called digester.

Aquifer: A layer of rock holding water that allow water to percolate through with pressure is called aquifer.

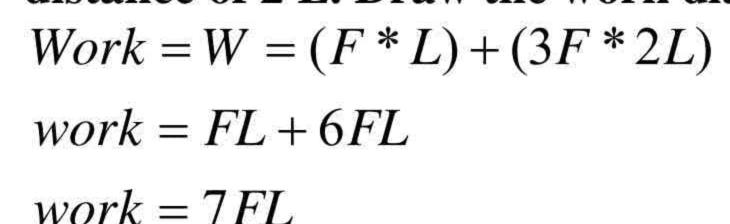
Renewable	Non renewable	Source of Energy	Original source
Hydroelectric	Coal	Solar, Bio mass	Sun
Wind	Natural gas	Hydroelectric,	Sun
Tides	Uranium	Wind, waves, Fossil fuels	Sun
Biomass	Oil	Tides	Moon
Sunlight	Oil shale	geothermal	Earth

How pollution can be reduced: Pollution can be reduced if (i) people use mass transportation (ii) use geothermal, solar and other renewable energy sources.

How can we save energy: (i) Turning off the light and electrical devices when not in use (ii) Using Energy saver instead bulb (iii) using solar energy (iv) Taking short hot showers.

Chapter = 04

Exercise Short Questions


4.1 A person hold a bag of groceries while standing still, talking to a friend. A car is stationary with its engine running. From the standpoint of work, how are these two situations similar?

Ans. In both cases work is zero, as there is no displacement; $W = F d \cos \theta = F x \cdot 0 x \cos \theta = 0$

4.2 Calculate the work done in kilo joules in lifting a mass of 10 kg (at a steady velocity) through a vertical height of 10 m.

Ans. $W = F d \cos 000 = F d = (mg) d = 10x9.8x10 = 980 J$, divide and multiply by 1000 to get result = 0.98 KJ

4.3.A force F acts through a distance L. the force is then increased to 3 F, and then acts through a further distance of 2 L. Draw the work diagram to scale.

4.4 In which case is more work done? When a 50 kg bag of books is lifted through 50 cm, or when a 50 kg crate is pushed through 2 m across the floor with a force of 50 N?

Ans. For books: $W = F d \cos \theta = mgh \cos 0o = mgh = 50 \times 9.8 \times 0.5 = 245 J$ (more work)

For crate: $W = F d \cos \theta = F d \cos 0 = F d = 50 \times 2 = 100 J$ More work is done in lifting bag of books.

4.5 An object has 1 J of potential energy. Explain what it means?

An object has one joule of potential energy means that body has capacity to do work of one joule, it means a force of one N is required to raise through a height of 1m. 1J=! N*1m.

4.6 A ball of mass m is held at a height h1 above a table. The tabletop is at a height h2 above the floor. One student says that the ball has potential energy mgh1 but another says that it is mg (h1 + h2). Who is correct? Both are correct according to their own point of view.

4.7 When a rocket re-enters the atmosphere, its nose cone becomes very hot. Where does this heat energy come from?

Due to work again air friction and with dust particles in air this work converts into heat and nose cone becomes very hot.

4.8 What sort of energy is in the following:

a) Compressed spring= Elastic potential energy

b) Water in a high dam= Gravitational R.E.

c) A moving car= Kinetic energy

4.9. A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved?

When the cup was in the hands of girl it has gravitational P.E when it drop it gain K.E and when it strike the ground this K.E converts into sound energy, heat energy and work in breaking the cup $PE \rightarrow gain$ in $KE \rightarrow sound$ energy heat energy

4.10 A body uses a catapult to throw a stone, which accidentally smashes a greenhouse window. List the possible energy changes

When boy throws the stone elastic P.E is converted into K.E when stone hit the window this K.E converts into sound, heat and work done in breaking the greenhouse window.

Numerical problems

4.1: A man pushes a lawn mower with a 40 N force directed at an angle of 20° downward from the horizontal. Find the work done by the man as he cuts a strip of grass 20 m long.

Given Data: $F = 40 \text{ N}, \theta = 20^{\circ}, d = 20 \text{m}, W = ?$

$$W = \vec{F} \cdot \vec{d} = F d \cos \theta = 40 * 20 * \cos 20^{\circ} = 7.5 * 10^{2} J$$

4.2: A rain drop $(m = 3.35 \times 10^{-5} kg)$ falls vertically at a constant speed under the influence of the forces of gravity and friction. In falling through 100 m, how much work is done by (a) gravity and (b) fiction.

Given Data: $m = 3.35 * 10^{-5} \text{ kg}$, h = 100 m, $W_{\text{gravity}} = ?W_{\text{friction}} = ?$ $W_{\text{gravity}} = \vec{F}.\vec{d} = mgh\cos\theta = \text{mgh}\cos\theta^{\circ} = 3.35*10^{-5}*9.8*100 = 0.0328 \text{ J}$ $W_{\text{fiction}} = \vec{F}.\vec{d} = mgh\cos\theta = \text{mgh}\cos 180^{\circ} = -3.35*10^{-5}*9.8*100 = -0.0328 \text{ J}$ 4.3: Ten bricks, each 6.0 cm thick and mass 1.5kg, lie flat on a table. How much work is required to stack them one on the top of another? Given data: Mass of brick = m = 1.5 kg, h = 6cm = 6/100 = 0.06m, W = ? pakcity.org W = 0 + mgh + 2mgh + 3mgh + 4mgh + 5mgh + 6mgh + 7mgh + 8mgh + 9mgh $W = 45 \text{mgh} = 45 * 1.5 * 9.8 * 0.06 = 39.69 J \approx 40 J$ 4.4: A car of mass 800kg travelling at 54kmh⁻¹ is brought to rest in 60 meters. Find the average retarding force on the car. What has happed to original kinetic energy? Given Data: mass = m = 800 kg, $v_i = 54 \text{Km/h} = 54 * 1000/3600 = 15 \text{ m/s}$, $v_f = 0$, d = 60 m, F = ?, K.E = 6 maccording to work energy principle $Fd = \frac{1}{2}m(v_f^2 - v_i^2) \Rightarrow F = \frac{1}{24}m(v_f^2 - v_i^2)$ $F = \frac{1}{2*60} 800*(0^2 - 15^2) = -1500N$ - ive sign shows the retarding force, As velocity of body is decreasing so kinetic energy will be decrease and becomes zero due to frictional force. 4.5: A 1000 kg automobile at the top of an incline 10 metre high and 100 m long is released and rolls down the hill. What is its speed at the bottom of the incline if the average retarding force due to friction is 480 N? Given Data: m = 1000 kg, height = h = 10 m, s = 100 m, f = 480 N $v_f = ?$ Using WE principle $Fd = \frac{1}{2}m(v_f^2 - 0) \Rightarrow F = \frac{1}{2m}(v_f^2 - 0) \Rightarrow v^2 = \frac{2Fd}{m}$ $v = \sqrt{\frac{2Fd}{m}} = \sqrt{\frac{2*480*100}{1000}} = 9.9 \approx 10 \text{m/s}$ 4.6: 100 m³ of water is pumped from a reservoir into a tank 10 m higher than the reservoir, in 20 minutes. If density of water is 100kg m⁻³, find (a) the increase in P.E. (b) the power delivered by the pump. Given Data: Volume of water $\neq V = 100 \text{m}^3$, h = 10 m, t = 20 min = 20 * 60 = 1200 sec, $\rho = 1000 \text{kgm}^{-3}$, P.E = ?P = ?for mass Density =, mass volume \Rightarrow mass = density * volume = $1000 * 100 = 10^5$ kg P.E = mgh = $10^5 * 9.8 * 100 = 9.8 * 10^6$ J, Power = $\frac{W}{t} = \frac{P.E}{t} = \frac{9.8 * 10^6}{1200} * 8.2 * 10^3 Watt = 8.2 KW$ 4.7: A force (thrust) of 400 N is required to overcome road friction and air resistance in propelling an automobile at 80kmh⁻¹. What power (kW) must the engine develop? Given Data: F = 400 N, velocity = v = 80 Km/h = 80 * 100/3600 = 22.22 m/s, Power = ? $P = F.\vec{v} = Fv\cos\theta = Fv\cos\theta^{\circ} = 400 * 22.22 = 8888watt = 8888/1000 = 8.9KW$ 4.8: How large a force is required to accelerate an electron $(m=9.1\times10^{-31}kg)$ from rest to a speed of $2.0 \times 10^7 ms^{-1}$ through a distance of 5.0 cm? Given Data: mass = $m = 9.1*10^{-31} \text{kg}$, $v_i = 0$, $v_f = 2*10^7 \text{ m/s}$, $d = 5 \text{cm} = 5*10^{-2} \text{ m}$, F = ?using work energy principle $Fd = \frac{1}{2}m(v_f^2 - v_i^2) \Rightarrow F = \frac{1}{2d}m(v_f^2 - v_i^2)$ $F = \frac{1}{2*5*10^{-2}} 9.1*10^{-31} ((2*10^7)^2 - 0^2) = 3.6*10^{-15} \text{ N}$

	liver weighing 750 N dives vation of mechanical energ			
Given	Data: $W = 750 \text{ N}, h_1 = 10 \text{ n}$	$m, h_2 = 5 m, v = ?$		
Asloss	of potentialenergy = gian	in kinetic energy ⇒ mg(1	$h_1 - h_2) = 1/2 \text{mv}^2$	
$v = \sqrt{2}$	$g(h_1 - h_2) = \sqrt{2*9.8(10-5)}$	$\frac{1}{5} = 9.9m/s$		
slide is the top	child starts from rest at the frictionless? (b) If he reach of the slide is lost as a rest Data: height = h = 4m, specific specif	hes the bottom, with a sp sult of friction?	peed of 6 ms ⁻¹ , what perce	ntage of his energy at
Asloss	of P.E = Gain in K.E \Rightarrow n	$ngh = 1/2mv^2 \implies v^2 = 2g$	$gh \Rightarrow v = \sqrt{2gh} = \sqrt{2*9.8}$	$\overline{*4} = 8.8 ms^{-1}$
% loss	of Energy = $\frac{\text{loss of energy}}{\text{total energy}}$	$*100 = \frac{1/2mv^2 - 1/2m}{1/2mv^2}$	$\frac{v'^2}{v^2} = \frac{v^2 - v'^2}{v^2} = \frac{8.8^2 - 6^2}{8.8^2}$	*100 = 54%
	totaronorgy			
4.5	VV/I_:_1 C _1	Multiple choice	questions pa	kcity.org
1)	Which of these is example o	T .	9	
	a) Gravitational force	b) Elastic spring force	c) Electric force	d) All of these
2)	Which of these is example o	Section Section Vision		
	a) Frictional force	b) Air resistance	c) Propulsion force of rocket	d) All of these
3)	What is the power of jumbo		D(O) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1) = = 1 1 1 1
	a) <u>1.3*10⁸ watt</u>	b) 1.1*10 ⁵ watt	(2) 2*10 ³ watt	d) 7.5*10 ⁻⁴ watt
4)	What is the power of car at 9	, 110	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1) = = = 1 0 1
	a) 1.3*10 ⁸ watt	b) <u>1.1*10</u> 5watt	c) 2*10 ³ watt	d) 7.5*10 ⁻⁴ watt
5)	What is the power of electrical a) 1.3*10 ⁸ watt	b) 1.1*10 ⁸ watt	c) <u>2*10³ watt</u>	d) 7.5*10 ⁻⁴ watt
6)	What is the power of pocket	calculator?		
	a) 1.3*10 ⁸ watt	(b) 1.1*10 ⁸ watt	c) 2*10 ³ watt	d) <u>7.5*10⁻⁴ watt</u>
7)	What is the power of color I	V? //		
	a) 100 watt	b) 120 watt	c) 140 watt	d) 160 watt
8)	What is the power of flash li			
0)	a) 0.5 watt	b) <u>1.5 watt</u>	c) 2.5 watt	d) 3.5 watt
9)	How much energy is used to a) 9*10 ⁹ J	b) 1000 J	c) 9*10 ¹⁵ J	d) 1*10 ¹² J
10)	A car uses about how much			T
	a) 9*10 ⁹ J	b) 1000 J	c) 9*10 ¹⁵ J	d) <u>1*10¹² J</u>
11)	How much energy is obtained	2500		
	a) 30*10 ⁹ J	b) 5*10 ⁷ J	c) <u>1*10⁶ J</u>	d) 3*10 ² J
12)	What is the approximate ene			1 2 2 4 2 2 7
	a) <u>30*10⁹ J</u>	b) 5*10 ⁷ J	c) 1*10 ⁶ J	d) 3*10 ² J
13)	How much energy is obtained a) 30*10 ⁹ J	ed from burning 1 liter of period by 5*10 ⁷ J	etrol c) 1*10 ⁶ J	d) 3*10 ² J
14)	How much energy is obtained	ed from running person at 1	0km/h	
*	a) 30*10 ⁹ J	b) 5*10 ⁷ J	c) 1*10 ⁶ J	d) <u>3*10² J</u>
15)	How much energy is obtained		2.2	1) 24 22 -
	a) 30*10 ⁹ J	b) 5*10 ⁷ J	c) <u>1.8*10⁻¹¹ J</u>	d) 3*10 ² J

Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s	a) $30*10^9 \mathrm{J}$		6*10 ⁻²¹ J	- /	1*10 ⁶ J	d)	$3*10^2 J$
1	/) All the food you eat in one of	lay has a	bout the same energ	gy as	liter of petrol		1
a) 5 b) 10 c) 15 d) 20	a) $\frac{1}{2}$		b) $\frac{1}{3}$		c) $\frac{1}{4}$		d) $\frac{1}{5}$
More coal has been used since — then was used in the whole of history before that a) 1945 b) 1940 c) 1950 d) 1955 Becape speed for Moon is a) 2.4 km/s b) 4.3 km/s c) 5 km/s d) 10.4 km/s Escape speed for Mercury a) 2.4 km/s b) 4.3 km/s c) 5 km/s d) 10.4 km/s Escape speed for Mars is a) 2.4 km/s b) 5 km/s c) 10.4 km/s d) 11.2 km/s Escape speed for Venus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Venus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11/2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed is maximum for planet? a) 10.4 km/s b) 11/2 km/s c) 21/2 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source? a) Coal b) Natural gas c) Oil, uranium d) All of the Uniquial source of tides is a) Sun b) Earth c) Moon d) Nonc				186.7		ľ	
Scape speed for Moon is		5594				d)	20
Escape speed for Moon is a) 2.4 km/s b) 4.3 km/s c) 5 km/s d) 10.4 km/s Escape speed for Mercury a) 2.4 km/s b) 4.3 km/s c) 5 km/s d) 10.4 km/s Escape speed for Mercury a) 2.4 km/s b) 5 km/s c) 10.4 km/s d) 11.2 km/s Escape speed for Venus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Venus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11 (3 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11 (3 km/s c) 21 km/s c) 22.4 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source? a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm		097 - 681		89.	n en en en e	1	1055
Bescape speed for Mercury a) 2.4 km/s b) 4.3 km/s c) 5 km/s d) 10.4 km/s Escape speed for Mercury a) 2.4 km/s b) 4.3 km/s c) 5 km/s d) 10.4 km/s Escape speed for Mars is a) 2.4 km/s b) 5 km/s c) 10.4 km/s d) 11.2 km/s Escape speed for Venus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Uranus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed is planting a pure of a maximum for planter? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of fides is a) Sun b) Earth c) Moon d) None	W # ## ###############################	0)	1240		1930	u)	1933
Escape speed for Mercury a) 2.4 km/s b) 4.3 km/s c) 5 km/s d) 10.4 km/s Escape speed for Mars is a) 2.4 km/s b) 5 km/s c) 10.4 km/s d) 11.2 km/s Escape speed for Venus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Uranus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed is maximum for planet? a) 10.4 km/s b) 11.2 km/s c) 41 km/s c) 42 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sum is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm		b)	4.3 km/s	c)	5 km/s	d)	10.4 km/s
a) 2.4 km/s b) 4.3 km/s c) 5 km/s d) 10.4 km/s Escape speed for Mars is a) 2.4 km/s b) 5 km/s c) 10.4 km/s d) 11.2 km/s Escape speed for Venus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Uranus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 1/2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of geothermal energy					ð	ora &	
Escape speed for Mars is a) 2.4 km/s b) 5 km/s c) 10.4 km/s d) 11.2 km/s Escape speed for Venus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Uranus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None		b)	4.3 km/s	c)	78	(d)	
a) 2.4 km/s b) 5 km/s c) 10.4 km/s d) 11.2 km/s Escape speed for Venus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Uranus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon Escape speed is least for which planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm		~					
Escape speed for Venus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Uranus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm		b)	5 km/s	c)	10.4 km/s	<u>d</u>)	11.2 km/s
a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Uranus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm				- 2			
Escape speed for Uranus is a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm		b)	11.2 km/s	c)	22.4 km/s	d)	25.4 km/s
a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11 2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None							
Escape speed for Neptune a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11/2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of geothermal energy		b)	11.2 km/s	c)	22.4 km/s	d)	25.4 km/s
a) 10.4 km/s b) 11.2 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	<u></u>			
Escape speed for Saturn is a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11/2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None		b)	11.2 km/s		22.4 km/s	d)	25.4 km/s
a) 10.4 km/s b) 37 km/s c) 22.4 km/s d) 25.4 km/s Escape speed for Jupiter a) 10.4 km/s b) 11 Jean's c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None	Escape speed for Saturn is	<u> </u>	<u></u>	7(2)			
Escape speed for Jupiter a) 10.4 km/s b) 11.2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None		b)	37 km/s	c)	22.4 km/s	d)	25.4 km/s
a) 10.4 km/s b) 11.2 km/s c) 61 km/s d) 25.4 km/s Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None						¥.	
Escape speed is maximum for planet? a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None		b)	11.2 km/s	c)	61 km/s	d)	25.4 km/s
a) Moon b) Mercury c) Jupiter d) Saturn Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None							
Escape speed is least for which planet? a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None		~ ~ ~ ~ ~ ~		c)	Jupiter	d)	Saturn
a) Moon b) Mercury c) Mars d) Jupiter Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None	Escape speed is least for which	holanet	?				
Sun is the original source of a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None				c)	Mars	d)	Jupiter
a) Biomass b) Fossil fuels c) Wind d) All of the Which of these is renewable energy source? a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None							
a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None Original source of geothermal energy		b)	Fossil fuels	c)	Wind	d)	All of these
a) Hydroelectric b) Wind c) Tides d) All of the Which of these is non-renewable energy source a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None Original source of geothermal energy	Which of these is renewable e	energy so	ource?				
a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None Original source of geothermal energy				c)	Tides	d)	All of these
a) Coal b) Natural gas c) Oil, uranium d) All of the Tidal effect can distort the continents pulling land up and down by as much as a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None Original source of geothermal energy	Which of these is non-renewa	ble ener	gy source	org			
a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None Original source of geothermal energy				c)	Oil, uranium	d)	All of these
a) 15 cm b) 20 cm c) 25 cm d) 30 cm Original source of tides is a) Sun b) Earth c) Moon d) None Original source of geothermal energy	Tidal effect can distort the con	ntinents	pulling land up and	down b	y as much as		##
a) Sun b) Earth c) Moon d) None Original source of geothermal energy					Service Lie	d)	30 cm
a) Sun b) Earth c) Moon d) None Original source of geothermal energy	Original source of tides is					23	
		b)	Earth	c)	Moon	d)	None
	Original source of geothermal	lenergy		······································	<u></u>	**************************************	
a) Sun b) Moon c) <u>Earth</u> d) None		DETAILS:	Moon	c)	Earth	d)	None
				~~ ~	# <u>####################################</u>		

Chapter = 04

Previous all Punjab Boards Exam Solved MCQs

	Questions	Option A	Option B	Option C	Option D
1)	If direction of force and displacement are	Minimum	Zero	Maximum	Infinity
	perpendicular then work will be		820		
2)	A stone is thrown up from the surface of	Mgh	$\frac{1}{2}$ mv ²	2mgh	<u>Zero</u>
	earth when it reaches at maximum height				
	its kinetic energy is equal to				
3)	Which is renewable source of energy?	Coal	Natural gas	<u>Sunlight</u>	Uranium
4)	Which one is non renevable source of	Wind	Biomass	<u>Coal</u>	Sunlight
	energy Wileigh and in a supervision for a 2	T0142	Tii	D1	NT
5)	Which one is conservative force?	<u>Electric</u>	Tension in	Propulsion force of	Normal force
			string	motor	
6)	1 KWh=?	3.6*10 ⁵ J	3.6*10 ⁶ J	$3.6*10^{7}$ J	3.6*10 ⁸ J
7)	The dimension of work are	[MLT ⁻²]	$\frac{5.0 \cdot 10 \cdot 3}{[\text{ML}^2\text{T}^{-2}]}$	[MLT ⁻¹]	[ML ⁻² T ⁻²]
8)	Source of tidal energy is	Moon	Sun	Earth	Uranium
9)	A body at rest may have	Energy	Momentum	K.E	Torque
10)	Which one is not the unit of work	Watt second	Nm	Joule	Kgm/s
	When do high tides occur in the ocean	When moon	On a rainy	When there is	During day
11)		is b/w sun	day	full moon	time
		and earth			
12)	Nonrenewable source of energy is	Uranium	Wind	Biomass	Sunlight
13)	Escape velocity on the surface of earth is	$v = \frac{2\pi R}{}$	$v = \sqrt{GM/R}$	$v = \sqrt{2gR}$	2GM
,	given by Vesc=?	$v = \frac{1}{T}$	$V = \sqrt{\frac{R}{R}}$		$v = \sqrt{\frac{2 G R}{R}}$
14)	To evaluate gravitational P.E, final point	0 m	1000Km	<u>Infinity</u>	None of these
21 1231	must be consider at	MANO	2	10 337 44	2 44
15)	6 joule of work is done in 3 sec then	6Watt	3 watt	18 Watt	2 watt
	power is	vork/time=6/3=2	xxott		
16)	Work done is maximum if the angle	n°	30°	180°	90°
10)	between the force and displacement is		30	100	70
17)	Escape velocity of a body of mass 1000	11 km/s	5.5 km/s	22 km/s	44 km/sec
,	kg is 11 km/s, if the mass of body is				
	doubled then escape velocity is				
	Escape vel	ocity is independ	lent of mass		
18)	Killo watt hour is the unit of	Power	Force	Energy	Weight
19)	1KWh=?	0.36 MJ	3.6MJ	36MJ	360MJ
20)	As we move up a body above the surface	Negative	Positive	Zero	Infinity
	of earth, the change in potential energy	pakcity.org			
The Market May	will be				
21)	Rate of doing work is known as	Impulse	Energy	<u>Power</u>	Momentum
22)	Which one is biggest unit of energy and	Erg	Joule	Watt hour	Killo watt
	commercial unit				hour
23)	Joule is a unit of	K.E	P.E	Heat energy	All of these
24)	Kinetic energy can be defined as dot	Momentum	Force and	<u>Average</u>	None of these
	product of	and force	velocity	momentum and velocity	
25)	If mass of moving body is doubled then	2 times	4 times	8 times	16 times
	its kinetic energy becomes		l tillies		
26)	A field will be conservative when work	By centripetal	By a	In closed	None of these
	done	force is zero	frictional	path is zero	
			force is negative		
	***************************************		negative		

27)	D 1 1 1 1 1 CC		1	T7 T • 4	D 32
27)	Power is equal to the dot product of force and	Displacement	Acceleration	<u>Velocity</u>	Position vector
28)	Value of escape velocity for the surface	11 km/sec	2.4 km/sec	10.4 km/sec	4.3 km/sec
,	of the earth is 11 km/sec. Its value for			TO BUILDING ON SHOULD TRANSPORT STANDARD AND AND AND AND AND AND AND AND AND AN	THE REPORT OF CONTRACTOR OF THE PROPERTY OF TH
	surface of the moon is				
29)	KW/m ² is the unit of	Power	Intensity	Energy	work
30)	The area under the curve force	Force	Displacement	Work	Power
	displacement graph represents			***************************************	
31)	If velocity is doubled then	Momentum	Momentum	Momentum	Momentum
		increase 4	and K.E	increase 2	increase 2
	pakcity.org	times and k.E	remains same	times and	times and
		2 times		K.E remains	K.E increase 4 times
	Momentum is directly to velocity and kinet	ic energy is direct	l tly to square of y	elocity	<u>4 times</u>
32)	If by some means the diameter of earth	Same	Double	Half	One fourth
~	increases to 4 times the escape speed will		Double		
	becomes				
	As escape speed is directly propor	tional to sq.rt of 1	radius/diameter,	so sq.rt of 4 is tw	7 O
33)	Solar cell converts light energy into	Heat energy	Chemical	Electrical	Atomic energy
			energy	<u>energy</u>	
34)	A body of mass 2kg moving with	<u>16J</u>	8J	32J	2J
	velocity of 4m/s has K.E equal to			**************************************	
	As m=2kg, v=4 m/s, put in formula K.E=1		² =16	l de la companya de l	
35)	The value of solar constant is	1.4 KW/m ²	1 KW/m^2	4.1 KW/m^2	0.1 KW/m^2
36)	Work will be negative when angle is	<90°	>90°	0°	45°
37)	Work has dimension like	Torque	Momentum	Velocity	Power
38)	Earth receives large amount of energy directly from	Wind	Water	Sun	Moon
39)	Original source of energy for biomass is	Earth	Moon	<u>Sun</u>	Star
40)	A layer of rock holding water that allows	Geyser	Aquifer	Steam vent	Hot spring
	water percolate through it with pressure				
V=02 X0	is called			22 22 22 12 12 12 12 12 12 12 12 12 12 1	**************************************
41)	The value of escape velocity is	1 Km/h	11 Km/s	1.1 Km/h	1.1 m/s
42)	3 J of work is done in 3 sec then power is	6W	3W	18 W	<u>1W</u>
		work/time=3/3=1	watt	25	
43)	All the food we eat in one day has about	One liter of	½ liter of	<u>1/3 liter of</u>	1/4 liter of
	the same energy as:	petrol	petrol	<u>petrol</u>	petrol
44)	The work done is negative when angle	45°	90°	<u>180°</u>	0°
	between force and displacement is	pakcity.org			
45)	On a clear day at noon, the intensity of	1.4 kWm-2	1.0 kWm-2	1.4 Wm-2	1.4 kWm-2
	solar energy reaching the earth's surface				
16)	Die maggig converted into fuel by	Exponention		Deflection	Formantation
46) 47)	Bio mass is converted into fuel by	Evaporation	Scattering	Reflection	Figure 1
(4/)	Which of these is not conservative force?	Frictional	Gravitational	Electric force	Elastic
X		<u>force</u>	force		restoring force
2	T 1 · · · · 1 1 . · · · · · · · · · · · ·		T 1:	(-roszitotionol	All of these
48)	Escape velocity is independent of	Mass	Radius	Gravitational	
48)		5Y		acceleration	9ar 32
2	A body has P.E=mgh when it is height h	Mass mgx	Radius	200	mg(h+x)
48)		5Y		acceleration	9ar 32

51)	If 50 kg crate is pushed through 2m across the floor with force of 50 N, work will be	245 J	<u>100 J</u>	500 J	50 J
52)	Work done will be zero if angle between force and displacement is:	0°	270° Put in W=Fdcose	60°	360°
53)	100 joules work has been done by an agency in 10 seconds. What is power of agency	1000 watt	0.10 watt.	100	10 watt. Apply P=W/t
54)	Escape velocity for mars is	10.4 km/s	2.4 km/s	4.3 km/s	<u>5 km/s</u>
55)	The escape velocity corresponds to energy gained by body, which carries it to an infinite distance from the surface of earth.	Total	Initial kinetic.	Absolute Potential	None of these
56)	The power needed to lift a mass 5000g to height 1m in 2 sec	2.45 W	<u>24.5 W</u>	245 W	2.45 KW
	P=W/t=mg	h/t= 5*9.8*1/2=4	9/2=24.5 W		
57)	If a body of mass 5kg is raised vertically through a distance of 1m, then work done is	49 J	4.9 J	490 J	0.49 J
	W=Fo	d = mgh = (5)(9.8)(1)=49J		
58)	The consumption of energy by 60-watt bulb in 2 seconds is:	20 J	30 J	0.02 J	<u>120 J</u>
	POWER =energy/time, Energy = power*	*time= 60*2€ 12	Ô J		
59)	If a certain force acts on an object and changes its kinetic energy from 65 J to 130 J, then work done by the force will be	92.5(1)	<u>65 J</u>	97.5 J	130 J
	Apply work energy principle as work done	is equal to chang	ge in kinetic ener	gy so=130-65=	-65J