



## To find the volume of a cylinder using Vernier caliper

Vernier caliper, solid cylinder **APPARATUS:** 

### **DIAGRAM:**



PROCEDURE:

I took vernier caliper, found its least count and zero error. Then I paced the given cylinder lengthwise into the lower jaws and tightened the screw of vernier scale so that jaws remained fixed. I observed the main scale reading just to the left of zero line of vernier scale. That gave me main scale reading R. Then to find fraction to be added "y" I noted which of vernier scale division coincided with any main scale division, n. I multiplied that number by least count and then added to main scale reading R. That after zero correction gave me the length of cylinder I repeated the experiment by changing the position of cylinder three times more.

I did the same to find out diameter and radius of the cylinder and in the end calculated volume by using this formula.

Volume of the cylinder =  $\pi r^2 l$ 

#### **OBSERVATIONS:**

**Vernier Constant (V.C)** 1/4

> Value of 1 smallest division on main scale Vernier constant / Least count = Total number of divisions on vernier scale  $=\frac{0.1 \text{ cm}}{10} = 0.01 \text{cm}$

# Zero Correction (Z.C)

Zero error =

(i) 0 cm

(ii) 0 cm

(iii) 0 cm

Means zero error = 0 cm

Zero correction  $= \pm 0$  cm

| No. of<br>Obs. | Quantity to be measured | Main Scale<br>reading<br>R<br>(cm) | Vernier scale<br>division coinciding<br>with any main<br>scale division (n) | Fraction to<br>be added<br>y = (n x V.C)<br>(cm) | Final Reading                   |                       |
|----------------|-------------------------|------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------|---------------------------------|-----------------------|
|                |                         |                                    |                                                                             |                                                  | Observed<br>R' = R + (n x V.C.) | Corrected<br>R ± Z.C. |
| 1              |                         | 2.8                                | 7                                                                           | 0.07                                             | 2.87                            | 2.87                  |
| 2              | Length                  | 2.8                                | 8                                                                           | 0.08                                             | 2.88                            | 2.88                  |
| 3              |                         | 2.8                                | 7                                                                           | 0.07                                             | 2.87                            | 2.87                  |
| 4              |                         | 2.8                                | 6                                                                           | 0.06                                             | 2.86                            | 2.86                  |
| 1              | Diameter                | 0.7                                | 4                                                                           | 0.04                                             | 0.74                            | 0.74                  |
| 2              |                         | 0.7                                | 6                                                                           | 0.06                                             | 0.76                            | 0.76                  |
| 3              |                         | 0.7                                | 5                                                                           | 0.05                                             | 0.75                            | 0.75                  |
| 4              |                         | 0.7                                | 5                                                                           | 0.05                                             | 0.75                            | 0.75                  |

## **CALCULATIONS:**

Mean length of the cylinder =  $l = \frac{2.87 \pm 2.88 + 2.87 + 2.86}{4}$  cm = 2.87 cm

Mean diameter of the cylinder =  $D = \frac{0.74+0.76+0.75+0.75}{4}$  cm = 0.75 cm

Radius = 
$$r = D/2 = \frac{0.75 \text{ cm}}{2} = 0.375 \text{ cm}$$

pakcity.org

Volume of the cylinder =  $\pi r^2 l = 3.14 \times (0.375)^2 \times 2.87 = 1.268 \text{ cm}^3$ 

## RESULT:

Volume of cylinder = 1.268 cm<sup>3</sup>.

# **PRECAUTIONS**

- Zero correction should be applied.
- Jaws of the calipers should not be pressed too hard.
- The vernier should be screwed in position before removing the cylinder from the gap.
- Record a number of observations and find the mean.



## VIVA VOCE:

Q: What is vernier constant?

Ans: Vernier constant = 
$$\frac{\text{Value of 1 smallest division on Main scale}}{\text{No.of divisions on Vernier scale}} = \frac{0.1 \text{cm}}{10} = 0.01 \text{cm}$$

Q: What is meant by least count of vernier caliper?

Ans: The minimum measurement which can be made by the vernier calipers is called Least count or vernier constant. Its value is 0.01cm.

Q: Write formula to find the volume of the cylinder.

Ans: Volume of the cylinder can be determined by using the formula

$$V = \pi r^2 l$$

Q: What is zero error?

Ans: If Main scale zero and vernier scale zero does not coincide when the jaws are closed then the error occurring in measurement is called zero error.

Q: What is the use of the upper jaws and the sliding strip of the vernier caliper?

Ans: Upper jaws of the vernier calipers are used to measure internal diameter and siding strip measures the depth of any tube.

Q: What is zero correction?

Ans: To add or subtract the zero error in the observed reading is called zero correction.

Q: If vernier scale has 20 divisions and smallest division on the main scale is 0.1 cm then find the least count of the vernier caliper.

Ans: Least count = 
$$\frac{\text{Value of 1 smallest division on Main scale}}{\text{No. of divisions on Vernier scale}} = \frac{0.1 \text{cm}}{20} = 0.005 \text{cm}$$

Q: What are the various uses of vernier caliper?

Ans: Vernier calipers are used to measure diameter of a cylinder or sphere, length of a cylinder, internal diameter and depth of a tube.