M

Please visit for more data at: www.pakcity.org

Exercise 16.1

Q.1 Show that the line segment joining the midpoint of opposite sides of a parallelogram divides it into two equal parallelograms.

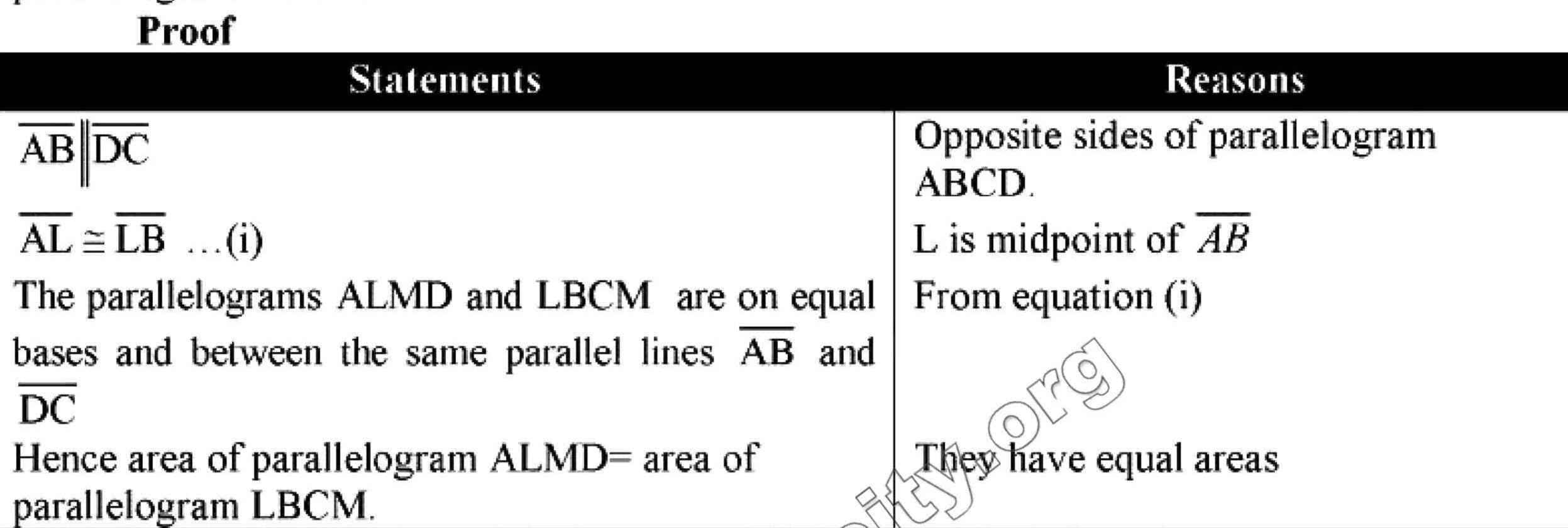
Α

Given

ABCD is a parallelogram. L is the midpoint of \overline{AB} and M is the midpoint of \overline{DC}

To prove

Area of parallelogram ALMD = area of parallelogram LBCM.



Q.2 In a parallelogram ABCD, m \overline{AB} flocm the altitudes Corresponding to Sides AB and AD are respectively 7cm and 8cm Find \overline{AD}

$$\overline{AB} = 10 \text{ cm}$$

$$\overline{DH} = 7 \text{cm}$$

$$\overline{MB} = 8$$
cm

$$\overline{AD} = ?$$

Formula

Area of parallelogram = base x altitude

$$\overline{AB} \times \overline{DH} = \overline{AD} \times \overline{IB}$$

$$10 \times 7 = \overline{AD} \times 8$$

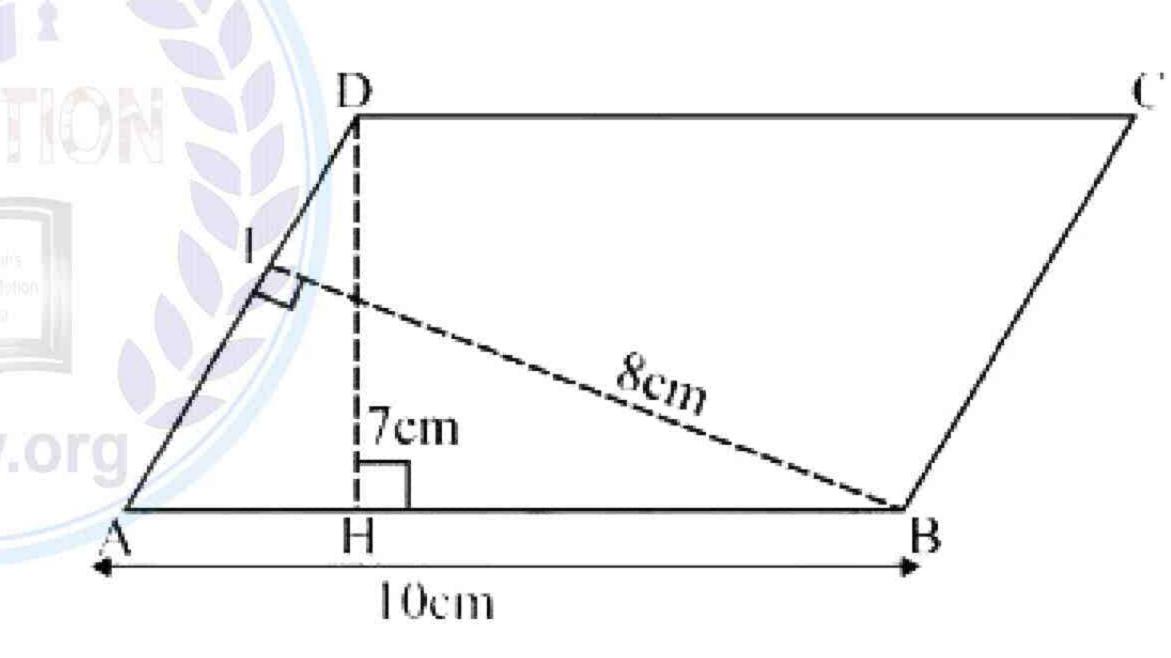
$$\frac{70^{35}}{8^{4}} = \overline{AD}$$

$$\frac{35}{4} = \overline{AD}$$

$$\overline{AD} = \frac{35}{4}$$

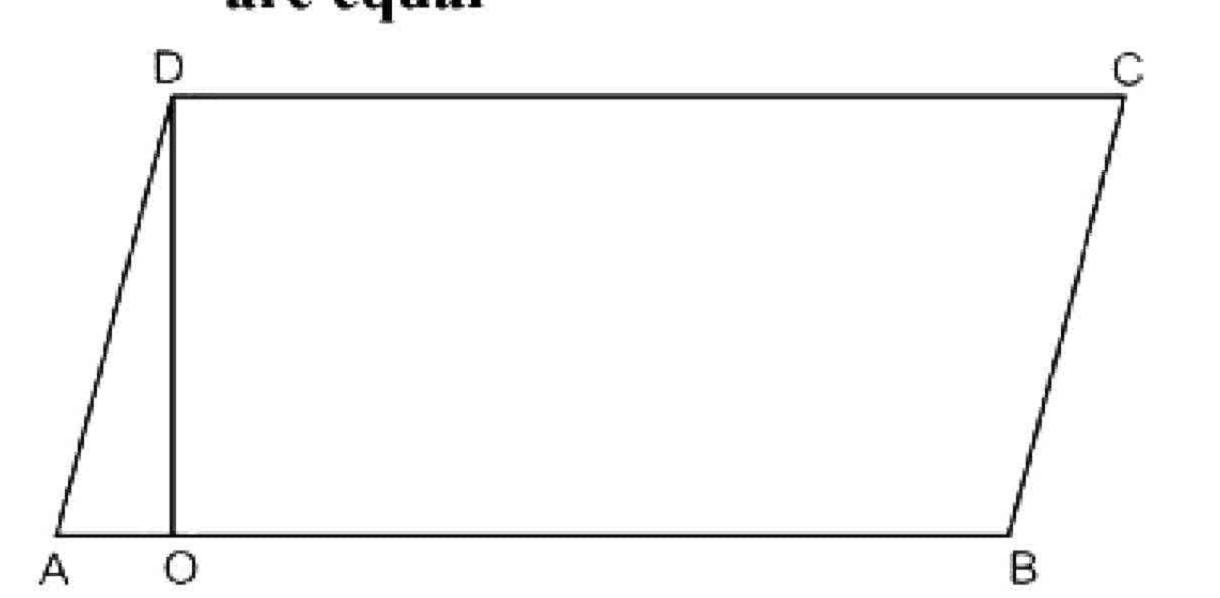
Or

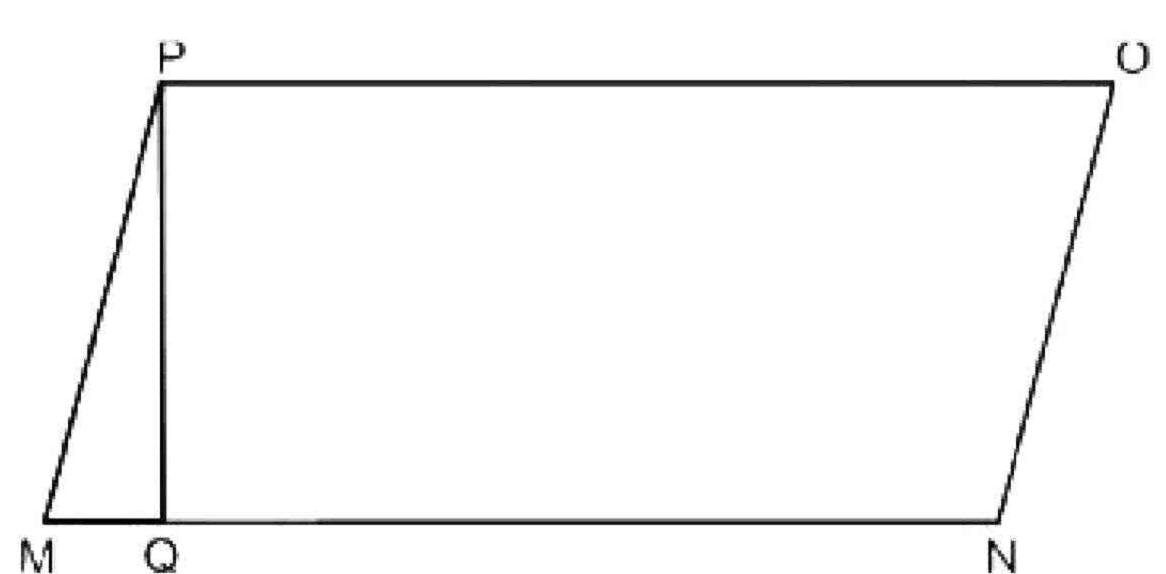
$$\overline{AD} = 8.75 \text{cm}$$



www.pakcity.org

www.pakcity.org If two parallelograms of equal areas have the same or equal bases, their altitude Q.3 are equal





In parallelogram opposite side and opponents angles are Congruent.

Given

Parallelogram ABCD and parallelogram MNOP

OD is altitude of parallelogram ABCD

PQ is altitude of parallelogram MNOP

Area of ABCD $\parallel^{gm} \cong Area of MNOP \parallel^{gm}$

To prove

$$\operatorname{m} \overline{OD} \cong \operatorname{m} \overline{PQ}$$

Proof

TIOUI	
Statements	Reasons
Area of parallelogram ABCD=	Given
Area of parallelogram MNOP	20)
Area of parallelogram= base × height	Given
$\overline{AB} \times \overline{OD} = \overline{MN} \times \overline{PQ}$	
We know that	
$\overline{AB} = \overline{MN}$	FEDUCATION SV
So	Annual Mandairs
$\frac{\cancel{AB}}{\cancel{AB}} \times \overline{OD} = \overline{PQ}$	Proved pakcity.org
$\overline{OD} = \overline{PQ}$	

Theorem 16.1.3

Triangle on the same base and of the same (i.e., equal) altitudes are equal in area

Given

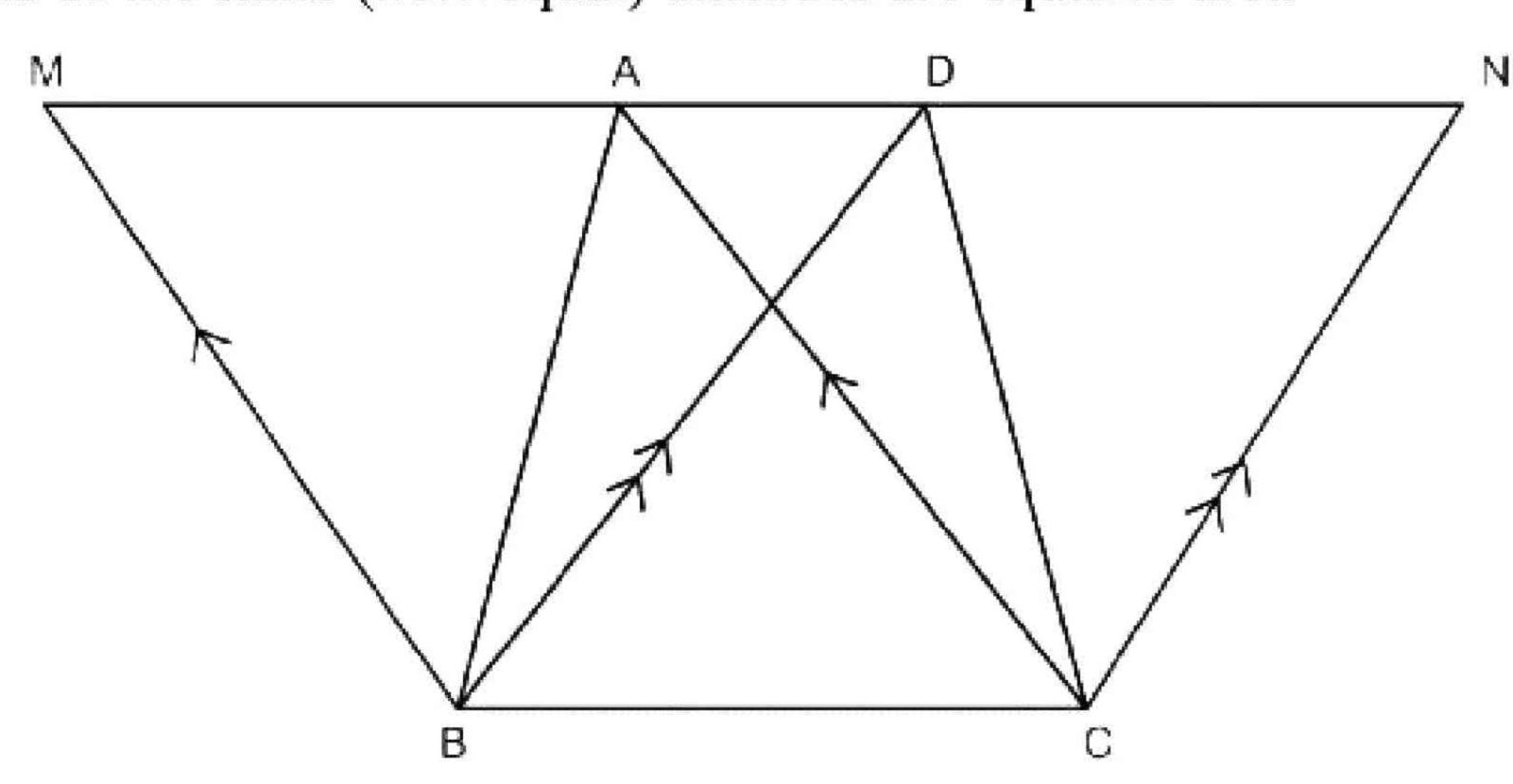
Δ's ABC, DBC on the

Same base BC and

having equal altitudes

To prove

Area of (ΔABC) = area of (ΔDBC)



Construction:

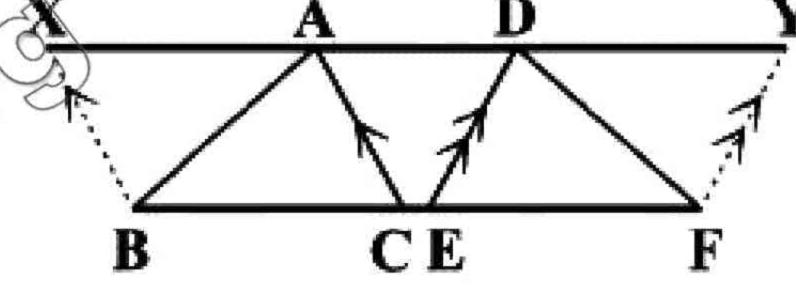
Draw $\overline{BM} \parallel$ to \overline{CA} , $\overline{CN} \parallel$ to \overline{BD} meeting \overline{AD} produced in M.N.

Proof

Statements	Reasons
ΔABC and ΔDBC are between the same s	Their altitudes are equal
Hence MADN is parallel to \overline{BC}	
∴ Area gm (BCAM)= Area gm (BCND)	These gem are on the same base
But $\triangle ABC = \frac{1}{2} \parallel^{gm} (BCAM)$ (ii)	\overline{BC} and between the same $ ^s$
And $\Delta DBC = \frac{1}{2} \parallel^{gm} (BCND)$ (iii)	Each diagonal of a gm
Hence area (ΔABC) = Area(ΔDBC)	Bisects it into two congruent triangles
	From (i) (ii) and (iii)

Theorem 16.1.4

Triangles on equal bases and of equal altitudes are equal in



area.

Given

 Δ s ABC, DEF on equal bases \overline{BC} , \overline{EF} and having altitudes equal

To prove

Area
$$(\Delta ABC)$$
 = Area (ΔDEF)

Construction:

Place the Δs ABC and DEF so that their equal bases \overline{BC} and \overline{EF} are in the same straight line BCEF and their vertices on the same side of it .Draw \overline{BX} $|\overline{CA}|$ and \overline{FY}

ED meeting AD produced in X, Y respectively

Proof

Statements	Reasons
ΔABC, ΔDEF are between the same parallels	Their altitudes are equal (given)

∴XADY is gm to BCEF

∴ area $\|^{gm}$ (BCAX) = A area $\|^{gm}$ (EFYD)----(i)

But $\Delta ABC = \frac{1}{2} \parallel^{gm} (BCAX)$ ----(ii)

And area of $\Delta DEF = \frac{1}{2}$ area of \parallel^{gm} (EFYD)__(iii)

 \therefore area (\triangle ABC) = area (\triangle DEF)

These gen are on equal bases and between

the same parallels

Diagonal of a gm bisect it

From (i),(ii)and(iii)

Exercise 16.2

Q.1

Show that

Given

 \triangle ABC,O is the mid point of

BC

$$\overline{OB} \cong \overline{OC}$$

To prove

Area $\triangle ABO = area \triangle ACO$

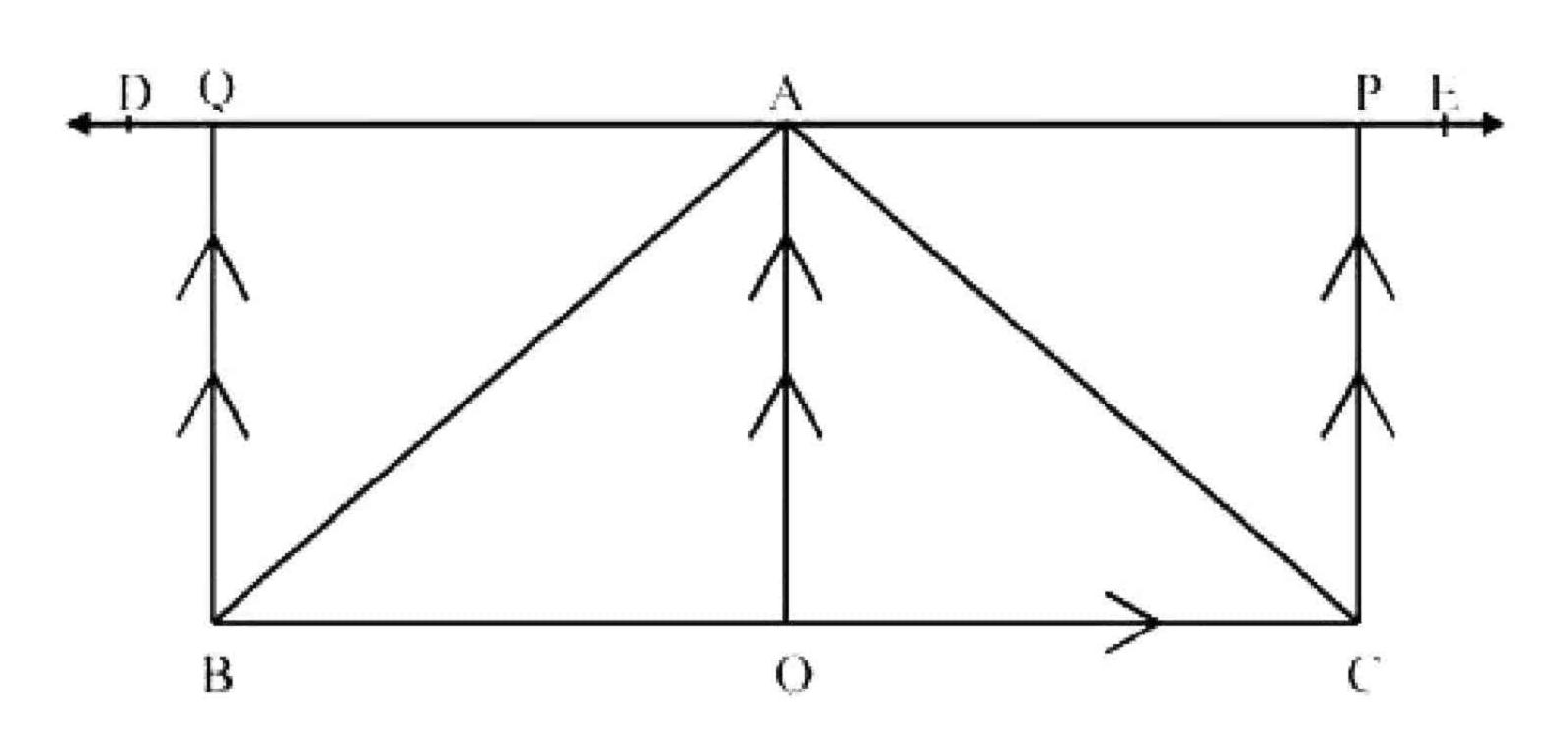
Construction

Draw $\overline{DE} \parallel \overline{BC}$

 $\overline{CP} \parallel \overline{OA}$

 $\overline{BQ} \parallel \overline{OA}$

Proof



Statements	Reasons
$\overline{BQ} \parallel \overline{OA}$	Construction
$\overline{OB} \parallel \overline{AQ}$	Construction
gm BOAQ	Base of same
gm COAP	Parallel line of \overline{DE}
$\overline{OB} \cong \overline{OC}$	O is the mid point of \overline{BC}
Area of gm BOAQ= Area of gm CQAR (i)	
Area of $\triangle ABO = \frac{1}{2}$ Area of BOAQ	
Area of $\triangle ACO = \frac{1}{2}$ Area of \parallel^{gm} COAP	ATION (S)
Area of $\triangle ABO = Area of \triangle ACO$	Dividing equation (i) both side by (ii)

So median of a triangle divides it into two triangles of equal area.

Q.2 Prove that a parallelogram is divided by its diagonals into four triangles of equal area.

pakcity.org

Given:

In parallelogram ABCD, \overline{AC} and \overline{BD} are its diagonals, which meet at I

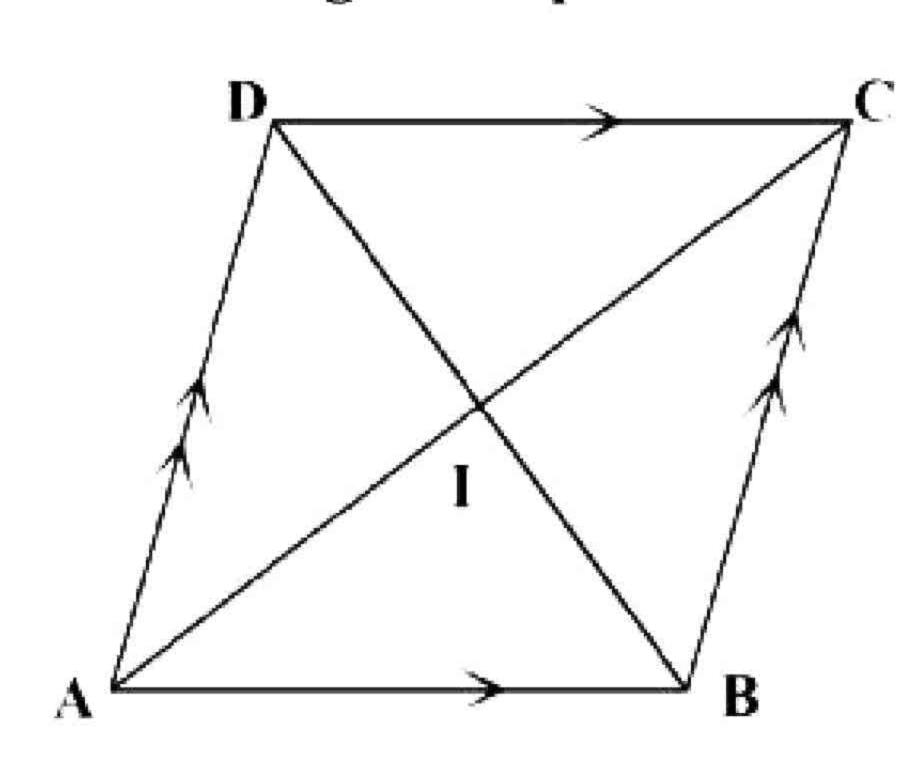
To prove:

Triangles ABI, BCI CDI and ADI have equal areas.

Proof:

Triangles ABC and ABD have the same base AB and are between the same parallel lines \overline{AB} and \overline{DC} : they have equal areas.

Or area of $\triangle ABC$ = area of $\triangle ABD$



Or area of \triangle ABI + area of \triangle BCI= area of \triangle ABI+ area of \triangle ADI

 \Rightarrow Area of \triangle BCI = area of \triangle ADI ... (i)

Similarly area of \triangle ABC = area of \triangle BCD

- \Rightarrow Area of \triangle ABI +area of \triangle BCI = area of \triangle BCI + area of \triangle CDI
- \Rightarrow Area of \triangle ABI = area of \triangle CDI... (ii)

As diagonals of a parallelogram bisect each other I is the midpoint of \overline{AC} so \overline{BI} is a median of Δ ABC

 \therefore Area of \triangle ABI = area of \triangle BCI... (iii)

 $\Delta CDI \cong \Delta AOI$

 $\overline{BI} \cong \overline{DI}$

Area of \triangle ABI = area of \triangle BCI = area of \triangle CDI= area of \triangle ADI

Q.3 Divide a triangle into six equal triangular parts

Given

 ΔABC

To prove

To divide AABC into six equal part triangular parts

Construction

Take BP any ray making an acute angle with BC draw six arcs of the same radius on

 \overrightarrow{BP} i.e mBd = mde = mef = mfg = mgh = mhc

Join c to C and parallel line segments as

$$\overline{cC} \|\overline{hH}\| \overline{gG} \|\overline{fF}\| \overline{eE} \| \overline{do}$$

Join A to O,E,F,G,H

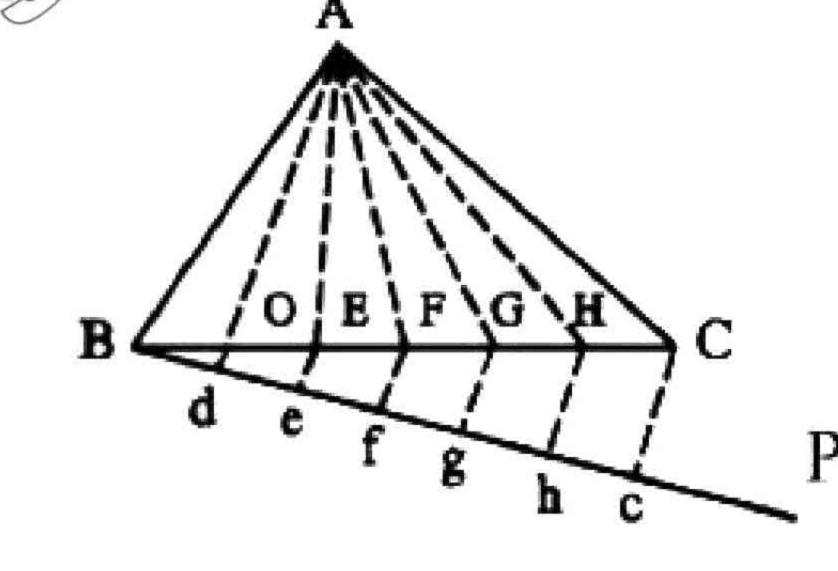
Proof

Base \overline{BC} of $\triangle ABC$ has been divided to six equal parts.

We get six triangles having equal base and same altitude

Their area is equal

Hence $\Delta BOA = \Delta OEA = \Delta EFA = \Delta FGA = \Delta GHA = \Delta HCA$



Review Exercise 16

Q.1 Which of the following are true and which are false?

- (i) Area of a figure means region enclosed by bounding lines of closed figures. (True)
- (ii) Similar figures have same area. (False)
- (iii) Congruent figures have same area. (True)
- (iv) A diagonal of a parallelogram divides it into two non-congruent triangles. (False)
- (v) Altitude of a triangle means perpendicular from vertex to the opposite side (base). (True)
- (vi) Area of a parallelogram is equal to the product of base and height. (True)

Q.2 Find the area of the following.

Length of rectangle = $\ell = 3$ cm

Width of rectangle = w = 6cm

Required:

Area of rectangle =?

Solution:

Area of rectangle = length \times width

 $= 3 \text{cm} \times 6 \text{cm}$

 \Rightarrow Area of rectangle = 18 cm²

(ii)

Given

Length of square = $\ell = 4$ cm

Required:

Area of square =?

Solution:

Area of square = $\ell \times \ell$

 $=\ell^2$

 $= (4cm)^2$

 \Rightarrow Area of square = 16cm²

(iii)

Given

Height of parallelogram = 4cm

Base of parallelogram = 8cm

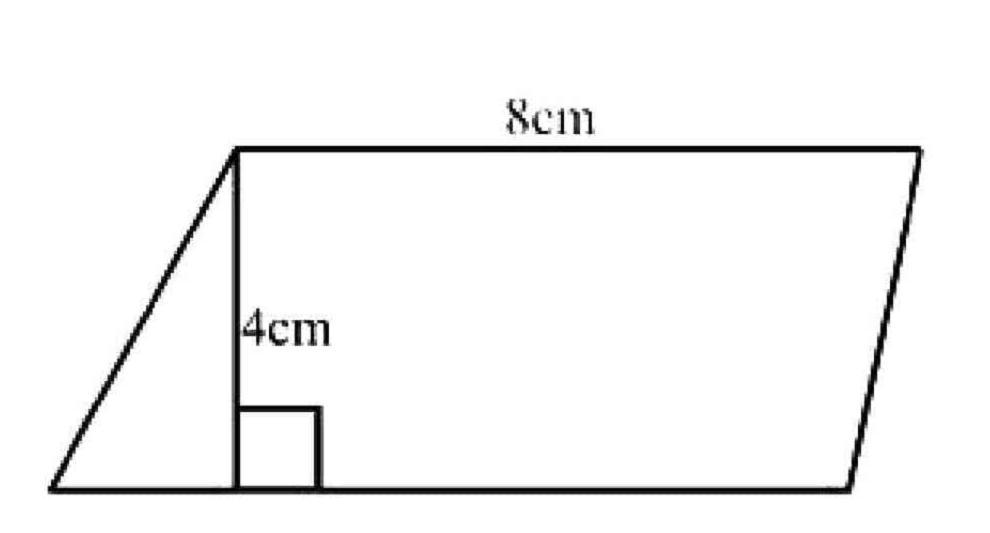
Required:

Area of parallelogram = ?

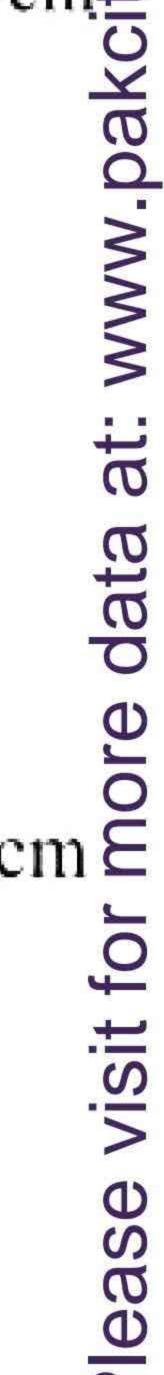
Solution:

Area of parallelogram = $b \times h$

 $= 8 \text{cm} \times 4 \text{cm}$



6cm



10cm

Lbenn

(iv)

Given:

Height of triangle = h = 10 m

 \Rightarrow area of parallelogram = 32 cm²

Base of triangle = b = 16cm

Required:

Area of triangle =?

Solution:

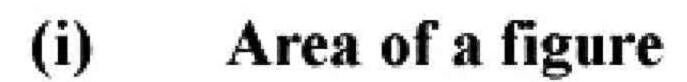
Area of triangle =
$$\frac{1}{2} \times b \times h$$

$$= \frac{1}{2} \times {}^{8}16 \text{ cm} \times 10 \text{cm}$$

$$= 8 \text{cm} \times 10 \text{ cm}$$

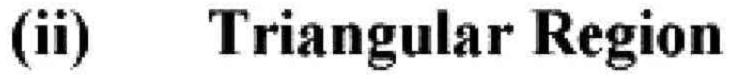
$$=80 \text{cm}^2$$

Q.3 Define the following



The region enclosed by the bounding lines of a closed figure is known as area of the figure.

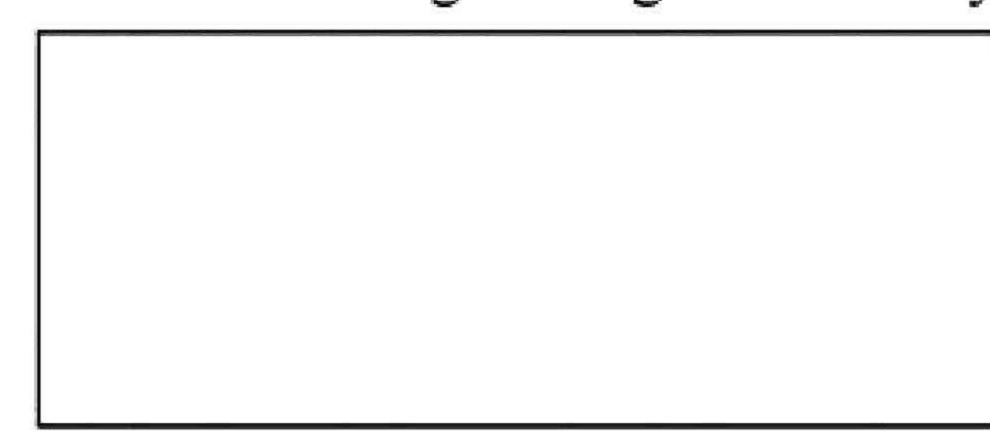




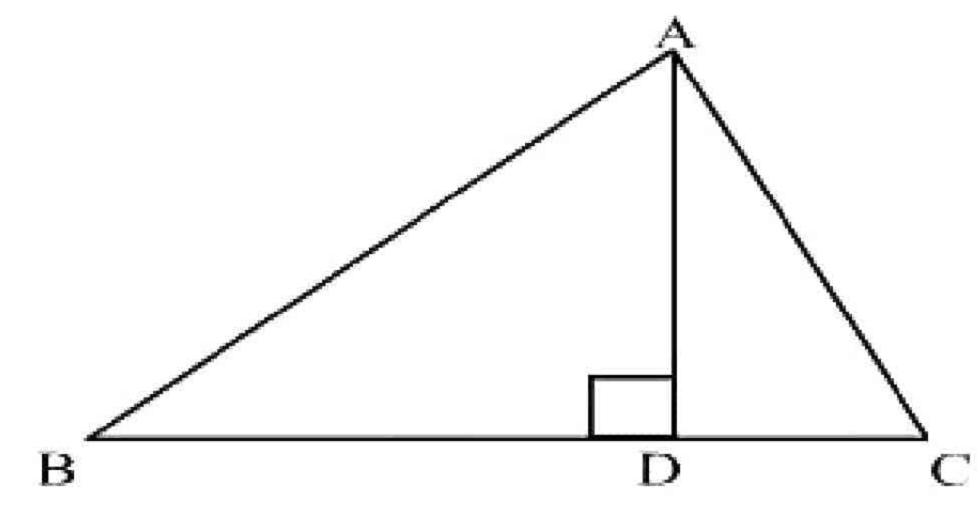
A triangular region is the union of a triangle and its interior i-e three line segments forming the triangle and its interior

(iii) Rectangular Region

A rectangular region is the union of a rectangle and its interior. A rectangular region can be divided into two or more than two triangular regions in many ways.



If one side of a triangle is taken as its base, the perpendicular distance form one vertex opposite side is called altitude of triangle. \overline{AD} is its altitude.



Unit 16: Theorems Related With Area

Overview

Theorem 16.1.1

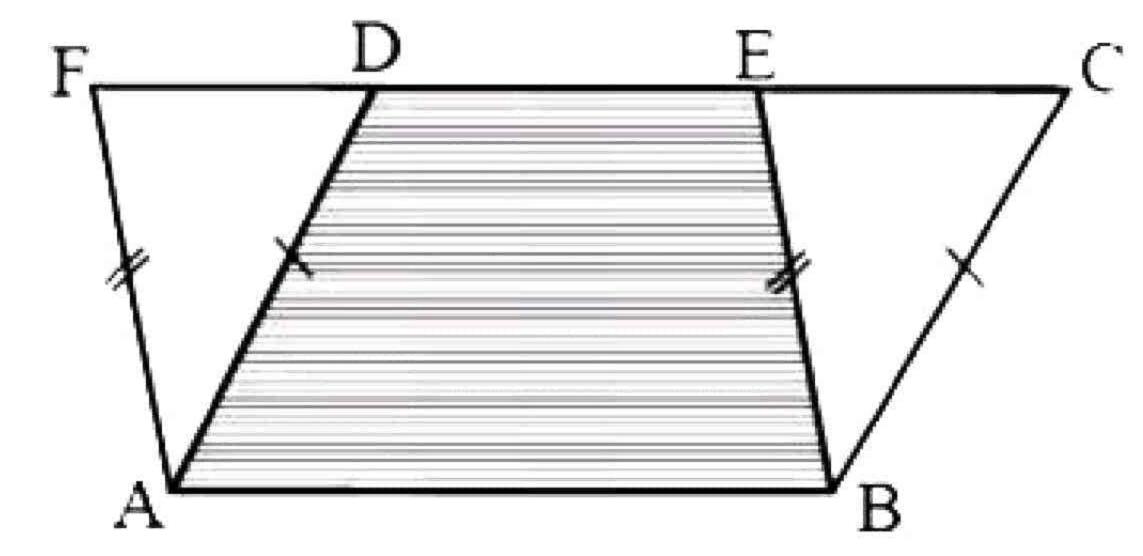
Parallelograms on the same base and between the same parallel lines (or of the same altitude) are equal in area

Given

Two parallelograms ABCD and ABEF having the same base AB between the same parallel lines AB and DE

To prove

Area of parallelogram ABCD=area of parallelogram ABEF



Proof	
Statements	Reasons
Area of (parallelogram ABCD) =	
Area of (Quad. ABED) + Area of (Δ CBE) (1)	[Area addition axiom]
Area of (parallelogram ABEF)	
= Area of (Quad. ABED) + Area of (ΔDAF) (2)	[Area addition axiom]
In Δ s CBE and DAF	
$m\overline{CB} = m\overline{DA}$	[opposite sides of a Parallelogram]
$m\overline{BE} = m\overline{AF}$	[opposite sides of a Parallelogram]
$m \angle CBE = m \angle DAF$	$\left[\cdot \cdot \overrightarrow{BC} \middle \overline{AD}, \overline{BE} \middle \overline{AF} \right]$
$\Delta CBE \cong \Delta DAF$	[S.A.S Cong.axiom]
Area of (Δ CBE)= area of (Δ DAF)(3)	[Cong. Area axiom]
Hence area of (Parallelogram ABCD) = area of (parallelogram ABEF)	From (1),(2) and (3)

Theorem 16.1.2

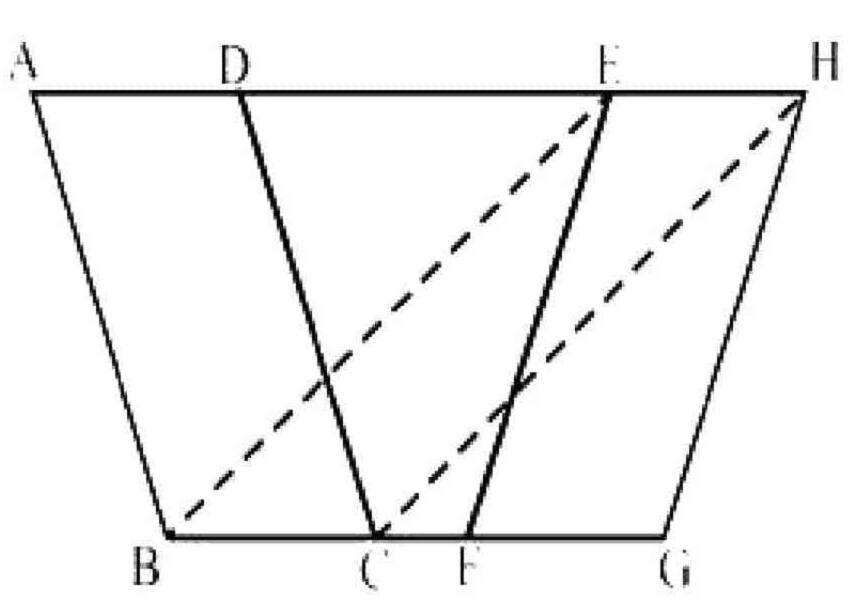
Parallelograms on equal bases and having the same (or equal) altitude area equal in area.

Given:

Parallelogram ABCD, EFGH are on equal base BC, FG having equal altitudes

To prove

Area of (Parallelogram ABCD)= area of (parallelogram EFGH)



Construction

Place the parallelogram ABCD and EFGH So that their equal bases \overline{BC} , \overline{FG} are in the straight line BCFG. Join \overline{BE} and \overline{CH}

Proof

Statements	Reasons
The give 11 ^{mg} ABCD and EFGH are between the same parallels	
Hence ADEH is a straight line \parallel to \overline{BC}	Their altitudes are equal (given)
$\therefore \ \mathbf{m} \overline{BC} = \mathbf{m} \overline{FG} = \mathbf{m} \overline{EH}$	
Now m $\overline{BC} = m \overline{EH}$ and they are	Given
$\therefore \overline{BE}$ and \overline{CH} are both equal and	EFGH is a parallelogram
Hence EBCH is a Parallelogram	
	A quadrilateral with two opposite side congruent and parallel is a parallelogram
Now $\ ^{gm}$ ABCD = $\ ^{gm}$ EBCH –(i)	Being on the same base \overline{BC} and between the same parallels
But $\ \mathbf{gm}\ \to \mathbf{EBCH} = \ \mathbf{gm}\ \to \mathbf{EFGH} - (ii)$	Being on the same base \overline{EH} and between the same parallels
Hence area gm (ABCD)= Area gm (EFGH)	From (i) and (ii)