Exercise 13.1

Q.1 Two sides of a triangle measure 10cm and 15 cm which of the following measure is possible for the third side?

- (a) 5cm
- **(b)** 20 *cm*
- (c) 25 cm
- (d) 30 cm

Solution

Lengths of two sides are 15 and 10 cm.

So, sum of two lengths of triangle = 10 + 15 = 25 m

$$10 + 15 > 20$$

$$10 + 20 > 15$$

$$15 + 20 > 10$$

... 20 cm is possible for third side

0

Sum of length of two sides is always greater than the third sides of a triangle.

Given

$$m\overline{OA} + m\overline{OB} + m\overline{OC} > \frac{1}{2} \left(m\overline{AB} + m\overline{BC} + m\overline{CA} \right)$$

Given

Point O is interior of $\triangle ABC$

To prove:

$$m\overrightarrow{OA} + m\overrightarrow{OB} + m\overrightarrow{OC} < \frac{1}{2} (m\overrightarrow{AB} + m\overrightarrow{BC} + m\overrightarrow{AC})$$

Construction

Join O with A, B and C.

So that we get three triangle $\triangle OAB$, $\triangle OBC$ and $\triangle OAC$

$$\frac{Z(OA + OC + OB)}{Z} > \frac{\overline{AB} + \overline{BC} + \overline{CA}}{2}$$

$$(OA + OC + OB) > \frac{1}{2}(\overline{AB} + \overline{BC} + \overline{CA})$$

Dividing both sides by 2

Q.3 In the $\triangle ABC$ m $\angle B = 70^{\circ}$ and m $\angle C = 45^{\circ}$ which of the sides of the triangle is longest and which is the shortest.

Solution

Sum of three angle in a triangle is 180°

$$\angle A + \angle B + \angle C = 180$$

$$\angle A + 70 + 45 = 180$$

$$\angle A + 115 = 180$$

$$\angle A = 180 - 115$$

$$\angle A = 65^{\circ}$$

Sides of the triangle depend upon the angles largest angle has

largest opposite side and smallest angle has smallest opposite side here $\angle B$ is largest so, \overline{AC} is largest $\angle C$ is smallest, so \overline{AB} is smallest side.

Q.4 Prove that in a right-angled triangle, the hypotenuse is longer than each of the other two sides.

Solution

Sum of three angles in a triangle is equal to 180°. So in a triangle one angle will be equal to 90° and rest of two angles are acute angle (less than 90°)

And
$$m \angle x + m \angle z = 90$$

So m∠x and m∠z are acute angle

.. Opposite to $m \angle y = 90^{\circ}$ is hypotenuse It is largest side.

Q.5 In the triangular figure $\overline{AB} > \overline{AC}.\overline{BD}$ and \overline{CD} are the bisectors of $\angle B$ and $\angle C$ respectively prove that $\overline{BD} > \overline{DC}$

Given

 $In\Delta ABC$

$$\overline{AB} > \overline{AC}$$

 \overline{BD} and \overline{CD} are the bisectors of $\angle B$ and $\angle C$

To prove

$$\overline{BD} > \overline{CD}$$

Construction

Label the angles $\angle 1, \angle 2, \angle 3$ and $\angle 4$

Proof

Statements	Reasons
In ΔABC	
$\overline{AB} > \overline{AC}$	Given
\overline{BD} is the bisector of $\angle B$	
$\frac{1}{2}m\angle ACB > \frac{1}{2}m\angle ABC$	
$m \angle ABC$	
$m\angle 2 < m\angle 4$	
\overline{CD} is the bisector of $\angle C$	Given
InΔBCD	
$\overline{BD} > \overline{DC}$	Side opposite to greater angle is greater

Theorem 13.1.4

From a point, out side a line, the perpendicular is the shortest distance from the point

to the line.

Given:

A line AB and a point C

(Not lying on AB) and a point D on AB such that

 $\overline{\text{CD}} \perp \overline{\text{AB}}$

To prove

mCD is the shortest distance from the point C to AB

Take a point E on AB Join C and E to form a ΔCDE

11001	
Statements	Reasons
In ΔCDE	
m∠CDB > m∠CED	(An exterior angle of a triangle is greater than non adjacent interior angle)
But $m\angle CDB = m\angle CDE$	Supplement of right angle
\therefore m \angle CDE > m \angle CED	
Or m∠CED < m∠CDE	
Or $m\overline{CD} < m\overline{CE}$	Side opposite to greater angle is greater.
But E is any point on \overrightarrow{AB}	
Hence mCD is the shortest distance from	
C to \overrightarrow{AB}	

www.pakcity.org Please

Exercise 13.2

Q.1 In the figure P is any point and AB is a line which of the following is the shortest distance between the point P and the line AB.

(a) mPL

As we know that $PN \perp AB$

So PN is the shortest distance

In the figure, P is any point lying away from the line AB. Then mPL will be the Q.2 shortest distance if

(a) m \angle P \angle A = 80°

Solution:

$$m\angle PLA = 90^{\circ}$$

 $\overline{PL} \perp \overline{AS}$

PL is the shortest distance

So ∠PLA or PLS equal to 90°

In the figure, PL is perpendicular to the line AB and LN > mLM. Prove that Q.3 mPN > mPM. Given

 $\overline{PL} \perp \overrightarrow{AB}$ mLN > mLM

To proved: mPN > mPM

Statements	Reasons
ΔΡLΜ	
$\angle PLM = 90^{\circ}$	
$\therefore \angle PMN > \Delta PLM$	Exterior angle
$\angle PMN > 90^{\circ}$	
InΔPLN	
$\angle PLN = 90^{\circ}$	
$m\angle PNL < 90^{\circ}$	Acute angle
ΔΡΜΝ	
$m\angle PMN > m\angle PNL$	
$\therefore \overline{PN} > \overline{PM}$	

c = 12

Review Exercise 13

Q.1 Which of the following are true and which are false?

- The angle opposite to the longer side is greater. (i) (True)
- (ii) In a right-angled triangle greater angle is of 60°. (False)
- (iii) In an isosceles right-angled triangle, angles other than right angle are each of 45°. (True)
- (iv) A triangle having two congruent sides is called equilateral triangle. (False)
- (v) A perpendicular from a point to line is shortest distance. (True)
- (vi) Perpendicular to line forms an angle of 90°. (True)
- (False) (vii) A point out side the line is collinear.
- (viii) Sum of two sides' of a triangle is greater than the third. (True)
- The distance between a line and a point on it is zero. (ix) (True)
- Triangle can be formed of length 2cm, 3cm and 5cm. (False) **(x)**

What will be angle for shortest distance from an outside point to the line? Q.2

The angle for shortest distance from an outside point to the line is 90° angle.

If 13cm, 12cm and 5cm are the length of a triangle, then verify that difference of Q.3 measures of any two sides of a triangle is less than the third side.

$$a = 13$$
, $b = 5$, $c = 12$ cm

$$a - b = 13 - 5 = 8$$

8 < c

$$c - b = 12 - 5 = 7$$

$$a - c = 13 - 12 = 1$$

1 < b

If 10cm, 6cm and 8cm are the length of a triangle, then verify that sum of measures Q.4 of two sides of a triangle is greater than the third side.

$$a = 8cm, b = 10cm, c = 6cm$$

$$8 + 10 = 18$$
cm > 6 cm

a + b > c

$$10 + 6 = 16$$
cm > 8 cm

b + c > a

$$6 + 8 = 14$$
cm > 10 cm

c + a > b

... The sum of measures of two sides of a triangle is greater than the third side.

Q.5 3cm, 4cm and 7cm are not the length of the triangle. Give reasons.

c = 7cm

b = 4cm

$$3 + 4 = 7$$

a = 3cm

$$a + b = c$$

$$b+c>a$$

$$4 + 7 > 3$$

$$c + a > b$$

$$7 + 3 > 4$$

In a triangle sum of measures of two sides should be greater than the third sides.

Q.6 If 3cm and 4cm are the length of two sides of a right angle triangle than what should be the third length of the triangle.

If sum of the squares of two sides of a triangles is equal to the square of the third side then it is called right angled triangle.

So by Pythagoras theorem.

$$\left(\overline{AC}\right)^2 = \left(BC\right)^2 + \left(AB\right)^2$$

$$\left(\overline{AC}\right)^2 = \left(4\right)^2 + \left(3\right)^2$$

$$\left(\overline{AC}\right)^2 = 16 + 9$$

$$\left(\overline{AC}\right)^2 = 25$$

Taking square root on both sides

$$\overline{AC} = 5cm$$

... Length of third side of right angled triangle is 5cm.

Unit 13: Sides and Angles of Triangles

Overview

Theorem 13.1.1

If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it.

Given:

In $\triangle ABC$, mAC > mAB

To prove

 $m\angle ABC > m\angle ACB$

Construction

On AC take a point D such that

 $AD \cong AB$. Join B to D so that $\triangle ADB$ is an isosceles triangle.

Label $\angle 1$ and $\angle 2$ as shown in the given figure.

Proof

Statements O)Reasons

In $\triangle ABD$

 $m \angle 1 = m \angle 2 ... (i)$

In $\triangle BCD$, m $\angle ACB \le m \angle 2$

i.e. $m\angle 2 \ge m\angle ACB$

 \therefore m $\angle 1 > m\angle ACB$ (iii)

But $m\angle ABC = m\angle 1 + m\angle DBC$

 $\therefore m \angle ABC > m \angle 1$

 $\therefore m\angle ABC > m\angle 1 > m\angle ACB$

Hence $m\angle ABC > m\angle ACB$

Angles opposite to congruent sides (construction)

(An anterior angle of a triangle is greater than a non adjacent interior angle.)

By (i) and (ii)

Postulate of addition of angles

By (iii) and (iv)

pakcity.org

(Transitive property of inequality of real number)

Example 1

Prove that in a scalene triangle, the angle opposite to the largest side is of measure greater than 60°.

(i.e., two-third of a right-angle)

Given

In $\triangle ABC$, $mAC > m\overline{AB}$, $m\overline{AC} > m\overline{BC}$.

To prove m∠B > 60°

Statements	Reasons
In ΔABC	
$m\angle B > m\angle C$	$m\overline{AC} > m\overline{AB}$ (given)
$m\angle B > m\angle A$	$m\overline{AC} > m\overline{BC}$ (given)
But $m\angle A + m\angle B + m\angle C = 180^{\circ}$	$\angle A, \angle B, \angle C$ are the angles of $\triangle ABC$
$\therefore m \angle B + m \angle B + m \angle B > 180^{\circ}$	$m\angle B > m\angle C, m\angle B > m\angle A \text{(proved)}$
Hence $m \angle B > 60^{\circ}$	$\frac{180^{60^{\circ}}}{3} = 60^{\circ}$

Example 2

In a quadrilateral ABCD, AB is the longest side and CD is the shortest side. Prove that $\Delta BCD > mBAD$

Given

In quad. ABCD, AB is the longest side and CD is the shortest side.

To prove

 $m\angle BCD > m\angle BAD$

Construction

Joint A to C.

Name the angles $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$ as shown in the figure.

Statements	Reasons
In $\triangle ABC$, $m \angle 4 > \angle 2(i)$	$m\overline{AB} > m\overline{BC}$ (given)
In $\triangle ACD$, $m \angle 3 > \angle 1$ (ii)	$m\overline{AD} > m\overline{CD}$ (given)
$\therefore m \angle 4 + m \angle 3 > m \angle 2 + m \angle 1$	From (i) and (ii)
Hence $m \angle BCD > m \angle BAD$	From (i) and (ii) $ \begin{cases} m \angle 4 + m \angle 3 = m \angle BCD \\ \vdots \\ m \angle 2 + m \angle 1 = m \angle BAD \end{cases} $

Theorem 13.1.2 (Converse of theorem 13.1.1)

If two angles of a triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.

Given:

In $\triangle ABC$, $m\angle A \ge m\angle B$

To prove

 $m\overline{BC} > m\overline{AC}$

Proof

Prooi	
Statements	Reasons
If $m\overline{BC} > m\overline{AC}$, then	
Either (i) $m\overline{BC} = m\overline{AC}$	(Trichatamy, property of real numbers)
Or (ii) $m\overline{BC} < m\overline{AC}$	(Trichotomy property of real numbers)
From (i) if $m\overline{BC} = m\overline{AC}$, then	
$m\angle A = m\angle B$	(Angles opposite to congruent sides are congruent)
Which in not possible	
From (ii) if $m\overline{BC} < m\overline{AC}$, then	
$m\angle A \le m\angle B$	(The angle opposite to longer side is greater than angle opposite to smaller side?
This is also not possible	Contrary to the given
\therefore mBC \neq mAC	
And mBC≮mAC	Trichotomy property of real numbers.
Thus $m\overline{BC} > m\overline{AC}$	

Corollaries

- (i) The hypotenuse of a right triangle is longer than each of the other two sides.
- (ii) In an obtuse angled triangle, the side opposite to the obtuse angle is longer than each of the other two sides.

Example

ABC is an isosceles triangle with base \overline{BC} . On \overline{BC} a point D is taken away from C. A line segment through D cuts \overline{AC} at L and \overline{AB} at M.

prove that $m\overline{AL} > m\overline{AM}$

Given

In $\triangle ABC$, $\overline{AB} \cong \overline{AC}$

D is a point on \overrightarrow{BC} away from C

A line segment through D cuts \overline{AC} at L and \overline{AB} at M.

 $m\overline{\rm AL} > m\overline{\rm AM}$

Statements	Reasons
In ΔABC	
$\angle \mathbf{B} = \angle 2(\mathbf{i})$	$\overline{AB} = \overline{AC}$ (given)
$\operatorname{In}\Delta MBD$	
$m\angle 1 > m\angle B(ii)$	($\angle 2$ is an ext. \angle and $\angle 3$ is its internal opposite \angle)
$\therefore m \angle 1 > m \angle 2$ (iii)	From (i) and (ii)
$\operatorname{In}\Delta LCD$	
$m\angle 2 > m\angle 3$	$\angle 1$ is an ext. $\angle 2$ and $\angle 3$ is its internal opposite $\angle 2$
$\therefore m \angle 1 > m \angle 3 \dots (v)$	From (iii) and (iv)

But $m \angle 3 \cong m \angle 4...$ (vi) Vertical angles $\therefore m \angle 1 > m \angle 4$ From (v) and (vi) In $\triangle ALM$, $m \angle 1 > m \angle 4$ (proved) Hence mAL > mAM

Theorem 13.1.3

The sum of the lengths of any two sides of a triangle is greater than the length of third side.

Given $\triangle ABC$

To prove

- $m\overline{AB} + m\overline{AC} > m\overline{BC}$
- (ii) $m\overline{AB} + m\overline{BC} > m\overline{AC}$
- (iii) mBC + mAC > mAB

Construction

Take a point D on CA such that $AD \cong AB$ join B to D and name the angles $\angle 1$, $\angle 2$ as shown in the given figure.

Example 1

Which of the following sets of lengths can be the lengths of the sides of a triangle?

pakcity.org

- (a) 2cm, 3cm, 5cm (b) 3cm, 4cm, 5cm, (c) 2cm, 4cm, 7cm,
- (a) : 2+3=5
 - This set of lengths cannot be those of the sides of a triangle.
- (b) : 3+4>5,3+5>4,4+5>3
 - ... This set can form a triangle
- (c) : 2+4<7
 - ... This set of lengths cannot be the sides of a triangle.

Please visit for more data at: www.pakcity.org

Example 2

Prove that the sum of the measures of two sides of a triangle is greater than twice the measure of the median which bisects the third side.

Given

In $\triangle ABC$, median AD bisects side \overline{BC} at D.

To prove

$$m\overline{BC} + \overline{AC} > 2m\overline{AD}$$
.

Construction

On \overrightarrow{AD} , Take a point E, such that $\overrightarrow{DE} = \overrightarrow{AD}$.

Join C to E. Name the angles $\angle 1, \angle 2$ as shown in the _____ figure.

Proof

TIUUI	
Statements	Reasons
$\ln \Delta ABD \leftrightarrow \Delta ECD$	
$\overline{BD} \cong \overline{CD}$	Given
∠1 ≅ ∠2	Vertical angles
$\overline{AD} \cong \overline{ED}$	Construction
$\Delta ABD \cong \Delta ECD$	S.A.S. Postulate
$\overline{AB} \cong \overline{EC}(i)$	Corresponding sides of =\Delta s
$m\overline{AC} + m\overline{EC} > m\overline{AE}(ii)$	ACE is a triangle
$m\overline{AC} + m\overline{AB} > m\overline{AE}(ii)$	From (i) and (ii)
Hence $m\overline{AC} + m\overline{AB} > 2m\overline{AD}$	$mAE \supseteq 2mAD$ (Construction)

Example 3

Prove that the difference of measures of two sides of a triangle is less than the measure of the third side

Given

 ΔABC

To Prove

$$m\overline{AC} - m\overline{AB} < m\overline{BC}$$

 $m\overline{BC} - m\overline{AB} < m\overline{AC}$
 $m\overline{BC} - m\overline{AC} < m\overline{AB}$

Statements	Reasons
$m\overline{AB} + m\overline{BC} > m\overline{AC}$	ABC is a triangle
$\left(p \overline{AB} + m \overline{BC} - p \overline{AB} \right) > \left(m \overline{AC} - m \overline{AB} \right)$	Subtracting $m\overline{AB}$ from both sides
$\therefore m\overline{BC} > \left(m\overline{AC} - m\overline{AB}\right)$	
or $m\overline{AC} - m\overline{AB} < m\overline{BC}(i)$	$a > b \Rightarrow b < a$
Similarly	
$m\overline{BC} - m\overline{AB} < m\overline{AC}$	Dongon similar to (i)
$m\overline{BC} - m\overline{AC} < m\overline{AB}$	Reason similar to (i)