12th Computer Science Notes www.pakcity.org

L T e e T T e T T e T e T T T e e T e s

e Chapter 08 : Getting Started With C

8.1 Overview

Q ; 08-01-01 Define Computer Program, High Level Programming
Language and Low Level Programming Language ?
Answer :

Computer Program : A computer is a device that follows the instructions given to it.
[A well-defined set of instructions given to the computer is called a computer
program.
High Level Programming Language : A computer program is written in a
programming language. [A computer programming language that describes the set of
statements / commands / instructions nearest / sitmilar to written English language].
The examples are Pascal, Ada, Small Talk, C, C++, Java etc.
Low Level Programming Language : In starting years (1940s and 1950s) computer
programs were written in machine language, this was very difficult and time taking for
programmers. Later on, Assembly language was introduced that used pneumonics
(understandable names for various instructions), and was\thus comparatively easier
and time saving for programmers.

O
Q 08-01-02 Describe C ?:}klage and give its short History ?
Answer : ! &
C Language : Since the emergence oj Qorﬁputer many programming languages have
been developed but the effect of C\@\Iﬁhe computer world 1s everlasting. The C
programming language was dewelﬁped by Dennis Ritchie in 1972 at AT&T Bell
Laboratories. \m,
History : The C progrﬁﬁ\i}mmg language was developed by Dennis Ritchie in 1972 at
AT&T Bell Laboratories. It was derived from an earlier programming language named
B. The B was developed by Ken Thompson 1in 1969-70 and provided the basis for the
development of C. The C was originally designed to write system programs under
UNIX® Operating System. Over the years its power and flexibility have made it
popular 1n industry for a vide range of applications. The earlier version of C was
known as K&R (Kernighan and Ritchie) C. As the language further developed, the
ANSI (American National Standards Institute) developed a standard version of the
language known as
ANSI C.
Writing Program in C : Writing a program in C is not too difficult; however it
requires a good understanding of the development environment of C language. The
programmer should also have the knowledge of steps required to prepare a C program
for execution. As a first step, install a compiler for the C language on the computer so
that the source program can be compiled, and executed. Many compilers for C
language are available from number of vendors. Any of them can be used, but most

commonly used 1s Turbo C++.

8.2 Developing A C Program (A Stepwise Approach)

R T T g e i v I I i i g s v g g U T A I s A s e g M e A g ey

W e T T T T T T e T e T T T T e T T T e T e T T e e T T e e e e

T T T T T T e T A T T T e T e T T T T T T T Y T

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

L T T T e T T T e T T I e T T T i i e e e e e e

I
N

Q ; 08-02-01 Explain C Program Development Process with
Diagram ?

Answer :

C Program Development Process :

Turbo C++ (A Compiler for the C language) : Turbo C++ is a Borland International’s
implementation of a for C language. In addition to a compiler, TC provides a complete
(Integrated Development Environment) to create, edit and save programs is called TC
editor. It also provides a powertul debugger that helps in detecting and removing
errors in the program. Once the TC (Turbo C) has been installed, it 1s very easy to
write C programs in its editor. The IDE can be invoked by typing tc on the prompt or
by double clicking the TC shortcut. The menu bar of the IDE contains menus to create,
edit, compile, execute (Run) and debug program. A menu can be opened by either
clicking the mouse on it or pressing the first highlighted character of the name of the
menu 1n conjunction with the Alt key.

Creating and Editing a C Program : Open the edit window of the Turbo C++ IDE,
select File/New option from menu bar. This window has a double-lined border, and a
cursor inside the window represents the starting point to write a program. We can
expand this window by clicking the arrow 1n the upper right corner, or by selecting
Windows / Zoom from the menu bar. We can also navigate through the program by
using the vertical and horizontal scroll bars or by usmg@how keys.

Saving a C Program : After writing the C progrant; b We should save it on the disk.
This can be done by selecting File / Save com@ahﬂ from the menu bar or pressing the
F2 key. Type the name of the file in dlalog @V&nd press the Enter key. The default
path for saving the file 1s BIN folder. ”Eh\igTC assigns a default name
NONAMEOQOOQ.CPP to the file. To SHR ’ﬂﬂae file 1n a specific folder / location with a
different file name, one has to speék\y the absolute path.

Note : Turbo C++1s a compl\l\ér/“fbr C++ programming language - an extension to C.
Therefore it can complle ﬁmgrams of both C and C++. When we save a program with
.Cpp extension, 1t can use many additional features that are not supported in ANSI C.
When a program 1s saved with .c extension, the Turbo C++ compiler restricts it to only

use standard features of C.
Compiling a C Program : The computer does not understand source program
because instructions 1n the program are meaningless to the microprocessor, as it
understands only the machine language. A program that 1s to be executed must be 1n
the form of machine language. C compiler translates the source program into an object
program with .obj extension. To invoke Turbo C++ compiler, select Compile /
Compile from the menu bar or press Alt + F9 key. If there 1s no error 1n the source
program, the program will be translated to object program successfully otherwise, the
compiler will report errors in the program.
Source Program : The program written in any high level programming
language, such as C, 1s called source program.
Object Program : The compiler produces an object program from the source
program.
Linking a C Program : While writing a C program, the programmer may refer to
many files to accomplish various tasks such as input / output etc. In case of C
language, a lot of functionality 1s available in the form of library files. Rather than
reinventing the wheel, most of the times we prefer to use the built-in functionality of

R T T g e i v I I i i g s v g g U T A I s A s e g M e A g ey

W e T T T T T T e T e T T T T e T T T e T e T T e e T T e e e e

T T T T T T e T A T T T e T e T T T T T T T Y T

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

L T e e T T e T T e T e T T T e e T e s

the language. Such files are needed to be linked with the object file, produced by the
compiler, before execution of the program. Linking 1s the process in which the object
file produced by the compiler 1s linked to many other library files by the linker. The
linker 1s a program that combines the object program with additional object files that
may be needed for the program to execute and save the final machine language
program as an executable file on disk. In Turbo C++, the linker can be invoked by
selecting Compile / Link from the menu bar. The Linker combines different library
files to the object file and produces an executable file with .exe extension.
Executing a C program : After successfully compiling and linking the program, we
are now ready to execute it. For execution the program must be loaded into memory.
This 1s done by the loader. Loader is a program that places executable file in memory.
In Turbo C++, this 1s done by selecting Run / Run from the menu bar or pressing
Ctrl+F9 key. When the program is run, the screen flickers for a moment and the output
screen will disappear in a flash. To see the program’s output select Window / User
Screen or press Alt+F5. The normal DOS output screen will appear. Flowchart 8.3
describes the steps required to prepare a C program for execution.
Setting the Output and Source Directories : By default, Turbo C++ places the
object and executable files in the BIN subdirectory of the TC directory. This 1s not the
right place to put these files. These files should be placed 1n the same directory where
the source file (with .c extension) was created. To do so%s\select the Option /
Directories from the menu bar. A window appears Wl\th four fields captioned Include
Directories, Library Directories, Output Dlre@tfbniééband Source Directories. The
Include Directories field should already be sﬁg drive: \TC\INCLUDE and Library
Directories should be set to drive: \TC\I%B;Where the drive: 1s the drive 1n which the
directory TC 1s placed. It can be C %Z?f Zsor E etc. We need to set the output directory
field to source file directory e. g.q\lé\ﬁMyPrograms etc. this 1s where the compiler will
put .obj file and the linker ?ql;}\ﬁut exedile.

\

«“@/

R T T g e i v I I i i g s v g g U T A I s A s e g M e A g ey

W e T T T T T T e T e T T T T e T T T e T e T T e e T T e e e e

T T T T T T e T A T T T e T e T T T T T T T Y T

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

T T e T A T e T M T T T e T e T s e g e e e et et

e
F

T T T T T T Tt T i T T T T T T T e T T T e T
W T T T e T e e T T T T T T T T T T T e e T e e T T T e e e e e e

T T T e T e T T T T T T e T T e T T T T T T T

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

L T T T e T T T e T T I e T T T i i e e e e e e

8.3 Basic Structure Of A C Program

I
N

Q ; 08-03-01 Describe Unstructured and Structured Programming
Languages ? Answer :

Unstructured Programming Languages : The entire logic of the program 1s
implemented 1n a single module (function), which causes the program error prone,
difficult to understand, modify and debug.

Structured Programming Languages : The entire logic of the program is divided
into number of smaller modules, where each module (piece of code) implements a

different functionality. D@ o %‘D
Q ; 08-03-02 Briefly Explain C Program Structure with Example ?
Answer :

C Program Structure : The structure of a C program is very flexible which increases
the power of the language. C 1s a structured programming language; therefore it
provides a well- defined way of writing programs. A C program 1s combined with
many other files before execution. The linker does this job. But we have to specify
these files to be linked. We understand the basic structure of the C program with the

help of example :
Hello World - A simple C program : A simple C prqgmn that displays the phrase
Hello World ! on the screen. G)

#include<stdio. h>0 X i‘“ \<>
void main (vmd? @

{
In ”j”}?}iidllo World!”) ;

} P \\ <
The above Hello World pro tam has two parts :

The preprocessor«fd ective : #include<stdio.h>

The main function.

Preprocessor Directives : Preprocessor directives are commands that give
instructions to the C preprocessor. The preprocessor 1s a program that modifies
the C program (source program) prior to its compilation. A preprocessor
directive always begins with the symbol (#). In the above programs include 1s a
preprocessor directive. Many actions necessary for a computer program, such as
input and output, are not defined directly in a C program. Instead, these actions
are defined 1n the form of functions in different C libraries. Each library has a
standard header file, which 1s referred to with .h extension. In the above
program, the stdio.h refers to the header file containing the definition of
standard input / output tunctions. The include directive gives a program access
to a library. This directive causes the preprocessor to insert definitions from a
standard header file into a program before compilation. Hence, the statement
#include<stdio.h> gives the program access to standard input and output

functions.

include Directive for Defining Identifiers from Standard Libraries :
SYNTAX ; #include<standard header file>
EXAMPLE ; #include<stdio.h>

#include <math.h>

R T T g e i v I I i i g s v g g U T A I s A s e g M e A g ey

W e T T T T T T e T e T T T T e T T T e T e T T e e T T e e e e

T T T T T T e T A T T T e T e T T T T T T T Y T

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

L T T T e T T T e T T I e T T T i i e e e e e e

I
N

The 1nclude directive tells the compiler where to find the meanings of standard
identifiers (e.g., printf in the Hello World program) used in the program. These
meanings are described 1n files called standard header files. The header file
stdio.h contains information about standard input and output functions such as
scanf and printf, whereas the header file math.h contains information about
common mathematical functions.

#define directive : Another important preprocessor directive i1s #define
directive. It 1s used to define a constant macro.

#define Directive for Defining Constant Macros :

#define Macro_Name expression

#define Pl 3.142857

#deflne SECTOR_PER_HOUR 3600

The expression may be constant, arithmetic expression or a string. C
preprocessor replaces each occurrence of the identifier Macro_Name with value
of expression. The expression of the identifier Macro_Name can not be changed
during the program execution.

Constant Macro : It is a name that 1s replaced by a particular constant value
before the program 1s sent to the compiler.

FUNCTION main : The main 1s the function where the execution of the C
program begins. Every C program has a main fuﬁét\pon The rest of the lines of
program forms the body ot the main functiong, }\he body is enclosed in braces {
and }. C programs are divided into unlgcdfed functions. This division is
usually done on the basis of functlona@y) where every function carries out a
single task. However, it 1s not n§ *efry to divide every program into functions.
The same functionality may lg ‘achieved through a single function. But, every C
program must have the funeh@n main as the execution of the program starts
from there. The main { nction is actually the entry point of the C programs.

A\ N’ e

main Function D&fimtmn
SYNTAX : void main (void)

{
J

In algebra, every function returns a single value and may accept one or more
arguments (parameters). There 1s some resemblance between an algebraic
function and the main function. The definition of the function main starts with a
reserved word void. This void represents the data type ot the value that 1s
returned by the function, which means the function main returns nothing. The
second void enclosed in parenthesis describes that the function main does not
accept any argument. However arguments can be passed to the main function
and 1t can also return a value. Body of the function (enclosed 1n braces) consists
of C language statements, which are used to implement the program logic.
There are many types of C statements that help programmers to write C
programs.

Delimiters : Next to the function definition are braces, which indicate the
beginning and end of the function body. These braces are called delimiters. The
opening brace { indicates the beginning of a block of code (set of statements)
while the closing brace } represents the end of a block of code.

body of main function.

R T T g e i v I I i i g s v g g U T A I s A s e g M e A g ey

W e T T T T T T e T e T T T T e T T T e T e T T e e T T e e e e

T T T T T T e T A T T T e T e T T T T T T T Y T

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

L T e e T T e T T e T e T T T e e T e s

Statement Terminator : Every statement in a C program terminates with a
semicolon (;). If any of the statement 1s missing the statement terminator, the
compiler will report 1t. Always be careful about the semicolon while writing C
program statement.

Function printf : The last statement in the Hello World program 1s printf
function. It 1s used to display the output of the program on the screen.

T T T T T T e T T T e T T T T T T T T T T T T i M
\
&
;Q
W T T T e e T T T T T T T e T T T e T e e T T T e e e e

T T T T T T e T A T T T e T e T T T T T T T Y T

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

L T T T e T T T e T T I e T T T i i e e e e e e

I
N

8.4 Common Program Errors

Q : 08-04-01 Describe Common Programming Errors ? Briefly
explain various types of Programming Errors ?
Answer :

Common Programming Errors : The programmer may come across errors while
writing a computer program. In programming languages, these errors are called
“bugs”, and the processing of finding and removing these bugs is called debugging.
When the C compiler detects an error, it displays an error message describing the
cause of the error. There are three types of programming errors :
Syntax Errors : A syntax error occurs when the program violates one or more
grammar rules of C language. The compiler detects these errors as it attempts to
translate the program. If a C statement has syntax error, 1t can not be translated
and the program could not be executed.
There can be many causes of syntax errors, 1.e., missing statement terminator
(semicolon), using a variable without declaration, missing any of the delimiters.
Runtime Errors : A runtime error occurs when the program directs the
computer to perform an illegal operation, such as dividing a number by zero.
Runtime errors are detected and displayed by the re\Qmputer during the execution
of a program. When a runtime error occurs, th9\66mputer stops executing the
program and displays a diagnostic messglgéO
Logical Errors : Logical errors occumhen a program follows a faulty
algorithm. The compiler can not”bl st logical errors; therefore no error
message 1s reported from the.¢ mpller Moreover, these errors don’t cause the
program to be crashed, th\a\t&‘why these are very difficult to detect. One can
recognize logical errom@b just looking at the wrong output of the program.
Logical errors ciail\dhly be detected by thorough testing of the program.

8.5 Programming Languages

Q ; 08-05-01 Describe the two broad categories of Programming

Languages ?

Answer :

Programming Languages : These are used to write computer programs. There are

two broad categories of programming languages :
Low Level Languages : Low level languages are divided into two broad
categories 1.e., machine language and assembly language. Machine language 1s
the native language ot the computer. The computer does not need any translator
to understand this language. Programs written in any other language must be
converted to machine language so that the computer can understand them.
Every machine language instruction consists of strings of binary Os and 1s. As it
1s very difficult for human beings to remember long sequences of Os and 1s,
therefore writing programs in machine language are very difficult and error
prone. So, it was thought to replace the long sequences of Os and 1s 1n machine
language with English like words. This 1dea provided the basis for the
development of assembly language. In assembly language, machine language

R T T g e i v I I i i g s v g g U T A I s A s e g M e A g ey

W e T T T T T T e T e T T T T e T T T e T e T T e e T T e e e e

T T T T T T e T A T T T e T e T T T T T T T Y T

Please visit for more data at: www.pakcity.org

12th Computer Science Notes www.pakcity.org

L T T T e T T T e T T I e T T T i i e e e e e e

I
N

instructions (long sequences of Os and 1s) are replaced with English like words
known as mmnemonics (pronounced as Ne-Monics). An assembler (language
translator for assembly language programs) is used to translate an assembly
language programs into machine language.

High Level Languages : Programming languages whose instructions resemble
the English language are called high level languages. Every high level language
defines a set of rules for writing programs called syntax of the language. Every
instruction in the high level language must confirm to its syntax. If there 1s a
syntax error in the program, it 1s reported by the language translator (compiler
or interpreter). The program does not translate into machine language unless the
error 1s removed.

Common high-level languages include C, C++, Java, Pascal, FORTRAN,
BASIC, and COBOL etc. Although each of these languages was designed for a
specific purpose; all are used to write variety of application software. Some of
these languages such as C and C++ are used to write system software as well.

Q : 08-05-02 Explain Common Characteristics of High Level
Programming Languages ? |
Answer : N

Common Characteristics of High Level Progranﬁﬁmg Languages
Each of these languages has some advantages. g&dfdlsadvantages over the other e.g.,
FORTRAN has very powerful mathematlca%\&pai)lhtles while the COBOL 1s 1deal for
writing business applications, C and CQ—\L# " very handy for writing system software
while Java 1s equipped with stron ?t@vork programming features. Besides having

O
different features, all high level p%gramrmng languages have some common
characteristics are : {\.f\\ﬁﬁ

English Like Languages These are English like languages, hence are close to
human languages and far from the machine language and are very easy to learn.
Easy to Modify and Debug : Programs written in high level languages are easy
to modify and debug, and more readable.

Concentrate on Problem : These languages let the Programmers concentrate
on problem being solved rather than human-machine interaction.

Well Defined : These describe a well defined way of writing programs.
Understanding The Machine Architecture : These do not require a deep
understanding of the machine architecture.

Machine Independence : High level languages provide machine independence.
It means programs written in a high level language can be executed on many
different types of computers with a little modification. For example, programs
written 1n C can be executed on Intel® processors as well as Motorola
processors with a little modification.

R T T g e i v I I i i g s v g g U T A I s A s e g M e A g ey

W e T T T T T T e T e T T T T e T T T e T e T T e e T T e e e e

T T T T T T e T A T T T e T e T T T T T T T Y T

Please visit for more data at: www.pakcity.org

