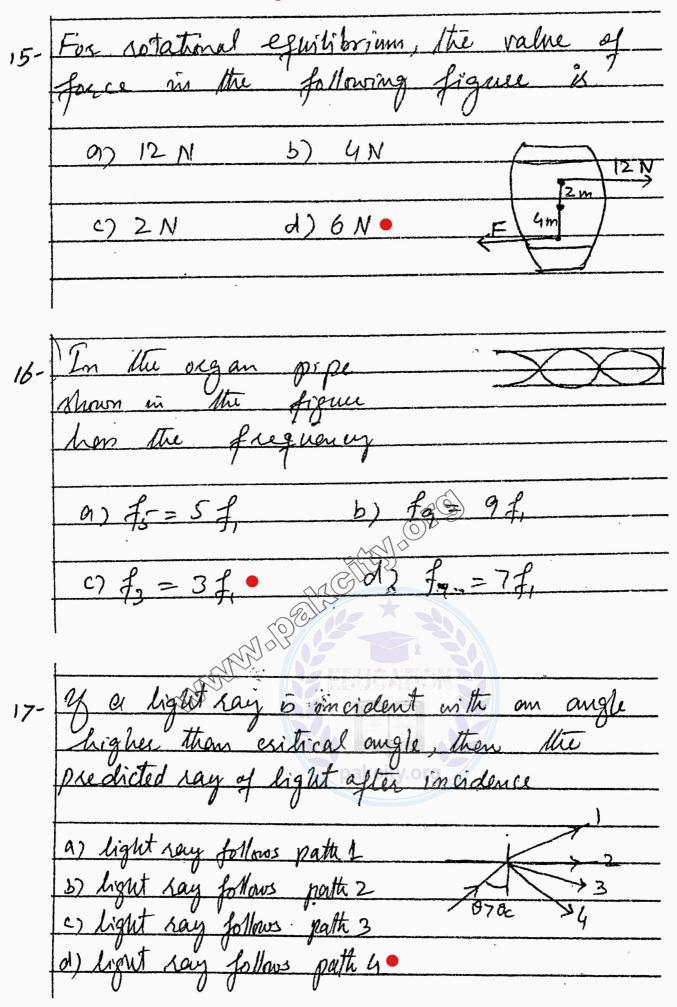
1129 - 1124 -- 25000 (1) P.T.O

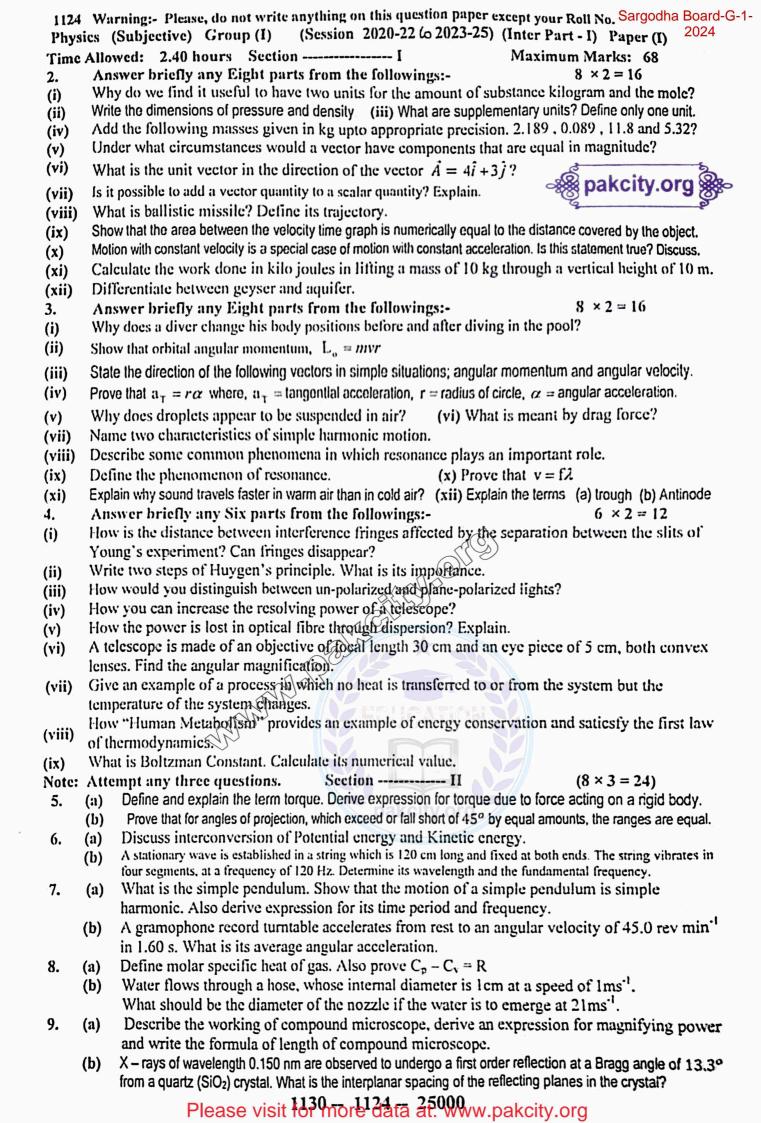
13) If a gas is maintained at 8000 N/m² in a container with piston having area 0.10 m². If the gas expands and

(D) 80 J

(D) 5.7


piston is pushed up through a distance of 10 cm then the work done by the gas is

(B) 400 J


(B) $\frac{5}{7}$

14) For diatomic gas $C_{\nu} = \frac{5R}{2}$, therefore " γ " for this gas is

(C) 7.5

1129 - 1124 -- 25000 (1)

Sargodha Board-G-2-2024

	Warning:- Please write your Roll No. in the space provided and sign. Roll No						
.ater	Part – I)	(Session 2	2020-22 to 2023	3-25)	Sig. of S	Student	
Physic	s (Objective)		(Group	II)		Paper (I)	
Time A	Allowed:- 20 mi	inutes	PAPER CO	DDE 2 4	178	Maximum	Marks:- 17
that circ result in Answer	le in front of that of zero mark in that	question number. question. Write Pa ples accordingly, of	Use marker or per APER CODE, who	n to fill the sich is print	circles. Cutti ted on this qu	ng or filling t estion paper, o	you think is correct; fill wo or more circles will on the both sides of the Use of Ink Remover or Q. 1
		tep index fibre,	the diameter of	the core	İs		Q. 1
	(A) 20μm	(B) 3		(C) 4		(D)	50μm 🛑
2)	What remains o	onstant in adiab	patic process				on v • • • • • • • • • • • • • • • • • •
	(A) Pressure	'(B) V	olume	(C) T	emperature	(D)	Entropy
	Triple point of		0		_		
	(A) 273.16 °C	()	73.16 °F	(C) 2°	73.16 K 🔵	(D)	373.16 K
4)	Significant figu (A) 2	res in 0.00567 a		(C) 'A		(D)	-
5)	One light year i	(B) 3		(C) 4		(D)	5
3)	(A) 9×10^{12} m	(B) 9	\times 10 ¹³ m	(C) 9	$0 \times 10^{14} \mathrm{m}$	(D)	9 × 10 ¹⁵ m ●
6)	If the magnitud	e of $\vec{A} \cdot \vec{B} = \frac{1}{2} A$	B then the angl	e betweei	\vec{A} and \vec{B}	is	
	(A) 30°	(B) 45	5°	(C) 6	0° 🛑	(D)	90°
	The dimensions	•	,				
	$(A) \left[M^{-1}LT \right]$	L	$ML^{-1}T$	-	M^2LT^{-2}		$\left[ML^2T^{-2}\right]$
	(A) Hyperbola	noves with const (B) Pa maximum whe	arabola	(C) C	urve(S)		Straight line
	(A) 1 Sec	(B) $\frac{1}{10}$	Sec	P(C)	$\frac{\widehat{1}}{00}$ Sec	(D)	$\frac{1}{1000}$ Sec
10)	The value of es	cape velocity is	maximum for	3)	00		1000
,	(A) Earth	(B) M	loon v	(C) J ₁	ipitér 🌘	(D)	Mercury
	A body of 1kg (A) 9.8 N	moving up with		parental Q	eight is 9.6 N	(D)	0.98 N
12)	The moment of	inertia of a ring	is equal to				
	$(A) \frac{1}{2}mr^2 \bullet$	(B) m		(C) $\frac{2}{5}$	$-mr^2$	(D)	$\frac{1}{4}mr^2$
13)	One Torr is equ	al to					4
-	(A) 1.333 Nm^2		3.33 Nm ²	(C) 1:	33.3 Nm ²	(D)	1333 Nm ²
14)	By increasing n	nass of the object	et four times att				
	(A) Twice	(B) T	nrice		our times		Six times
15)	The speed of so	und in air at 30		ately equ	al to	(D)	Six umes
	(A) 332 m/s	(B) 33		•	40 m/s	(D)	350 m/s ●
16)	The distance co	vered by wave i	n 1 second is				
*.	(A) Wavelength	1 (B) W	ave number	(C) W	ave speed	(D)	Frequency
17)	Longitudinal wa	aves do not exhi	bit		•		, ,
	(A) Polarization	$\mathbf{n} \bullet \mathbf{(B)} \mathbf{D}$	iffraction	101 20	eflection	(D)	Refraction
_@	akcity ora	3. 1131	- 1124 -	- 150	00 (4		

Sargodha Board-G-2-2024

1124 Warning:- Please, do not write anything on this question paper except your Roll No. (Session 2020-22 to 2023-25) Paper (I) Group (II) Physics (Subjective) (Inter Part - I) Maximum Marks: 68 Section -----I Time Allowed: 2.40 hours $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-2. What are the three main frontiers of Physics. (i) Write two steps which are involved in the measurement of a base quantity. (ii) Show that the famous "Einstein equation" $E = mc^2$ is dimensionally consistent. (iii) Give the drawbacks to use the period of a pendulum as a time standard. (iv) How would you explain "arbitrary direction" for a null vector obtained from east and west directed two equal in magnitude vectors. (v) The vector sum of three equal in magnitudes vectors gives a zero resultant. What can be the orientation of the vectors. (vi) If one of the rectangular components of a vector is not zero, can its magnitude be zero? Explain (vii) How do you find out the height of a tower by using one of the equation of motion. Write all steps you take for measurement. (viii) Derive a formula for range of the projectile. (ix) Why two projectiles fired with different initial horizontal velocities take same time to reach ground? (x) What do you understand by the term "escape velocity". Give the value of escape velocity for Earth. (xi) Calculate the work done in kilo joules in lifting a mass of 10 kg through a vertical height of 10 m. (xii) Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ 3. A person is standing near a fast moving train. Is there any danger that he will fall towards it. (i) Differentiate between systolic and diastolic pressure. Are these values varies with age. (ii) What do you mean by term weightlessness in satellite. (iii) What is moment of inertia? Explain its significance. (iv) A disc and a hoop starts moving down from top of an inclined plane at the same time which will (v) have great speed on reaching bottom. Why an object, orbiting the earth, is said to be freely falling, use your explanation to describe why (vi) objects appear weightless under certain circumstances. What are the values of velocity of a vibrating mass-spring system at its mean and extreme point. (vii) What should be the length of a simple pendulum whose time period is 1.0 sec. What does effect on (viii) length if time period is doubled. Describe phenomenon of tunning a radio. (x) How beats are useful in tuning musical instrument. (ix) Is it possible for two identical waves travelling in same direction, will give rise to stationary waves (xi) In an organ pipe, closed at one end, how does harmonic varies with length of air coulomn. (xii) Answer briefly any Six parts from the followings:-4. Differentiate between spherical and plane wave front (ii) Can visible light produce interference fringes? (i) How would you manage to get more orders of spectra using a diffraction grating? (iii) How a piece of paper is used to see a print clearly? (iv) Why would it be advantageous to use blue light with a compound microscope? (v) How light signal is transmitted through the optical fibre? (vi) Why does the pressure of a gas in a car tyre increase when it is driven through some distance? (vii) Why specific heat at constant pressure is greater than specific heat at constant volume? (viii) How can efficiency of Carnot Engine be increased? (ix) Section ----- II Note: Attempt any three questions. Define elastic collision. Show that for elastic collision, relative speed of approach is equal to 5. relative speed of separation. Find the projection of vector $\vec{A} = 2\hat{i} - 8\hat{j} + \hat{k}$ in the direction of the vector $\vec{B} = 3\hat{i} - 4\hat{j} - 12\hat{k}$ Define escape velocity. Prove that $v_{esc} = \sqrt{2gR}$ and also find out its value. 6. Find the temperature at which the velocity of sound in air is two times its velocity at 10 °C. What is meant by geostationary orbit? Derive formula for its radius. 7. (a)

A simple pendulum is 50.0 cm long. What will be its frequency of vibration at a place where, g = 9.8 ms⁻². (b)

What is Carnot engine. Explain its working and calculate its efficiency. (a) 8.

Certain globular protein particle has a density of 1246 kgm⁻³. It falls through pure water $(\eta = 8.0 \times 10^{-4} kgm^{-1}s^{-1})$ with a terminal speed of 3.0 cmh⁻¹. Find the radius of the particle.

Explain the diffraction of X-rays by crystals. 9. (a)

A glass light pipe in air will totally internally reflect a light ray if its angle of incidence is at least 39°. What is the minimum angle for total internal reflection if pipe is in water? (Refractive Index of water = 1.33)

1123W		Sargodna Bo our Roll No. in the space		Roll No
	(Inter Part - I)	(Session 2019-21 to 20	,	Student
•	(Objective)	(Group		Paper (I)
Note:- that circ result in Answer	le in front of that question nu zero mark in that question. V	th objective type question as Amber. Use marker or pen to Vrite PAPER CODE, which ngly, otherwise the student w	A, B, C and D. The choice w fill the circles. Cutting or fil is printed on this question pa	ling two or more circles will aper, on the both sides of the
1)	In general, the condition	s for different orders of n	ninima on either side of c	
-/	$d \sin\theta = m \lambda$. Here 'm			
2)	(A) $\dot{m}=\pm(1,2,3,4,)$ The speed of light in wat			(D) m=1,3,5,7,
	(A) $2 \times 10^8 \mathrm{ms}^{-1}$	(B) $2.25 \times 10^8 \text{ ms}^{-1}$	` '	(D) $3 \times 10^8 \text{ms}^{-1}$
	The change in entropy of the (A) Potential energy and Kinetic energy The percentage loss in efficiency	he system is important. The (B) Kinetic energy and internal energy	(C) Potential energy and internal energy	(D) Potential energy, Kinetic energy and internal energy
	(A) 70 % to 75% 73.650 and 64.350 can b	(B) 60 % to 65%	(C) 25 % to 30%	(D) 35 % to 40%
,	(A) 73.7 and 64.3	(B) 73.6 and 64.4	(C) 73.8 and 64.2	(D) 73.5 and 64.2
6)	A number such as 5.0×1	0 ⁴ cm can be expressed in		(b) 73.3 and 01.2
	(A) 5.0×10 ² m	(B) 5.0×10^6 m	(C) 5.0×10^4 cm	(D) 5.0×10^{-2} cm
≥8€	pakcity.org		C. S. T.	AT2
7)	If T.=10N and T=20N	What is the value of wei	oht in the fig. 600	138-
")	11 11-1014 and 12-2014.	What is the value of well		
		. 16		
	(A) 10N		8.66 N	(D) 8.00 N
8)	What is the angle for whi	ch the values of cross prod	duct of two vectors become	es half of original value.
	(A) 90°	(B) 60°	(C) 45°	(D) 30°
9)	At which angle, the heigh	tht and range of projectile	e becomes equal.	
	(A) 76°	(B) 66°	(C) 56°	(D) 46°
10	When a car is moving in	a circle then its		
	(A) v and a are parallel	(B) v and a are anti parallel	(C) v and a are perpendicular	(D) v is zero but a is not
	. ,		to one another	zero
11)	What is the work done i	n this fig	4 6	
	(A) 5 J (B)	15 J × (m	\rightarrow (C) 20 J	(D) 25 J
12		ocity 7.9 kms ⁻¹ is taking	` '	
12,	(A) 5668 seconds	(B) 84 Seconds	(C) 84 minutes	(D) 5060 minutes
13	When lift is moving up	ward, then what is the rea	son of varying weight of	a body.
	(A) Acceleration of system becomes more than gravity	(B) Acceleration of system is added in gravity	(C) Acceleration of system is subtracted from gravity	system becomes zero
14	The speed of efflux who	en fluid is falling through	the height 5m. Take g=1	0ms ⁻²
	$(A) 0.5 \text{ ms}^{-1}$	(B) 1.0 ms ⁻¹	(C) 5 ms	(D) 10 ms
15	What is the frequency o	f an object vibrating at th	ne end of a spring, if the	equation for its position is
	$x = 0.25 \cos\left(\frac{\pi}{2}\right)t$			
		3) 0.5 Hz	(C) 0.25 Hz	(D) 0.1 Hz
10	(A) 1.0 Hz (I	gas for 333 ms^{-1}		(5) 0.1 112
16		(B) Diatomic	(C) Polyatomic	(D) Subatomic
17	(A) Monoatomic	ure, the speed of sound bec		(-)
17	(A) 6.1 ms^{-1}	(B) 0.61 ms^{-1}	(C) 332.1 ms^{-1}	(D) 338.1 ms^{-1}
	(11) 0.1 1165	1110 1123		

Sargodha Board-2023 Warning:- Please, do not write anything on this question paper except your Roll No. /sics (Subjective) Group (I) (Session 2019-21 to 2022-24) (Inter Part - I) Paper (I) .me Allowed: 2.40 hours Section ----- I Maximum Marks: 68 Answer briefly any Eight parts from the followings:-4. $8 \times 2 = 16$ What are conditions for a fluid to be ideal? (i) How many years are in one second? How many seconds are there in one year? (ii) Give the drawbacks to use the period of pendulum as a time standard. (iii) What are supplementary units? Explain any one. (v) What is rounding off data? Explain. (iv) Can a body rotate about its centre of gravity under the action of its weight? (vi) Name the three different conditions that could make $\vec{A}_1 \times \vec{A}_2 = \vec{0}$ (vii) Can the scalar product of two vectors be negative? (ix) State law of conservation of linear momentum. (viii) Draw the velocity -time graph for uniformly retarded motion. (x) What happens to KE of a fired bullet when it penetrates into a target? (xi) At What angle of projection, range and vertical height of a projectile are equal? (xii) Answer briefly any Eight parts from the followings:-3. $8 \times 2 = 16$ What is meant by solar constant? (i) A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved? (ii) In which case is more work done when a 50 kg bag of books is lifted through 50 cm, or when a (iii) 50 kg crate is pushed through 2m across the floor with a force of 50 N. (iv) Show that $S = r\theta$. Explain how many minimum number of geo-stationary satellites are required for global coverage of T.V. transmission. (v) What is meant by angular momentum? (vii) Define SHM and give its formula for acceleration. (vi) Explain the relation between the total energy, potential energy and kinetic energy of a body in SHM. (viii) What is the total distance travelled by an object moving with SHM in a time equal to the period, if its amplitude is A. (ix) Find the temperature at which the velocity of sound in air wwo times its velocity at 10°C. (x) What features do longitudinal waves have in common with transverse waves? (xi) (xii) Explain the terms (i) trough (ii) antinode.

4. Answer briefly any Six parts from the followings:-

 $6 \times 2 = 12$

- (i) How is the distance between interference fringes affected by the separation between the slits of Young's experiment?
- (ii) Could you obtain newton's rings with transmitted light? If yes, would the pattern be different from that obtained with reflected light? (iii) Define wave front and a ray of light.
- (iv) Explain the difference between angular magnification and resolving power of an optical instrument.
- (v) Define critical angle and which formula is used to find critical angle? (vi) State Carnot theorem.
- (vii) Is it possible to convert internal energy into mechanical energy? Explain with an example.
- (viii) A thermos flask containing milk as a system is shaken rapidly. Does the temperature of milk rise?
- (ix) As we know PV^{γ} = Constant. What do you know about "\gamma" (gama) in this relation?

Note: Attempt any three questions. Section ----- II $(8 \times 3 = 24)$

- 5. (a) Define and explain dot product of two vectors. Give two examples and write down its four characteristics.
 - (b) Ten bricks, each 6.0 cm thick and mass 1.5 kg, lie flat on a table. How much work is required to stack them one on the top of another?
- 6. (a) Define rotational kinetic energy. Also derive the expression for rotational K.E of a disc and a hoop moving down from the top of an inclined plane.
 - (b) Find the angle of projection of a projectile for which its maximum height and horizontal range are equal.
- 7. (a) Define terminal velocity and prove that $v_t = \frac{2gr^2\rho}{9\eta}$
 - (b) Estimate the average speed of nitrogen molecules in air under standard conditions of pressure and temperature.
- 8. (a) What is Simple Pendulum, Show that its motion is SHM. Derive an expression for its time period.
 - (b) Find the temperature at which the velocity of sound in air is two times its velocity at 10°C
- (a) Describe the Young's double slit experiment for demonstration of interference of light.
 Derive an expression for fringe spacing.
 - (b) An astronomical telescope having magnifying power of 5 consist of two thin lenses 24 cm apart. Find the focal lengths of the lenses.

pakcity.org

'(Inter Part – I)	te your Roll No. in the s (Session 2019-21 to		
ics (Objective)			f Student
me Allowed:- 20 minutes	(Group I)		` '
that circle in front of that question n result in zero mark in that question. Answer Sheet and fill bubbles accord white correcting fluid is not allowed.	umber. Use marker or pen to Write PAPER CODE, which	A, B, C and D. The choice of fill the circles. Cutting or	filling two or more circles will
 The shortest distance be 	tween two points is calle	d	4.1
(A) speed	(B) Velocity	(C) Acceleration	(D) Displacement
The efficiency of diesel	engine is		(-,
(A) 80 %	(B) 90 % to 100%	(C) 35% to 40%	(D) 15%
3) The diameter of milky w			
(A) 10 ⁰ m	(B) 10^{30} m	(C) 10^{10} m	(D) 10^{20} m
4) Steradian is the unit of	(D) G !!!!		
(A) Plane angle	(B) Solid Angle	(C) Time	(D) Distance
5) The unit vector is expres	ssed as	(6)	
(A) $\hat{A} = \vec{A} \times \vec{A}$	(B) $\hat{A} = \vec{A}/ A $	$\hat{A} = \bar{A} \times \bar{A} \times \hat{A}$	(D) $\hat{A} = A \times \vec{A}$
	/ [A]	$A = A \times A \times A$	
6) Turning effect of force is	s called.	0)	
(A) Momentum	(B) Acceleration	(C) Torque	(D) Velocity
The rate of change of mo		450	(b) velocity
(A) Force		(C) Time	(D) Impulse
		y / 111110	(2) impulse
	(0) Eo. 11		
The increase in entropy	means		
(A) disintegration of	(B) degradation of	(C) degradation of	(D) disintegration of
energy	energy	mass	mass
9) Biomass is a potential s			
(A) Energy	(B) Non renewable	(C) Renewable Ener	gy (D) Power
	energy		
10) One radian is equal to			
(A) 5.73°	(B) 0.73°	(C) 57.3°	(D) 2π
11) Moment of inertia of ho	P		
(A) $I = \frac{1}{3} \text{ mr}^2$	(B) $I = mr^2$	(C) $I = \frac{2}{3} \text{ mr}^2$	(D) $I = \frac{2}{5} mr^2$
12) The delphing have			
12) The dolphins have	(B) Turbulant hadias	(C) 11 . 1 1 !!	(D) a
(A) streamlined bodies		(C) Unsteady bodies	(D) Steady bodies
13) The SI units of spring co		(C) N 2	(D) M 2
(A) m	(B) Nm ⁻¹	(C) Nm ⁻²	(D) Nm^2
14) The CRO is a device to	display the input signal	into	
(A) Pulses	(B) Wave form	(C) Data form	(D) blank form
15) The distance between the	ne node and adjacent ant		(,
(A) λ_2	(B) λ/A	(C) λ	(D) 3/
. 4	, -T	(C) \(\lambda\)	(D) $\lambda/3$
16) Michel son's interferom			*
(A) 1864	(B) 1687	(C) 1881	(D) 1786
17) The light signals in opti	cal fibres must be regen	erated by a device calle	ed.
(A) Generators	(B) Repeaters	(C) Transmitter	(D) Transistors
1	1121 - 1123 -	15000 (2)	25.5 550
,	1123 -	15000 (2)	

Sargodha Board-2023 123 Warning:- Please, do not write anything on this question paper except your Roll No. Physics (Subjective) Group (II) (Session 2019-21 to 2022-24) Paper (I) Time Allowed: 2.40 hours Section -----(Inter Part - I) Maximum Marks: 68 2. Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ Why do we find it useful to have two units for the amount of substance, the kilogram and the mole? (i) Give the drawbacks to use the period of a pendulum as a time standard. (ii) (iii) Show that the equation $v_f = v_i + at$ is dimensionally correct. pakcity.org Given that V=(5.2±0.1) volt. Find its percentage uncertainty. (iv) If two perpendicular vectors have same magnitudes, Find the angle between their sum and difference. (v) (vi) Define (a) position vector and (b) unit vector. Can a vector have a component greater than the vector's magnitude? (vii) Explain the circumstances in which the velocity ' \vec{v} 'and acceleration ' \vec{a} ' of a car are. (viii) (a) antiparallel (b) \vec{v} is zero but \vec{a} is not zero. Show that the range of projectile is maximum when projectile is thrown at an angle of 45° with the horizontal (ix) How impulse is related to linear momentum? (xi) Explain what do you understand by the term viscosity. (x) Prove that for angles of projection which exceed or fall short of 45° by equal amounts, the ranges are equal. (xii) 3. Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved. (i) What sort of energy is in the following (a) compressed spring (b) water in a high dam. (ii) Prove that power is dot product of force and velocity. (iii) State the direction of the following vectors in simple situations; angular momentum and angular velocity. (iv) when mud flies off the tyre of a moving bicycle, in what direction does it have Explain. (v) (vi) Define artificial gravity. Give its significance. Of a mass spring system is hung vertically and set into oscillations, why does the motion eventually stop. (vii) (viii) Can we realize an ideal simple pendulum? Explain. (ix) Differentiate between free and forced oscillations? What features do longitudinal, waves have in common with transverse wave? (x) Why does sound travel faster in solids than in gases? (xi) What is doppler's Effect? Explain briefly one of its application? (xii) $6 \times 2 = 12$ Answer briefly any Six parts from the followings:-4. Can visible light produce interference fringes? Explain. (i) How would you manage to get more orders of spectra using a diffracting grating? (ii) What is the difference between interference and diffraction of light waves? (iii) One can buy a cheap microscope for use by the children. The image seen in such a microscope (iv) has coloured edges. Why is this so? What is repeater? What it is necessary in optical fibre communication system. (v) A thermos flask containing milk as a system is shaken rapidly. Does the temperature of milk rise? (vi) Does entropy of a system increase or decrease due to friction? (vii) what are isothermal and adiabatic processes? (ix) Define triple point of water, also write down its value. (viii) Section ----- II $(8 \times 3 = 24)$ Note: Attempt any three questions. Define Absolute potential energy and derive a relation for it. 5. (a) The magnitude of dot and cross products of two vectors are $6\sqrt{3}$ and 6 respectively. Find the (b) angle between the vectors. What is centripetal force? Work out an expression for centripetal force of an object of mass 6. (a) 'm' moving with constant speed 'v' in a circle of radius 'r'. A football is thrown upwards with an angle of 30° with respect to the horizontal to throw a (b) 40 m pass, What must be the initial speed of the ball? What is carnot engine. Explain its cycle and derive formula for efficiency. 7. (a)

(b) Water flows through a hose whose internal diameter is 1 cm at a speed of 1 ms⁻¹. What should be the diameter of the nozzle if the water is to emerge at 21 ms⁻¹.

8. (a) What is simple pendulum? Show that motion of pendulum is S.H.M. Also find relations for its time period and frequency.

A stationary wave is established in a string which is 120 cm long and fixed at both ends. The string vibrates in four-segments, at a frequency of 120 Hz. Determine its wave length and the fundamental frequency.

9. (a) Explain the construction and working of a compound microscope. Drive expression for its magnification.

(b) In a double slit experiment the second order maximum occurs at $\theta = 0.25^{\circ}$. The wavelength is 650 nm. Determine the slit separation.

122	(Inter Part – I)	write your Roll No. in t (Session 2018-2	the space provided and 20 to 2021-23)	l sign. Roll NoSig. of Student
Physi	cs (Objective)	(G 1	roup I)	Paper (I)
	Allowed: - 20 minutes		ODE 2471	Maximum Marks:- 17
result in Answer	n zero mark in that quests Sheet and fill bubbles accorrecting fluid is not allow	on number. Use marker or place ion. Write PAPER CODE, secondingly, otherwise the studyed.	pen to fill the circles. Cutting which is printed on this que the delth will be responsible for the second	hoice which you think is correct; fill ag or filling two or more circles will stion paper, on the both sides of the the situation. Use of Ink Remover or Q. 1
1)		by how many kinds of t		
2)	(A) Six	(B) Five	(C) Four	(D) Three
4)	The dimension of po (A) [MLT ⁻¹]	(B) [ML ² T ⁻³]	(C) D (T 277-1)	m) n = = 2
2)			(C) $[ML^2T^1]$	(D) $[MLT^2]$
3)		en magnitude of \vec{A} is		
	(A) 4	(B) 14	(C) $\sqrt{14}$	(D) 6
4)	If A _x =A _y the angle be	tween \vec{A} and x-axis is		
	(A) 30°	(B) 45°	(C) 60°	(D) 90°
5)		oving towards earth the		(2) 90
	(A) Positive	(B) Negative	(C) Zero	(D) Variable
6)	` '	()	n, and ma moving with	accelrations a ₁ and a ₂ identify
,	the correct relation.		in and in in this with	accertations at and az identity
		2021	a Com a	
	(A) $\frac{m_1}{m_2} = \frac{a_1}{a_2}$	(B) $\frac{m_2}{m_1} = \frac{a_2}{a_1}$	C C C C C C C C C C	(D) $m_1 a_2 = m_2 a_1$
70			m_2 a_1	
7)	Power is also defined	(3/^ (5	
	(A) $\vec{F} \cdot \vec{m}$	(B) $\vec{F} \cdot \vec{d}$	(C) $\vec{F} \cdot \vec{v}$	(D) $\vec{F} \cdot \vec{t}$
8)	Magnitude of centrip	etal force on sings min	loving with angular spe	ed ω in a circle of radius r is
	(A) $mr^2\omega$	(B) mw2	CT Pro2	(D) $mr^2\omega^2$
	m w			(=) mi w
9)	Accelration of a free	falling hody is		
	$(A) + 9.8 \text{ m/s}^2$	(B) zero	(C) - 9.8 m/s^2	(D) 19.6 m/s^2
		ectional area of pipe and	fluid speed along a nine	(D) 19.0 H/S
	(A) Zero	(B) Variable	(C) Constant	(D) 9.8 ms ⁻²
		trip of vibrating body is		(D) 9.8 HIS
	(A) Time period	(B) Frequency	(C) Vibration	(D) Amplitude
	The velocity of sound		(S) Violation	(b) Ampirtude
	(A) Air	(B) Nitrogen	(C) Metal	(D) Glass
		ween two consective anti		(D) Glass
	(A) Zero	(B) 3	(C) 2	(D) 1
	Newton rings are form		(0)2	(D) 1
	(A) Diffraction	(B) Refraction	(C) Reflection	(D) Interference
15)	How many types of o		(-)	(B) microrence
. ((A) One	(B) Two	(C) Three	(D) Four
16)	For one mole of The gas	s equation becomes.	(-)	(2) 10
. ((A) $PV = nRT$	(B) $PV = 3RT$	(C) $PV = mRT$	(D) $PV = RT$
17)]	Highest efficiency of he	at engine whose lower tem	perature is 17 °C and high	ner temperature is 200 °C is
((A) 70 %	(B) 100 %	(C) 38 %	(D) 35 %
		1115 - 1122 -	- 30000 (1)	pakcity.org

(b)

Sargodha Board-2022

1122 Warning:- Please, do not write anything on this question paper except your Roll No. (Session 2018-20 to 2021-23) (Inter Part - I) Paper (I) Physics (Subjective) Group (I) Maximum Marks: 68 Time Allowed: 2.40 hours Section -- $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-2. Give the drawbacks to use the period of a time standard. (i) Does a dimensional analysis give any information on constant of proportionality that may appear in an algebraic expressions? (ii) Give any two conventions for indicating units. (iv) What is scientific notation? Give example. (iii) Motion with constant velocity is a special case of motion with acceleration. Is this statement true? Discuss. (v) Can the velocity of an object reverse the direction when acceleration is constant? If so, give an example. (vi) How would you elaborate the importance of head-rest of the car seat? (vii) When a massive body collides with light stationary body then how would you predict the result? (viii) Is it possible to convert internal energy into mechanical energy? Explain with an example. (ix) Why does the pressure of a gas in a car tyre increase when it is driven through some distance? (x) How would you relate work with change in volume. Derive the relation. (xi) Energy can be added to a system when no heat transfer takes place. Is this statement true? Support your response with an example. (iix) $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-3. Is it possible to add a vector quantity to a scalar quantity? Explain. (i) Two vectors have unequal magnitudes. Can their sum be zero? Explain. (ii) Show by diagram, The vector addition is commutative. (iii) A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved? (iv) A person holds a bag of groceries while standing still, a car is stationary with its engine running. (v) From the stand point of work, how are these situations similar? Differentiate between geyser and aquifer. (vi) Why does a diver change his body positions, before and after diving in the pool? (vii) Prove that 1 radian = 57.3° (ix) Write down applications of communication satellites. (viii) How would you manage to get more orders of spectra using diffraction grating? (x) Define thin film. Write its two examples. (xii) What aspect of nature of light is proved by phenomena of polarization? (xi) Answer briefly any Six parts from the followings:-4. How the swing is produce in a fast moving cricket ball? (ii) Can we realize an ideal simple pendulum? (i) Explain the term crest, trough, node and antinode. (iii) How are beats useful in tunning the musical instruments? (iv) Why would it be advantageous to use blue light with compound microscope? (v) Does frequency depends on amplitude for harmonic oscillators? (vi) What are damped oscillation? (viii) Define electromagnetic waves. Write example. (vii) Define Snell's Law. (ix) Section ----- II Note: Attempt any three questions. Define gravitational field prove that work done in the gravitational field is independent of path followed by the body. The line of action of a force \vec{F} passes through a point P of a body whose position vector in **(b)** meter is $\hat{i} - 2\hat{j} + \hat{k}$. If $\vec{F} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ (N) determine the torque about the point 'A' Whose position vector is $2\hat{i} + \hat{j} + \hat{k}$ (in m) Why geostationary orbits are important? Derive relation and find radius of the geostationary orbit. 6. (a) A ball is thrown with a speed of 30 ms⁻¹ in the direction 30° above the horizon. Determine (b) the horizontal range. State and derive "Bernoulli's Equation" of fluid dynamics. 7. (a) Find the temperature at which the velocity of sound in air is two times its velocity at 10 °C. (b) Derive the relations for time period, displacement and velocity in horizontal mass spring system? 8. (a) In a double slit experiment, the second order maximum occurs at $\theta = 0.25^{\circ}$. (b) The wavelength is 650 nm. Determine the slit separation. Define molar specific heat capacity and show that $C_p - C_v = R$ 9. (a) A Simple astronomical telescope in normal adjustment has an objective of focal length

(ii) Calculate the angular magnification.

100 cm and an eye-piece of focal length 5.0 cm. (i) Where is the final image formed?

		cargoana zo	a. a	See Parcity.org
1122.	Warning:- Please wri	te your Roll No. in the s	space provided and sign	r. Roll No
	(Inter Part – I)	(Session 2018-20 to	,	f Student
	cs (Objective)	(Group I		Paper (I)
Time .	Allowed:- 20 minutes	PAPER COL		Maximum Marks:- 17
Note:-	You have four choices for ea	ich objective type question as	A, B, C and D. The choice	which you think is correct; fill filling two or more circles will
recult i	n zero mark in that question.	Write PAPER CODE, which	h is printed on this question	paper, on the both sides of the
Answer	r Sheet and fill bubbles accord	dingly, otherwise the student	will be responsible for the si	tuation. Use of lnk Remover or
white c	orrecting fluid is not allowed.	35737		Q. 1
1)	Efficiency of steam loc		(0) 0.0/	(D) 0 0/
	(A) 10 %	(B) 7 %	(C) 9 %	(D) 8 %
2)	The famous book Princ		(C) 1687	(D) 1534
21	(A) 1787 The total base units are	(B) 1607	(C) 1007	(D) 1334
n 3)	(A) 7	(B) 6	(C) 5	(D) 4
	If $\vec{A} + \vec{B} = \vec{B} + \vec{A}$ vector	` '	(-)	
4)	(A) Associative	(B) Commutative	(C) Additive	(D) Additive Inverse
5)	Which relation is true f		(0) 110011110	(-)
3)		(B) $F = \frac{m}{}$	(C) F	(D) $a = \frac{m}{F}$
	(A) $m = \frac{a}{F}$	$F = \frac{1}{a}$	$a = \frac{F}{m}$	$a = \frac{1}{F}$
6)	One watt hour is equal	to		
٠,	(A) 3.6 MJ	(B) 3.6 KJ	(C) 36 KJ	(D) 36 MJ
7)	The dimension of angu	lar acceleration is	3/1/25	
,	(A) $[T^{-1}]$	(B) $[LT^2]$	$C(C)[T^{-2}]$	(D) $[T^{-3}]$
8)	Terminal velocity is rel		of a spherical object is	
,	(a) V4 a x		14x1 (d) 4x1	
	14 472		n c	
9)	If $F = 0.08 \text{ N}$ and $x = 4 \text{ c}$	m then k is	DUCATION	1
	(A) 56 Nm ⁻¹	(B) 5.6 Nm	(C) 23 Nm ⁻¹	(D) 2 Nm ⁻¹
10	1) The speed of sound is a	reater in solid due to the	eir high	(D) Electicity
	(A) Density	(B) Pressure	(C) Temperature	(D) Elasticity
1)	1) Soap film shows colou		(C) Polarization	(D) Reflection
	(A) Interferrance	(B) Diffraction	(C) Totalization	(b) Relication
12	2) Refractive Index is give	en by n =		_
	$(A) \frac{c}{\sqrt{c}}$	(B) $\frac{v}{c}$	(C) $\sqrt{\frac{c}{v}}$	(D) $\sqrt{\frac{v}{c}}$
	(A) y	$^{(D)}c$	(C) 1 v	Vc
13	3) The tripple point of wa	ter is		
	(A) 273.16 °F	(B) 273.16 °C	(C) 273.16 K	(D) 373.16 K
14	4) The dimension of mc ²	is equal to		
	(A) Force	(B) Momentum	(C) Time Period	(D) Torque
1:	5) $(\hat{i} \times \hat{j}) \times \hat{k} + (\hat{j} \times \hat{j}) \times \hat{i}$	vill be		
	$(A) = \hat{j}$	(B) \hat{j}	(C) 0	(D) $-\hat{i}$
1,	6) Speed of hoop at the bo			
1		(B) $\sqrt{2gh}$	(C) [A	(D) $\sqrt{4gh}$
	(A) \sqrt{gh}	~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(C) $\sqrt{\frac{4}{3}gh}$	ν 'δ'*
	.	and about	¥ 3	
1	7) Star moving away fron	(B) Red Shift	(C) Blue Shift	(D) Yellow Shift
	(A) Green shift		21000 (2)	(2) 4011011 211111
		1117 - 1122 -	21000 (3)	

Sargadha Board 2022

	Sargouria Board-2022	
	1122 Warning:- Please, do not write anything on this question paper except your Roll No.	
•	sics (Subjective) Group (II) (Session 2018-20 to 2021-23) Paper (I)	
	e Allowed: 2.40 hours Section I (Inter Part - I) Maximum Marks: 6	8
2.	Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$	
(i)	Check the correctness of the relation $V = \sqrt{\frac{F \times l}{m}}$ where V is the speed of transverse wave on a	
	stretched string of tension F , length l and mass m .	
(ii)	Add the following masses given in Kg upto appropirate precision 2.189, 0.089, 11.8 and 5.32	
(iii)	Define radian and steradian.	
(iv)	Name several repetitive phenomenon occurring in nature which could serve as reasonable time standards.	
(v)	Derive an expression for the time of flight of projectile.	
(vi)	Show that the range of projectile is maximum when projectile is thrown at an angle of 45° with horizontal.	
(vii)	Water flows out from a pipe at 3 kgs ⁻¹ and its velocity changes from 5 ms ⁻¹ to zero on striking th	e
ć	wall then find the force due to water flow.	
(viii)	8 8 Barrell Committee of the control of the co	ith
(:-)	an 8 kg steel ball, initially at rest. Compute velocity of the golf ball after collision.	
(ix) (xi)	Define First and Second law of thermodynamics. (x) Prove that $W = -\Delta U$ for adiabatic expansion proce Why is the average velocity of the molecules in a gas zero, but the average of the square of velocities is not zero	
(xii)	Give an example of a natural process that involves an increase in entropy.	O!
3.	Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$	
(i)	How we can find the direction of torque of rotating fan? Explain.	
(ii)	Can a body rotates about its centre of gravity under the action of its weight?	
(iii)	Name the three different conditions that could make $\vec{A}_1 \times \vec{A}_2 \neq 0$	
(iv)	What is the SI units of work? and also define it. (v) Show that orbital angular momentum $L_o=mvr$.	
(vi)	Calculate the work done in Kilo joules in lifting a mass of 10 kg (at a steady velocity) through a vertical height of 10 m	
(vii)	When a rocket re-enters the atmosphere, its nose cone becomes very hot. Where does this heat energy come from?	
(viii)	Why does a diver change his body positions before and after diving in the pool?	
(ix)	Prove that 1 rad = 57.3° . (x) Why the polaroid sunglasses are better than ordinary sunglasses?	
(xi)	How would you distinguish between un-polarized and plane-polarized lights?	
(xii)	What is meant by diffraction of light?	
4.	Answer briefly any Six parts from the followings:- $6 \times 2 = 12$	
(i)	When water falls from a tap; its cross-sectional area decreases as it comes down? Explain.	
(ii)	Name two characteristics of simple harmonic motion (SHM)	
(iii)	Show that P.E of mass-spring system is $P \cdot E = 1 \text{ mwx}^2$	
(iv)	What is meant by second pendulum? Calculate its length at the earth surface.	
(v)	Why sound travels faster in warm air than in cold air? (vi) State principle of superposition of waves.	
(vii)	What is "Doppler Effect"? Does it hold for both sound and light waves?	
(viii)	How the power is lost in optical fibre through dispersion? Explain. (ix) Name the essential parts of spectrometer.	
Note:	Attempt any three questions. Section ———— II $(8 \times 3 = 24)$	
5.	(a) Discuss the inter conversion of potential energy and kinetic energy when friction force is not considered.	
	(b) Find the angle between the two vectors: $\vec{A} = 5\hat{i} + \hat{j}$ $\vec{B} = 2\hat{i} + 4\hat{j}$ pakcity.org	
6.	(a) Define contributed note and derive its formula.	
	(b) A truck weighing 2500 kg and moving with a velocity 21 ms ⁻¹ collides with a stationary car weighing 1000 kg. The truck and the car move together after the impact. Calculate their common velocity.	
7.	(a) Derive equation of continuity for non-viscous and incompressible fluid flowing steadily. Also discuss its physical significance	e.

(b) An organ pipe has a length of 50 cm. Find the frequency of its fundamental note and the next harmonic when it is (a) open at both ends (b) closed at both ends. (speed of sound = 350 m/s)

- Show that total energy of vibrating mass and spring system remains constant. (a) 8.
 - A second order spectrum is formed at an angle of 38.0° when light falls normally on a (b) diffraction grating having 5400 lines per centimetre. Determine wavelength of light used.
- What information would you use to prioritize compound microscope over simple microscope. Also, 9. (a) derive a relation for the magnification of compound microscope.
 - (b) What is the average translational kinetic energy of molecules in a gas at temperature 27 °C?

1141	warning:- Please write	your Roll No. in the spa (Session 2017-19 to 2	nce provided and sign. 2020-22) Sig. o	f Stud	ent
	(Inter Part – I)	(Group	1)		er (I)
	(Objective)	- A DED COF	NE 9474	Ma	ximum Marks:- 17
Note:- Y that circl result in Answer S	e in front of that question are zero mark in that question. Sheet and fill bubbles according	ach objective type question as number. Use marker or pen to Write PAPER CODE, whice dingly, otherwise the student	s A, B, C and D. The choice to fill the circles. Cutting or the is printed on this question will be responsible for the sit	naner (on the noin sides of the
white cor	recting fluid is not allowed.	arm is			
	Dimension of Moment	(D) [T]	(C) [MT]	(D)	[L]
2)	(A) [M] Massurement taken by	vernier calliper with leas	t count 0.01 cm is record	ed as (0.45 cm.
2)	Its percentage uncertain	nity is			
	(A) 0.45 %	(B) 0.1 %	(C) 0.2 %	(D)	2 %
3)	If $\vec{A} \times \vec{B}$ points along +	ve z-axis, then vector \bar{A}	and \bar{B} must lie,	(D)	1
5)	(A) yz- plane	(B) xz-plane	(C) xy-plane	(D)	zz-plane
4)	In unit vectors $(\hat{i} \times \hat{j}) \times$	\hat{k} is equal to			
	(A) Null vector	(B) \hat{i}	(C) \hat{j}	(D)	1
			,		
5)	If the angle of projection	is greater that 45°, then the	s (C) Range and height	(D) I	Both height attained
	but sango is los	 but range is more 	attained is less	í	and range are more
6)	A hall is thrown with at	n initial speed of 30 ms ⁻¹	in a direction 30° above t	he Ho	rizontal.
0) .	Its vertical component	velocity is	1/2/1/2		
1	(A) 25.98 ms ⁻¹	(B) 30 ms ⁻¹	(C) 10 ms ⁻¹	(D)	15 ms ⁻¹
7)	In work-Energy princip	le work done on a body i	sequal t		
((A) Kinetic energy	(B) Potential exercises	(C. La rgy	(D)	Change in Energy
8)	A body of mass 10 kg is	n free falling lift has	ght	(D) (nen xi
((A) 10 N	(B) 98 W	(C) zero N	(D)	980 N
9)	In one Revolution, the a	nigular displacement cov	rered is	(D)	1800
10)	(A) 60°	(B) 360°	(C) 90°	(D)	100
	Stoke's Law holds for b	(B) Curved shape	(C) Rectangular shape	(D) (Oblong shape
11)	(A) Spherical shape	completing 20 vibration is	n 5 second; its frequency	is	
	(A) 4 Hz	(B) 20 Hz	(C) 200 Hz	(D)	100 Hz
12)	The product of frequence		out of the same		3
		3) 3	(C) 1	(D) 4	⁴
13)	On loading the prong of	f a tuning fork with wax,	its frequency,		6
((A) Decreases	(B) Increases	(C) May increases or decreases	(D)	Remaining constant
14)	A Diffraction grating has	3000 lines per centimeter,		(D) (2.22
	(A) $3.33 \times 10^{-4} cm$	(B) 3.33 m	(C) $333 \times 10^{-4} cm$	` '	3.33 cm
15)	A Telescope with object for infinity has length		n and eyepiece of focal le		
((A) 35 cm	(B) 8 cm	(C) 45 cm	(D) 2	200 cm
16)	The sum of all Energies	of molecules is known a	ıs		
(A) Elastic potential	(B) Kinetic energy	(C) Internal energy	(D) F	Potential energy
,	energy	source increases, the Efficient	` ,	ot of	(52)
	A) Decreases	(B) Increases	(C) Remains constant	` '	First increases then decreases
		1187- 1121 ALP	 24000 (1)	,	

1121 Warning:- Please, do not write anything on this question paper except your Roll No. (Session 2017-19 to 2020-22) (Inter Part - I) Paper (I) hysics (Subjective) Group (I) Maximum Marks: 68 ime Allowed: 2.40 hours Section -----I $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-2. Write dimensions of (a) Pressure (b) Density (i) Does a dimensional analasis give any information on constant of proportionality that may appear (ii) in an algebric expression. Explain. What do you mean by precision and accuracy. (iv) What do you mean by dimension of a physical quantity. (iii) The vector sum of three vectors gives zero resultant. What can be orientation of vectors. (v) Can you add zero to a null vector. (vii) Define Scalar product of two vectors. (vi) Define impulse and show how it is related to linear momentum. (viii) At what point or points in it's path does a projectile have it's minimum speed, its maximum speed. (ix) Define time of flight of a projectile, give it's units. (xi) Define two Dimensional motion. (x) Explain how Swing is produced in a fast moving cricket ball. (xii) Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ 3. In which case is more work done when a 50 kg bag of books is lifted through 50 cm, or when a 50 kg (.pakcity, org.) (.a. (a) (ii) (ii) (i) (i) (i) crate is pushed through 2m across the floor with a force of 50 N. → pakcity.org Define escape velocity and calculate its value. Explain the situations in which the work is positive, negative or zero. Show that orbital angular momentum $L_o = mvr$ State the law of conservation of angular momentum. Explain its importance. A hoop starts rolling without slipping down from the top of an inclined plane. What is its speed at the bottom. **≥**(vi) Does the acceleration of a simple harmonic oscillator remain constant during its motion? Is the (vii) acceleration ever zero? Explain. If a mass spring system is hung vertically and set into oscillations, why does the motion eventually stop? (viii) Define free and forced oscillations. (x) How are beats useful in tuning musical instruments? (ix) On what factors does the speed of sound in a medium depend? (xi) What is the frequency and the wavelength of third harmonic in a closed organ pipe? ◯(xii) Answer briefly any Six parts from the followings:-₾4. State Huygen's principle. (ii) Can visible light produce interference fringes? Explain. **○**(i) Define magnifying power and resolving power of lens. (iii) Write the conditions for Interference. (v) What is meant by normal adjustment of telescope. o(iv) Prove the relation $W = P\Delta V$ ⊷(vi) Starting from the relation of pressure of a gas prove that absolute temperature of an ideal gas is <u>∽</u>(vii) directly proportional to the average translational K.E of gas molecules. Is it possible to construct a heat engine that will not expel heat into the atmosphere. (viii) Derive Boyles law on basis of Kinetic molecular theory of gases. (xi) $(8 \times 3 = 24)$ Note: Attempt any three questions. Section ----- II Explain the addition of vectors by rectangular components method. 5. (a) A ball is thrown horizontally from height of 10 m with velocity of 21 ms⁻¹. (b) How far off it hit the ground and that velocity? Define gravitational potential energy to the absolute potential energy on the 6. (a) surface of the earth. An organ pipe has a length of the Find the frequency of its fundamental note and the next **(b)** harmonic, when it is closed at the end. Speed of sound = 50 m/s. 7.

Define rotational K.E. Also de ve the relations for the velocities of disc and hoop moving (a) down an inclined plane bottem.

How large must a heating that be if air moving 3 ms⁻¹ along it can replenish the air in a room (b) of 300 m³ volume every 15 min? Assume the air's density remains constant.

What is simple pendulum? Show that the motion of simple pendulum is simple harmonic 8. (a) motion. Also find relation for its time period and frequency.

(b) Estimate the average speed of nitrogen molecules in air under standard conditions of pressure and temperature.

(a) What is compound microscope? Describe its working. Also find relation for its magnifying power. 9.

A light is incident normally on a grating which has 2500 lines per centimeter. Compute the wavelength of a spectral line for which the deviation in second order is 15°.

(A) Temperature

		Sargodha Boa	rd-2021	
1121	Warning:- Please write (Inter Part – I)	your Roll No. in the space (Session 2017-19 to 2		Roll NoStudent
Dhyeid	es (Objective)	(Group II		Paper (I)
-		PAPER COD	- Daniel	Maximum Marks:- 17
Note:- that circ result in Answer white co	tle in front of that question not zero mark in that question. You sheet and fill bubbles according recting fluid is not allowed.	ch objective type question as amber. Use marker or pen to Write PAPER CODE, which ingly, otherwise the student was a superior of the control	A, B, C and D. The choice of fill the circles. Cutting or fairs printed on this question partial be responsible for the situation.	which you think is correct; filling two or more circles will paper, on the both sides of the uation. Use of Ink Remover of Q. 1
1)	For total assessment of u (A) Absolute	(B) Fractional	(C) Percentage	(D) Errors
	uncertainties	uncertainties	uncertainties	8
2)	Which of the following			→ pakcity.org
	(A) Work and Power	(B) Work and Torque	(C) Momentum and Energy	(D) Power and Pressure
3)	The self dot product of v	vector \vec{A} is		2
	(A) 0	(B) 2A	(C) A	(D) A^2
4)	If a Force of 5N is applied		n of 5m, then Torque is	
5)	(A) Zero Nm The force due to water F	(B) 5 Nm	(C) 10 Nm	(D) 25 Nm
3)	(A) $F = mv$	(B) $F = \frac{ma}{l}$	(C) $F = \frac{mv}{\sqrt{1 - v^2}}$	(D) $F = \frac{mt}{v}$
, and	For a rocket, the change (A) Acceleration of the rocket	(B) Thrust acting on rocket		(D) Momentum of the rocket
	The escape velocity is m (A) Moon Rotational K.E of disc is	(B) Mercury	(C) Earth	(D) Jupiter
	$(A) \frac{1}{4} m v^2$	(B) 100 100 100 100 100 100 100 100 100 10	(C) $\frac{1}{2}mr^2$	(D) $\frac{1}{4}mr^2$
9)	Choose the quantity whi	sh play the same role in	angular motion as mass	in linear motion.
	(A) Angular Acceleration	(B) Torque	(C) Moment of Inertia	(D) Angular Momentum
10	The device used to meas	sure speed of liquid Flow	is	
	(A) Monometer) Potential energy of oscil	(B) Venturi-meter	(C) Hydro meter	(D) Baro meter
	$(A) \frac{1}{2} K x_o^2$	(B) Kx^2	(C) mgh	(D) $\frac{1}{2}Kx^2$
) Speed of sound in Alum (A) 5100 ms ⁻¹	(B) 3600 ms ⁻¹	(C) 5130 ms ⁻¹	(D) 5500 ms ⁻¹
	Beats detectable easily to (A) 32 Hz	(B) 2 Hz	two sounds is (C) 10 Hz	(D) 6 Hz
14) The centre of Newton's (A) Diffraction	(B) Destructive Interference	(C) Constructive Interference	(D) Polarization
15) The Final Image formed		3	
	(A) Real and errect	(B) Virtual and Inverted	(C) Real and Inverted	(D) Virtual and errect
16) For an Ideal gas, the inte	ernal energy is directly p	roportional to	

(A) Isobaric process (B) Isochoric process (C) Adiabatic process 1189- 1121 ALP -- 15000 (1)

(B) Pressure

17) Cloud formation in atmosphere is an example of

(C) Volume

(D) Mass

(D) Isothermal process

(b)

(a)

9.

where $g = 9.8 \text{ ms}^{-2}$.

young's Double-slit experiment.

Physics (Subjective)

Sargodha Board-2021

(Session 2017-19 to 2020-22)

Group (II)

Time Allowed: 2.40 hours Section -----I (Inter Part - I) Maximum Marks: 68 2. Answer briefly any Eight parts from the followings:-What are the uses of dimensions? (ii) Distinguish between procision and Accuracy. (i) What are the dimensions of gravitational constant G in formula $F = G \frac{m_1 m_2}{r_2}$ pakcity.org (iii) (iv) Does a dimensional analysis give any information on constant of proportionality that may appear in algebraic expression? Explain. (v) Define terms (a) unit vector (b) Position vector The vector sum of three vectors gives a zero resultant. What can be the orientation of the vectors? (vi) Can you add zero to a null vector? (viii) Define impulse and show that how it related to linear momentum? (vii) Define terms (a) projectile motion (b) Height of the projectile. (ix) In case of elastic and inelastic collision explain how would a bouncing ball behave? (x) For what value of the angle of projection, the range of projectile is half of its maximum possible value? (xi) Explain what do you understand by the term viscosity. (xii) $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-3. A force of 400 N is required to overcome road friction and air resistance in propelling an automobile at (i) 22.22 ms⁻¹. What power (KW) must the engine develop? A girl drop a cup from a certain height, which breaks into pieces. What energy changes are involved? (ii) Give two names of conservative forces and two names of non-conservative forces. (iii) A 1000 kg car travelling with a speed of 40 ms⁻¹ round a curve of radius 100 m. Find the necessary centripetal force. (iv) Explain the difference between tangential velocity and angular velocity. (v) Why does a diver change his body positions before and after diving in the pool? (vi) What happens to the period of a simple pendulum if its length is doubled? What happens if the suspended mass is doubled? (vii) Does the acceleration of a simple harmonic oscillator remain constant during its motion? Is the (viii) acceleration ever zero? Explain. What is simple pendulum? Write down its formula for time period. (ix) Explain why sound travels faster in warm air than in cold air. (x) Find the frequencies produce in organ pipe when it is closed and end. (xi) Define transverse and longitudinal waves.

Answer briefly any Six parts from the following behave as coherent sources? Define transverse and longitudinal waves. (iix) $6 \times 2 = 12$ 4. (i) How would you manage to get more orders of a raying a diffraction grating? (ii) What is Huygen's principle? Explain. (iii) What do you mean by normal adjustment of an astronomical telescope? (iv) What is spectrometer? Write down some of its uses. (v) Why is the average velocity of the molecules in a gas zero but the average of the square of velocities is not zero? (vi) Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why? (vii) Derive Charles' Law from Kinetic theory of gases. (ix) Prove that $W = P\Delta V$ (viii) Section ----- II Note: Attempt any three questions. Define elastic collision. Show that for an elastic collision in one dimension speed of 5. approach is equal to speed of separation. Given that $\vec{A} = 2\hat{i} + 3\hat{j}$ $\vec{B} = 3\hat{i} - 4\hat{j}$ Find the magnitude and angle of $\vec{C} = \vec{A} + \vec{B}$ (b) Prove that the P.E. of a body on the surface of Earth is $U_g = \frac{-GMm}{R}$ 6. (a) Find the temperature at which the velocity of sound in air is two times its velocity at 10 °C. (b) Derive the relation for centripetal force. 7. (a) A water hose with an internal diameter of 20 mm at the outlet discharges 30 kg of water in 60 s. Calculate (b) the water speed at the outlet. Assume that the density of water is 1000 kgm-3 and its flow is steady. State first law of Thermodynamics. Explain adiabatic and Iso Thermal Processes. (a) 8. A simple pendulum is 50.0 cm long. What will be it's frequency of vibration at the place

An astronomical telescope having magnifying power of 5 consists of two thin lenses 24 cm (b) apart. Find the focal lengths of the lenses.

Define interference of light wave. Derive relation for positions of mth order maxima and minima in

Physics (Objective)

Time A	illowed: - 20 minutes	PAPER COD	E 2471	
Note:-	You have four choices for each	ch objective type question as	A, B, C and D. The choice v	which you think is correct; fill
hat circ	le in front of that question nu	umber. Use marker or pen to	is printed on this question p	lling two or more circles will aper, on the both sides of the
esult in	Sheet and fill hubbles accordi	ingly, otherwise the student w	ill be responsible for the situ	ation. Use of Ink Remover or
white co	rrecting fluid is not allowed.		is 196,9 it distributed from the second processor of the control	Q. 1
1)	The term 134.7 can be w	ritten in scientific notation	on as	
		(B) 1.347×10^3	(C) 1.347×10^{1}	(D) 1.347×10 ⁴
	The quantity 0.00467 ha			
2)	(A) 3	(B) 4	(C) 5	(D) 6
31	If the two components of	a vector are equal in magn	nitude, the vector making	angle with x-axis will be
٠,	(A) 30°	(B) 45°	(C) 60°	(D) 90°
4)	Two forces of magnitude	es 10 N and 20 N action a	a body in directions mak	ing angle of 30", The
	X-component of the rest			,
org.	(A) 25.98 N	(B) 30.98 N	(C) 20.98 N	(D) 17.98 N
÷5)	If maximum height of the	projectile is equal to the	range then angle of project	tion of projectile will be
:E	(A) 30°	(B) 60°	(C) 45°	(D) 76°
<u>8</u> 6)	If maximum height of the (A) 30° If 50 kg crate is pushed to (A) 245 J A body rotates with a contorque to sustain this maximum height of the	through 2 m across the fle	oor with a force of 50 N.	the work done will be
<u>a</u> .0)	(A) 245 J	(B) 150 J	(C) 200 J	(D) 100 J
₹ 7)	A body rotates with a co	enstant angular velocity o	f 100 rad/see about a ver	tical axis the required
€′′	torque to sustain this m	otion will be	100	Care S. 4.2 a State of a larger with the destruction before the Care of State Co. Cate Of State Co. C
ند	(A) Zero Nm	(B) 100 Nm	(C) 200 Nm	(D) 300 Nm
(8 at		ai	s 50 cm will be	
ta,	(A) $10 \ Kg m^2$	(B) 5 Kam ²	(C) 500 Kg m ²	(D) 2.5 Kg m^2
b _w	(A) 10 Kg m ² Laminar flow occurs at (A) High speed (High concentration of re			
روق	(A) Linh speed	(B) Low spect	(C) Zero speed	(D) Very high speed
<u>></u> 10	(A) High speed) High concentration of re	ed blood cells increases th	ne viscosity of blood from	n
	(A) $2-3$ times that of	(B) 5 times that of	(C) 5 7 times that of	(D) $7-9$ times that of
for	water	water	water	water
) Distance covered by a b	~		
is.	(A) 10 cm	(B) 5 cm	(C) 15 cm	(D) 20 cm
0) 12	Speed of sound in Hydro	ogen is higher than in Ox	vgen by times	
3SC	(A) 10 cm) Speed of sound in Hydro (A) 4 (E)	3) 6	(C) 8 11 V. Org	(D) 16
<u>8</u> 13) Sound waves can not pa	ass through		
σ.	(A) Liquid	(B) Solids	(C) Air	(D) Vacuum
14	Which of the followings c	, ,	` '	
,	(A) Diffraction	(B) Interference	(C) Polarization	(D) Dispersion
15) The image formed by ey	yepiece of compound mic	croscope is	
	(A) Real and magnified	(B) Real and	(C) Virtual and enlarge	(D) Virtual and
		diminished		diminished
16) The direction of flow of	f heat between two bodies	s in thermal contact is de	termined by
	(A) Internal energies	(B) Kinetic energies	(C) Potential energies	(D) Atmospheric pressure
17) A carnot engine has an eff	ficiency of 50% when its si	nk temperature is 27 °C. T	he temperature of source is
	(A) 300°C	(B) 327 °C	(C) 373°C	(D) 273 °C
	My 901 535-190 539	1187- 1119		₩ pakcity.org

Physics (Subjective) Group (I) (Session 2015-17 to 2018-20) (Inter Part - I) Paper (I)

Time Allowed: 2.40 hours Section ----- I

Maximum Marks: 68

Answer briefly any Eight parts from the followings:-

 $8 \times 2 = 16$

- (i) Write any two points which should be kept in mind, while using units.
- (ii) How many micro seconds in one year? (iii) Find the angle between $\bar{A} = 2\hat{i} 2\hat{j}$ and $\bar{B} = 2\hat{i} + 2\hat{j}$
- (iv) Can the magnitude of a vector ever be zero? Explain.
- (v) What are the steps, taken to add vectors by rectangular components?
- (vi) In which case more work is done, when a 50 kg crate is pushed through 10 m across a floor with a force of 30 N or same crate is lifted through 5 m height?
- (vii) Derive work-energy principle. (viii) Explain, how the swing is produced in a fast moving tennis ball?
- (ix) What you know about viscosity and what is its effect on drag force?
- (x) What are the factors on which frequency of a spring-mass system depends?
- (xi) What is the difference between free and driven harmonic oscillators? (xii) Explain phase and initial phase.
- 3. Answer briefly any Eight parts from the followings:-

 $8 \times 2 = 16$

- (i) Can the velocity of an object reverse direction when acceleration is constant? If so give an example.
- (ii) Define impulse and show how it is related to linear momentum?
- (iii) What does the slope of velocity-time graph represent?
- (iv) An object is thrown vertically upward. Discuss the sign of acceleration due to gravity, relative to velocity, while the object is in air.
- (v) Define angular velocity. How its direction is determined? (vi) Prove that 1 radian = 57.3°
- (vii) When mud flies off the tyre of a moving bicycle. In what direction does it fly? Explain.
- (viii) Show that angular momentum, $L_o = mvr$ (ix) What is difference between interference and beats
- (x) What is the difference between constructive and distructive interference?
- (xi) Explain why sound travels faster in warm air than sold air?
- (xii) How should a sound source move with respect to an observer so that the frequency of its sound does not change?
- 4. Answer briefly any Six parts from the followings:-

 $6 \times 2 = 12$

- (i) Can visible light produce interference fringes? Explain.
- (ii) Why the Polaroid sunglasses are better than ordinary sunglasses?
- (iii) How coherent light beams can be produced? Explain. (iv) How the light signal is transmitted through the optical fibre?
- (v) How can the resolving power of compound microscope be increased?
- (vi) Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why?
- (vii) Is it possible to convert internal energy into mechanical energy? Explain with example.
- (viii) What would be average speed of oxygen molecule in the air at.S.T.P.?
- (ix) Differentiate between isothermal and adiabatic process.

Note: Attempt any three questions. Section ----- II

 $(8\times 3=24)$

- 5. (a) What is Camot engine? Discuss camot cycle, also derive expression of its efficiency.
- (b) Suppose, we are told that the acceleration of a particle moving in a circle of radius r with uniform speed is proportional to some power of r, say r'' and some power of v, say v''', determine the powers of r and v?
 - 6. (a) What is isolated system? Also state and explain the law of conservation of linear momentum.
 - (b) Two particles are located at $\vec{r_1} = 3\hat{i} + 7\hat{j}$ and $\vec{r_2} = -2\hat{i} + 3\hat{j}$ respectively. Find both the magnitude of vector $(\vec{r_2} \vec{r_1})$ and its orientation with respect to x-axis.
 - (a) Define Doppler effect. Discuss the case when source moves towards the stationary observer and when observer moves towards the stationary source.
 - (b) A brick of mass 2 kg is dropped from a rest position 5 m above the ground. What is its velocity at height of 3 m above the ground.
 - 8. (a) What is meant by gravity free system. How gravity like earth is produced in a space ship? Explain.
- (b) A simple pendulum is 80 cm long what will be its period and frequency at a place where $g = 9.8 ms^{-2}$
- 9. (a) What is magnifying glass? How is it used as a microscope? Derive the relation for its magnifying power?
 - (b) In a double slit experiment, the second order maximum occurs at $\theta = 0.25^{\circ}$, The wavelength is 700 nm. Determine its slit separation?

(Inter Part - I)	(Session 2015-17 t	(o 2018-20) Sig	of Student
Physics (Objective)	(Group	, ,	Paper (I)
Time Allowed: - 20 minutes			
Note:- You have four choices for	or each objective type question	as A B C and D The also	Maximum Marks:- 17 ice which you think is correct; fill
			or filling two or more circles will on paper, on the both sides of the situation. Use of Ink Remover or
white correcting fluid is not allow	ved.	it will be responsible for the	
 Absolute uncertainty 	in a measuring instrumer	nt is equal to	Q. 1
(A) Least count	(B) Accuracy	(C) Fractional	(D) Percentage
a . a		uncertainty	uneertainity
2) Dimension of mome	nt arm is	•	
(A) [M]	(B) [T]	(C) [LT]	(D) (L)
3) The force of 15 N m	akes an angle of 90° with	x-axis, its y- component	t is
(A) 13 N	(B) Zero N	(C) 30 N	(D) 45 N
4) The position vector i			• •
(A) $y\hat{i} + z\hat{k}$	(B) $x\hat{i} + y\hat{k}$	(C) $x\hat{i} + z\hat{k}$	(D) $x\hat{i} + y\hat{j} + z\hat{k}$
Area between the vel	locity time graph is equal	to	33 1 23
(A) Time	(B) Velocity	(C) Distance	(D) Mass
6) When the finite force	is parallel to the direction	of motion of the body,	the work done is
(A) Milliman	(B) Maximum	(C) Infinity((\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt	(D) Varies
/) A body of mass 10 k	g in free falling lift has we	eight (O)	
(A) 10 N	(B) 9.8 N	(C) Zero N	(D) 980 N
centripetal Force is	e revolving a body along	a circular path of radious	s Im, the work done by the
(A) 20 Joule	(B) 40 Joule	0	
9) Stoke's Law hold for	hodies when they bear	> (C) 10 Joule	(D) Zero Joule
(A) Spherical shape	(B) Curved shape	(C) Pestangular show	(D) OH
	(2) carred shape	(C) Rectangular shap	e (D) Oblong shape
10) One Torr is equal to (A) 120 Pascals	(Pal vido p	IDMONTON S	
	(B) 100 Pascals	(C) 133.3 Pascals	(D) 80 Pascals
(A) 4 Hz	completing 20 vibration	in 5 seconds, its frequen	
12) The Product of freque	(B) 20 Hz	(C) 200 Hz	(D) 40 Hz
(A) 2	(B) 3	(C) 1	(D) 1 11
	requencies 261 Hz and 25	R Hz are sounded togeth	(D) 1 Hertz
beats per second are	The same of the same 25	o 112 are sounded togath	er, the number of
(A) 3	(B) 2	(C) 261	(D) 258
14) Which of the following	g waves can not be polari	zed	(D) 230
(A) X-Rays	(B) Light waves	(C) Sound waves	(D) Infrared rays
15) If a convex Lens of for	cal length "f" is cut into	two identical halves alor	ng the Lens diameter, the
rocar rengui of each	half is		S c.imiletei, tilo
(A) $\frac{3}{2}f$	(B) 2f	f	(D) (
2		(C) $\frac{f}{2}$	(D) f
16) Solid ice, Liquid wate	r and water vapours consist	st in thermal equilbrium	at a Temperature
(A) 2/3 K	(B) 2/3.16 K	(C) 273°C	(D) 100 °C
17) The Sum of all the ene	ergies of molecules is know	wn as	
(A) Elastic potential			(D) Gravitational
energy	(B) Kinetic energy	(C) Internal energy	(D) potential energy
	1189 - 1119	14000 (1)	8
	ELLO TITY	T_{A}	🦓 pakcity.org 🎥

		Sargodna Board-2019
	111	y warning:- Please, do not write anything on this question paper except your Koll No.
Physi	cs (5	Subjective) Group (II) (Session 2015-17 to 2018-20) Paper (I)
Time	Allov	ved: 2.40 hours Section I (Inter Part - I) Maximum Marks: 68
2.	Ans	swer briefly any Eight parts from the followings:- $8 \times 2 = 16$
(i)	Wri	te two differences between base and derived quantities?
(ii)	Nam	ne several repetitive phenomena occuring in nature which could serve as reasonable time standard?
(iii)	Und	ler what circumstances would a vector have components that are equal in magnitude?
(iv)	Defi	ine component of a vector? What are rectangular components?
(v)	If al	I the components of a vector \vec{A}_1 and \vec{A}_2 were reversed, how would this alter $\vec{A}_1 \times \vec{A}_2$?
(vi)		ine conservative field. Give example. (vii) What is Venturi Relation? Explain briefly.
(viii)		at is drag force? On what factors does it depend?
()		
(ix)		w that 1kWh = 3.6 M J (x) Derive the relation $\omega = \sqrt{\frac{k}{m}}$ (xi) What is resonance? Example must be given?
(xii)		s the acceleration of a simple harmonic oscillator ever remain constant? Explain.
3.		swer briefly any Eight parts from the followings:- $8 \times 2 = 16$
(i)		the velocity of an object reverse direction when acceleration is constant? If so, give an example.
(ii)		ine impulse and show that how it is related to linear momentum?
(iii)		w that the range of projectile is maximum when projectile is thrown at an angle of 45" with horizontal.
(iv)		erentiate between Ballistic and non-ballistic projectiles.
(v)		at is meant by moment of inertia? Explain its significance.
(vi)		on mud flies off the tyre of a moving bicycle, in what direction does it fly? Explain.
(vii)		ain how many minimum number of geo-stationary satellites are required for alobal coverage of T.V. transmission?
(viii)		ine the terms (a) Gravitation, and (b) Geodesics
(ix)		at features do longitudinal waves have in common with transverse waves?
(x)		result of a distant explosion, an observer senses a ground tremor and then hears the explosion.
(t)	-	lain the time difference.
(xi)	A	does sound travel faster in solids than in gases? (wii) Differentiate between "Red Shift" and "Blue Shift"
4.		swer briefly any Six parts from the followings:- $6 \times 2 = 12$
(i) (iii)	Thora	at is meant by a wavefront? (ii) Can Visible light produce interference fringes? Explain.
-		centre of Newton's rings is dark. Why? (iv) What are the two conditions for total internal reflection to take place? v the light signal is transmitted through optical fibre?
(v) (vi)		
(vii)	Te it	cific heat of a gas at constant pressure is greater than specific heat at constant volume. Why? possible to construct a heat engine that will not expel heat into the atmosphere?
(viii)		lain why adiabatic is steeper than an isotherm?
(ix)		the mechanical energy be converted completely into heat energy? If so give an example.
		empt any three questions. Section II $(8 \times 3 = 24)$
5.	(a)	What is the main difference between petrol engine and diesel engine? Also describe petrol
٥.	(")	engine elaborating its four strokes.
	(b)	The diameter and length of a metal cylinder measured with the help of vernier callipers of least count
	(0)	0.01 cm are 1.22 cm and 5.35 cm. Calculate the volume of cylinder and uncertainty in it.
6.	(a)	Derive expressions for the magnitude and direction of resultant of two vectors, added by
٠.	(**)	rectangular component method.
	(b)	A football is thrown upward with an angle of 30° with respect to horizontal. pakcity.org
	(2)	To throw a 40 m pass what must be the initial speed of the ball?
7.	(a)	Define the conservative field. Prove that the work done in the earth's gravitational field is
		independent of the path followed.
	(b)	A stationary wave is established in a string which is 120 cm long and fixed at both ends. The string vibrate
	20 E0	in four segments, at a frequency of 120 Hz. Determine its wavelength and fundamental frequency?
8.	(a)	Derive an expression for the radius of orbit of a geo-stationary satellite.

A block of mass 4 kg is dropped from a height of 0.8 m on to a spring of spring constant $K = 1960 \frac{N}{m}$. Find the maximum distance through which spring will be compressed.

Explain compound microscope using suitable diagram. Derive formula for its angular magnification. 9. (a)

Sodium light ($\lambda = 589 \text{ nm}$) is incident normally on a grating having 3000 lines per (b) centimetre. What is the highest order of the spectrum obtained with this grating?

Sargodha Board-2019 SECTION II

220		and the state of t	_
5-	(a)	What is projectile motion? Derive the relation for maximum height and range of projectile.	5
	(b)	Two forces of magnitude 10 N and 20 N act on a body in direction making angles 30° and	3
		60° respectively with x-axis. Find the resultant force and direction.	
		V^2	5
6-	(a)	What is meant by centripetal force? Show by mathematical proof that $a_c = \frac{V^2}{r}$	
	<i>a</i> >	A car of mass 800 kg travelling at 54 kmh ⁻¹ is brought to rest in 60 meters. Find the average	3
	(b)		
_		retarding force on the car. What has happened to original kinetic energy?	5
7-	(a)	State and derive Bernoulli's relation for a liquid in motion.	3
	(b)	Calculate the entropy change when 1 0 kg ice at 0°C melts into water at 0°C. Latent heat	3
		of fusion of ice $L_f = 3.36 \times 10^5 \text{ JKg}^{-1}$	
		\overline{P}	5
8-	(a)	Speed of sound in air at 0°C is determined by Newton's formula $V = \sqrt{\frac{P}{\rho}}$. Why this	
		formula could not give accurate velocity? Derive the correct formula by using	
		Laplace correction.	
	(b)	What should be the length of a simple pendulum whose period is 1.0 second at a place	3
	` '	where $g = 9.8 \text{ ms}^{-2}$.	
9-	(a)	What is astronomical telescope? Draw its ray diagram and derive relation for its	5
	()	magnification.	
	(b)	Light of wavelength 450 nm is incident on a diffraction grating on which 5000 lines/cm	3
	(0)	Typing of the formal in a management of the state of the	

have been ruled. Calculate angles for first three orders of diffraction.

221-318-58000

3

	Sargodha Boa	rd-2018					
Warning:- Please (Inter Part – I)	e write your Roll No. in the spa (Session 2015-17 to 2	ace provided and sign 2017-19) Si	ig. of Student				
Physics (Objective)	(Group) I)	Paper (I)				
Time Allowed:- 20 minu	tes PAPER COL	E 2473	Maximum Ma	rks:- 17			
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill hat circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the Answer Sheet and fill bubbles accordingly, otherwise the student will be responsible for the situation. Use of Ink Remover or							
white correcting fluid is not a		-‱ pakci	ty.org 🐉 Q. 1				
$(\Lambda)^{3} KT$	$(B) \frac{2}{KT}$	$(C) \frac{1}{KT}$	(D) KT				

		(Inter Part – I)	(Session 2013-17 to 2		Paper (I)
		es (Objective)	(Group		
Tin	ne A	Allowed:- 20 minutes	PAPER COD		Maximum Marks:- 1
hat esu Ans	circ lt in wer	You have four choices for each le in front of that question not zero mark in that question. Sheet and fill bubbles accord	ımber. Use marker or pen to Write PAPER CODE, which	o fill the circles. Cutting or f	illing two or more circles of paper, on the both sides of
whit	e co	orrecting fluid is not allowed.	T -f malanula ia		ora 🎎 V. I
	1)	Average Translational K	•		- 3 @ -
		(A) $\frac{3}{2}KT$	(B) $\frac{2}{3}KT$	(C) $\frac{1}{2}KT$	(D) KT
	2)	A heat engine operates b	etween temperatures 400	0 K and 1000 K, its effic	iency is equal to
		(A) 50 %	(B) 60 %	(C) 70 %	(D) 70 %
	3)		measuring mass and spee	ed is 2% and 3% respecti	vely. The maximum
20		percentage uncertainity ((error) in the measurement		
		(A) 5 %	(B) 11 %	(C) 8 %	(D) 7 %
į.	4)	In $5.47 \times 19.89 = 108.7983$			
2		(A) 108.8	(B) 108.9	(C) 109	(D) 108.79
קמ	5)	A force for 100 N makes	an angle of 60° with Y		
₹		(A) 50 N	(B) 60 N	(C) 70.7 ₁ N(2)	(D) 86.6 N
>	6)	The direction of torque i	S		
>		(A) Along the position	(B) Perpendicular to	Along the direction	(D) Opposite to the
ם:		vector \vec{r}	both \vec{r} and \vec{F}	of force \vec{F}	direction of \vec{r}
	7)	The maximum range of a	4/1/2)	ake $g = 10 ms^{-2}$ The initial	al velocity of the
ממנמ	')	projectile will be	Projection	· ·	
			(B) 1 4 - 2 - 10)	(C) 10 kms ⁻¹	(D) 100 kms ⁻¹
5	•	(A) 1000 kms ⁻¹	(B) 1 kms ⁻	(C) 10 kms	(2) 100 M/IS
5	8)	Dimensions of power is	(7)	(C) as e2m-1	(D) 53 m2m-33
=		(A) $[ML^2T^{-2}]$	$(B)[ML^2T^{-1}]$	(C) $[ML^2T^{-1}]$	(D) $[ML^2T^{-3}]$
2	9)	$\omega = 60 \text{ rev min}^{-1} \text{ is equal}$	to		
5		(4) 4 d	(m) a	(C) 1 -1-1	(D) $\frac{2}{rad} s^{-1}$
>		(A) $\pi \operatorname{rad} s^{-1}$	(B) $2\pi \ rad \ s^{-1}$	(C) $\frac{1}{\pi} rad s^{-1}$	(D) $\frac{-raas}{\pi}$
990	10)	Height of geostationary	satellite from the earth's	surface is	
ğ		(A) 42300 km	(B) 900 km	(C) 36000 km	(D) 400 km
		Let A = Area of crossec		of fluid then 'AV' is calle	ed
	,	(A) Volume flow rate	(B) Energy flow rate	(C) Mass flow rate	(D) Pressure flow rate
	12)	Maximum velocity in SI	IM is		
		(A) $x_{\alpha}\omega^{2}$	(B) $x_o \omega$	(C) $x\omega$	(D) $x_0^2 \omega$
		Stars moving away from	earth shows		
	-	(A) Blue Shift	(B) Red Shift	(C) Yellow Shift	(D) Green Shift
		Sound waves are	(D) Ited Sint	(6) 10110 11 511111	(-)
	-	(A) Electromagnetic (B)	Transverse waves	(C) Compressional	(D) Matter waves
		waves	, Hunsverse waves	waves	(2)
	15)	Angle between a ray and	wavefront is	nu vos	
			(B) 0°	(C) 90°	(D) 45°
		(A) 180°	, , -		• • • • • • • • • • • • • • • • • • • •
		When Newton's Rings are		(C) Bright	(D) Red
		(A) Dark	(B) Blue		(D) Nou
		In newer Optical fiber sy		(C) 30 km	(D) 100 km
		(A) 300 km	(B) 100 m	` '	(D) TOO KIII
			1167A- 1118	18000 (2)	

Dhure	Sargodha Board-2018 1118 Warning: Please, do not write anything on this question papers (Subjective). Group (I) (Sassier 2015 17 to 2017 10)	per except your Roll No.
	Allowed: 2.40 hours Section	Maximum Marks: 68
2.	Answer briefly any Eight parts from the followings:-	$8 \times 2 = 16$
(i)	How many years are there in a neno second? (ii) Define radian	
(iii)	Discuss two frontiers of Science. (iv) Find the dimensions of	'G' using equation $F = G^{\frac{1}{2}}$
/ >	Explain how a vector can be submeted from the other and a	

units.

- Explain how a vector can be subtracted from the other vector? (v)
- A force of 10N makes an angle of 60° with x-axis. Find its x and y components. (vi)
- Prove that dot product is commutative. (vii)
- Define average and instentaneous velocity. Also give their units. (viii)
- Calculate the distance covered by a free falling body during first second of its motion. (ix)
- (x) Show that range of projectile is maximum when it is thrown at an angle of 45° with horizontal.
- Explain how the lift is produced in an aeroplane? (xii) Why fog droplets appear to be suspended in air? (xi)
- Answer briefly any Eight parts from the followings:-3.
- In which case is more work done? When a 50 Kg bag of books is lifted through 50 cm, or when a (i) 50 Kg crate is pushed through 2 m across the floor with force of 50 N.
- What sort of energy is in the following. (ii)
- (a) Compressed spring (b) Water in high dam (c) A moving car.
- Prove that $\overrightarrow{F} \overrightarrow{V} = Power$ (iii)
- Explain how many minimum number of geo-stationary satellites are required for global coverage of T.V transmission. (iv)
- Find the rotational kinetic energy of disc. (vi) Why the microwaves are used in satellite communication. (v)
- If a mass spring system is hung vertically and set into oscillations, why does the motion eventually stop? (vii)
- What happens to the period of simple pendulum if its length is doubled. What happen if the (viii) suspended mass is doubled?
- State the Hook's Law, write it in mathematical form. (x) How are beats useful in tuning musical instrument? (ix)
- Explain the term node and anti-node. (Aii) How Doppler's effect is applied to a radar system? (xi) 4. $6 \times 2 = 12$
- Answer briefly any Six parts from the followings:-(i)
- Explain whether the Young's experiment is an experiment for studying interference or diffraction effects of light.
- (ii) State Huygen's principle. (iii) Define wavefronts and ray of light.
- Explain the difference by angular magnification and resolving power. (iv)
- How the Power is lost in optical fibre through dispersion? Explain. (v)
- (vi) A thermos flask containing milk as system is shaken rapidly. Does the temperature of the milk rise?
- (vii) Does entropy of a system increases or decreases due to friction? Explain.
- Specific heat of gas at constant pressure is greater than specific heat at constant volume. Why? (viii)
- (ix) Write down the two strokes of a petrol engine.

Note: Attempt any three questions. Section ----- II $(8 \times 3 = 24)$

- Add two vectors by using their rectangular components. Determine the magnitude and direction of the resultant. 5.
- (b) A truck weighing 2500 Kg and moving with a velocity of 21 ms⁻¹ collides with a stationary car weighing 1000 kg. The truck and the car move together after the impact. Calculate their common velocity
 - 6. (a) Define gravitational field and conservative field. Prove that work done is independent of path followed in gravitational field by gravitational force.
 - Calculate the angular momentum of a star of mass 2×10^{30} Kg and radius 7×10^5 Km. If it completes one complete rotation about its axis once in 20 days.
 - What is carnot engine? Discuss carnot cycle and calculate its efficiency. pakcity.org 7. (a)
 - What gauge pressure is required in the city main for a stream from a fire hose connected to (b) mains to reach a vertical height of 15 m.
 - Describe Newton's formula for the speed of sound in air and explain how it was corrected by Laplace? 8. (a)
- A 100.0 g body hung on a spring elongates the spring by 4.0 cm. When a certain object is hung on **(b)** the spring and set vibrating, its period is 0.568 second. What is the mass of the object pulling the spring? 9.(a) Describe diffraction of X-rays by crystals and derive Bragg's equation and what are the uses of X-rays diffraction
 - Calculate the critical angle and angle of entry for an optical fibre having core of refractive index 1.50 and cladding of refractive index 1.48.

Please visit for more data at: www.pakcity.org

Sargodha Board-2018

1169A- 1118 -- 10000 (2)

17) When an object is placed within the focal point of a convex lens then its image will be

(B) Stars

(B) 90°

(B) Inverted

16) The angle between ray of light and wave front is

(A) Haemoglobin

(A) Real

(C) Galaxies

(C) 180°

(C) Virtual

(D) Stones

(D) Of same size

Sargodha Board-2018 1118 Warning:- Please, do not write anything on this question paper except your Roll No. Physics (Subjective) Group (II) (Session 2015-17 to 2017-19) Time Allowed: 2.40 hours Section ----(Inter Part - I) Maximum Marks: 68 Answer briefly any Eight parts from the followings:-2. The period of simple pendulum is measured by a stop watch. What type of errors are possible in (i) the time period? The length and width of a rectangular plate are measured to be 15.3 cm and 12.80 cm respectively. (ii) Find the area of the Plate. Check the correctness of equation $E = mc^2$. o(iv) Define random error and systematic error. (iii) Can a vector have a component greater than the Vector's magnitude. (v) Name the two different conditions that could make $\vec{A}_1 \times \vec{A}_2 = 0$ pakcity.org 🖓 (vi) (vii) Can the magnitude of a vector have a negative value. How is distance calculated from Velocity-Time graph. J(ix) Differentiate between uniform and variable velocity. (viii) Can the velocity of an object reverse direction when acceleration is constant? If so, give an example. (x) Why fog droplets appear to be suspended in air? (xi) Define terminal velocity. Give its mathematical expression. O(xii) Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved? (i) (ii) www.pakcit (vi) (iiiv) (iiiv) How energy is obtained from "biomass". '(iii) Define Watt. Prove that $a = r\alpha$ $\omega(v)$ Show that orbital angular momentum $k_0 = mvr$ When mud flies off the tyre of a moving bicycle, in what direction does it fly? Define frequency. Give its units. Does frequency depends on amplitude of Harmonic Oscillator? Explain. Does the acceleration of a simple harmonic oscillator remain constant during its motion? Is the acceleration ever be zero? (ix) Define Transverse Waves, give its two examples. (x) What features do longitudinal waves have in common with transverse waves? (xi) Why does sound travel faster in solids than in gases? (xii) Answer briefly any Six parts from the followings:- $6 \times 2 = 12$ What do you mean by coherent sources? Explain a common method for producing two coherent sources. An oil film spreading over a wet footpath shows colours. Explain how does it happen? How would you manage to get more order of spectra using a diffraction grating? Why would it be advantageous to use the blue light with a compound microscope? Describe with the help of diagram, have a convex lens can be used as magnifying glass? Write four postulates of Kinetic theory of gases. What is a refrigerator? Draw its block diagram. (viii) Write two statements of carnot's theorem. What is a tripple point cell? Also define thermodynamic scale. Note: Attempt any three questions. Section ----- II $(8 \times 3 = 24)$ State and Prove Law of Conservation of linear momentum. 5. Find the angle between the two vectors. $\vec{A} = 5\hat{i} + \hat{j}$ and $\vec{B} = 2\hat{i} + 4\hat{j}$ **(b)** Define centripetal acceleration, centripetal force and drive an expression for centripetal force. 6. (a) How large a force is required to accelerate an electron of mass $9.1 \times 10^{-31} kg$ from rest to a (b)

- speed of 2.0×10⁷ ms⁻¹ through a distance of 5.0 cm.
- State Stoke's law. Prove that the terminal velocity of water droplet in falling through air is 7. (a) directly proportional to squar of its radius.
 - **(b)** A mechanical engineer develops an engine, working between 327 °C and 27 °C. and claims to have an efficiency of 52 %. Does he Claim Correctly? Explain.
- (a) What are Stationary Waves. Prove that frequencies of stationary waves are quantised in strings 8.
 - A block of mass 4 Kg is dropped from a height of 0.8 m on to a spring of spring constant 1980 Nm^{-1} . Find the maximum distance through which the spring will be compressed.
- What is Michelson's interferrometer? Explain its construction and working. 9. (a)
 - An astronomical telescope having magnifying power of 5 consists of two lenses 24 cm apart. (b) Find focal length of the lenses.