Standardize the Given Solution Of NaOH By Volumetric Method.

Principle:

It is an acid-base titration HCl is a strong acid and can be titrated with a base.

Standard Solution: 0

0.1 M HCI

Indicator:

Phenolphthalein

End Point:

Just Colourless

Equation:

HCl+NaOH → NaCl + H₂O

Mole Ratio:

1:1

Procedure:

Take the given HCl solution in burette with the help of funnel and note the initial reading. Pipette out 10.0cm³ of NaOH in conical flask. Add 1-2 drops of phenolphthalein as an indicator. The solution becomes pink. Titrate this solution against HCl solution taken in burette. The end point is just colourless. Note the final reading. Take at least three concordant readings to calculate the exact volume of acid used.

Observations and Calculations:

- i. Vol. of NaOH taken in conical flask for each titration = 10.0cm³.
- ii. Vol. of HCl used from bulette for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of HCl used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0 pak	30.0	10.0cm ³

Concordant Reading = 10.0 cm³

NaOH HCl

$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$

$$\frac{M_1 \times 10.0}{1} = \underbrace{0.1 \times 10.0}_{1}$$

$$M1 = \frac{0.1 \times 10.0}{10.0} = 0.1 \text{ M NaOH}$$

Result:

Given solution of NaOH is 0.1 mol/dm³

Exercise:

Standardize the given solution of H₂SO₄ by volumetric method.

Standardize The Given Solution Of HCI By Volumetric Method. Calculate The Volume Of This Solution Required To Make 500cm3 Of 0.01 M HCl.

Principle:

It is an acid-base titration. HCl is a strong acid and can be titrated with a strong base NaOH.

0.1 M NaOH **Standard Solution:**

Phenolphthalein Indicator:

Just Colourless **End Point:**

HCl+NaOH → NaCl + H₂O Equation:

1:1 Mole Ratio:

Procedure:

IH.

ZERRY TOR Take the given HCl solution in burette with the help of funnel and note the initial reading. Pipette out 10.0cm3 of NaOH in conical flask. Add 1-2 drops of phenolphthalein as an indicator. The solution becomes pink. Titrate this solution against HCl solution taken in burette. The end point is just colourless. Note the final reading. Take at least three concordant readings to calculate the exact volume of acid used.

Observations and Calculations:

- Vol. of NaOH taken in conical flask for each titration = 10.0cm³.
- Vol. of HCl used from bulette for each titration.

pakcity.org

No. of Obs.	Initial Reading	Final Reading	Vol. of HCl used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Concordant Reading = 10.0 cm³

HCl NaOH
$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$

$$\frac{M \times 10}{1} = \frac{0.1 \times 10}{1}$$

$$M_1 = \frac{0.1 \times 10}{10} = 0.1 \text{ mol/dm}^3 \text{HCl}$$

Calculation for volume to make 500 cm³ of 0.01 M HCl: (Dilution method)

Known concentration = conc.to be prepared

$$M_1V_1 = M_2V_2$$
 $0.1 \times V_1 = 0.01 \times 500$
 $V_1 = \frac{0.01 \times 500}{0.1}$
 $V_1 = 50 \text{cm}^3 \text{ of HC1}$

Result:

The given HCl solution is 0.1M and 50cm of this solution is mixed with 450cm of water to make 500cm of 0.01 M HCl solution.

Exercise:

- (i) Standardize the given solution of HCl by volumetric method, calculate the volume of this solution required to make 250cm³ of 0.05 M HCl.
- (ii) Standardize the given solution of H₂SO₄ by volumetric method. calculate the volume of this solution required to make 100cm³ of 0.05 M H₂SO₄.

pakcity.org

MIXTURE ANALYSIS

EXPERIMENT NO-3

The Given Solution Contains 5 Grams Of A Mixture Of NaOH And Na₂50, Dissolved Per 500cm³. Determine Volumetrically Percentage Of Each In The Mixture.

Principle:

It is an acid-base titration. In the mixture NaOH is reactive against standard solution of HCl.

Standard Solution: 0.05 M HCl

Indicator: Phenolphthalein

End Point: Just Colourless

Equation: HCl+NaOH NaCl + H₂O

Mole Ratio: 1:1

Procedure:

Take the given HCl solution in burette with the help of funnel and note the initial reading. Pipette out 10.0cm³ of NaOH and Na₂SO₄ mixture in conical flask. Add 1-2 drops of phenolphthalein as an indicator. The solution becomes pink. Titrate this solution against HCl. The end point is just colourless. Note the final reading. Take at least three concordant readings to calculate the exact volume of acid used.

pakcity.org

Observations and Calculations:

- (i) Vol. of mixture taken in conical flask for each titration = 10.0cm³.
- (ii) Vol. of HCl used from bulette for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of HCl used
1.	0.0	10,0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Concordant Reading = 10.0 cm³

pakcity.org 🖁

NaOH HCl
$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$

$$\frac{M_1\times 10.0}{1} = \frac{0.05\times 10}{1}$$

$$M_1 = 0.05 \text{ mol/dm}^3 \text{ of NaOH}$$
Amount in g/dm³ = molarity × mol. mass of NaOH = 0.05×40

$$= 0.05 \times 40$$
$$= 2 \text{ g/dm}^3$$

$$500 \text{cm}^3$$
 solution contain mixture $= 5g$
 1000cm^3 solution contain mixture $= \frac{5}{500} \times 1000$

%age of NaOH
$$=\frac{2}{10} \times 100 = 10 \text{ g/dm}^3$$

= 20%

%age of
$$Na_2SO_4 = 100 - 20 = 80\%$$

Result:

The given mixture contains 20% NaOH and 80% Na₂SO₄.

The Given Solution Contains 2.5g Of A Mixture Of Oxalic acid and Sodium Oxalate Per 250cm³. Find Out % age Composition Of Mixture.

Principle:

It is an acid-base titration. In the mixture, oxalic acid will react with a standard base.

Standard Solution: 0.1 M NaOH

Indicator: Phenolphthalein

End Point: Just Colourless

Equation: COOH COONa + 2NaOH + 2H₂O

COOH COONa

Mole Ratio: 1:2

Procedure:

Take the given mixture of solution in burette with the help of funnel and note the initial reading. Pipette out 10.0cm³ of NaOH in conical flask. Add 1-2 drops of phenolphthalein as an indicator. The solution becomes pink. Titrate this solution against acidic mixture taken in burette. The end point is just colourless. Note the final reading. Take at least three concordant readings to calculate the exact volume of acid used.

Observations and Calculations:

- (i) Vol. of NaOH used for each titration = 10.0cm³.
- (ii) Vol. of acid used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of Oxalic acid used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Concordant Reading = 10.0 cm³

Oxalic acid NaOH
$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$

$$\frac{M_1\times 10.0}{1} = \frac{0.1\times 10}{2}$$

 $M_1 = 0.05 \text{ M}$ oxalic acid

$$250 \text{cm}^3$$
 solution contain mixture = 2.5g

$$1000 \text{cm}^3$$
 solution contain mixture $=\frac{2.5}{250} \times 1000$

$$= 10.0 g$$

Amount per dm³ of oxalic acid = molarity
$$\times$$
 mol. mass

$$= 0.05 \times 126$$

$$= 6.3 \text{ g/dm}^3$$

10.0 g mixture contain oxalic acid
$$= 6.3$$
 g

100 g mixture contain oxalic acid
$$=\frac{6.3}{10} \times 100 = 63g$$

% age of
$$H_2C_2O_4.2H_2O = 63\%$$

% age of
$$Na_2C_2O_4$$
 = 100 - 63 = 37%

Result:

The given mixture contains 63% oxalic acid and 37% sodium oxalate.

Exercise:

- The given solution contains 8g mixture of KOH and K₂SO₄ dissolved /dm³. Calculate the % age of KOH volumetrically.
- The given solution contains 2.5g mixture of HCl and NaCl dissolved/250cm³. Calculate % age composition of each volumetrically.

The Given Solution Contains 10g Mixture Of H₂SO₄ and Na₂SO₄ dissolved Per dm³. Determine % age composition of the Mixture.

Principle:

It is an acid-base titration. In the mixture H₂SO₄ is reactive against standard NaOH Solution.

Standard Solution: 0.1 M NaOH

Indicator: Phenolphthalein

End Point: Just colourless

Equation: $2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O$

Mole Ratio: 2:1

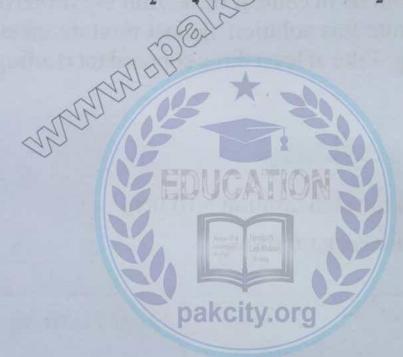
Procedure:

Take the given mixture of acid solution in burette with the help of funnel and note the initial reading. Pipette out 10.0cm³ of NaOH in conical flask. Add 1-2 drops of phenolphthalein as an indicator. The solution becomes pink. Titrate this solution against mixture taken in burette. The end point is just colourless. Note the final reading. Take at least three concordant readings to calculate the exact volume of H₂SO₄ used.

Observations and Calculations:

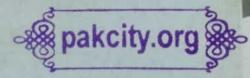
- (i) Vol. of NaOH taken for each titration = 10.0cm³.
- (ii) Vol. of H₂SO₄ used for each titration.

No. of Obs.	Initiabakci Reading	Final Reading	Vol. of H ₂ SO ₄ used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³


Concordant Reading = 10.0 cm³

www.pakcty.org

Amount in g/dm³ of H₂SO₄ = Molarity × mol. mass = 0.05×98 = 4.9 g/dm^3 % age of H₂SO₄ = $\frac{4.9}{10} \times 100 = 49\%$ % age of Na₂SO₄ = 100 - 49 = 51%


Result:

The given mixture contains 49% H₂SO₄ and 51% of Na₂SO₄.

DETERMINATION OF MOLECULAR AND ATOMIC MASSES

EXPERIMENT NO-6

The Given Solution Contain 4.0g of a Metal Hydroxide MOH Dissolved Per dm³. determine The Atomic Mass of the Metal 'M'.

Principle:

It is an acid-base titration. MOH is strong base and can be titrated with a strong acid.

Standard Solution: 0.05

0.05 M H₂SO₄

Indicator:

Phenolphthalein

End Point:

Just colourless

Equation:

Mole Ratio:

2MOH + H₂SO₄

2:1

Procedure:

Take the given H₂SO₄ solution in burette with the help of funnel and note the initial reading. Pipette out 10.0cm³ of MOH solution in conical flask. Add 1-2 drops of phenolphthalein as an indicator. The solution becomes pink. Titrate this solution against standard solution taken in burette. The end point is just colourless. Note the final reading. Take at least three concordant readings to calculate the exact volume of acid used.

Observations and Calculations: pakeity.org

- (i) Vol. of MOH taken for each titration = 10.0cm³
- (ii) Vol. of H₂SO₄ used from burette for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of H ₂ SO ₄ used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20,0	30.0	10.0cm ³

Concordant Reading = 10.0 cm³

Amount in g/dm^3 of MOH = molarity × mol. mass of MOH

 $4.0 = 0.1 \times \text{mol. mass of MOH}$

Mol. mass of MOH = $\frac{4.0}{0.1}$ = 40.0g

At mass of M = mol mass of MOH - Formula mass of OH

= 40.0 - 17 = 23 g/mol.

Result:

The atomic mass of metal 'M' is 23 so the metal is sodium Na (Natrium).

The given solution contains 5.6g of an alkali metal hydroxide MOH per dm³. Find out atomic mass of the metal and also the name of the metal.

Principle:

It is an acid-base titration. The alkali metal hydroxide can be titrated against an acid.

Standard Solution: 0.1 M HCI

Indicator: Phenolphthalein

End Point: Just colourless

Equation: MOH + HCl ---- MCl + H₂O

Mole Ratio: 1:1

Procedure:

Take the given HCl solution in burette with the help of funnel and note the initial reading. Pipette out 10.0cm³ of MOH solution in conical flask. Add 1-2 drops of indicator. The solution becomes pink. Titrate this solution against standard solution taken in burette. The end point is just colourless. Note the final reading. Take at least three concordant readings to calculate the accurate volume of acid used.

Observations and Calculations:

- (i) Vol. of MOH taken for each titration = 10.0cm³.
- (ii) Vol. of acid used for each titration.

No. of Obs.	Inpaktity.org	Final Reading	Vol. of HCl used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Concordant Reading = 10.0 cm³

+ HCI

$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$

$$\frac{M_1\times 10.0}{1} = \frac{0.1\times 10.0}{1}$$

$$M_1 = \frac{0.1 \text{ mol/dm}^3 \text{ of MOH}}{1}$$

Amount of MOH in g/dm^3 = Molarity × mol. mass of MOH

 $5.6 = 0.1 \times \text{mol. mass of MOH}$

(i) Mol. mass of MOH = $\frac{5.6}{0.1}$ = 56g

(ii) At mass of M = mol mass of MOH - Formula mass of OH = 56 - 17

= 39 g/mol.

Result:

The molecular mass of MOH is 56 and the atomic shass of metal 'M' is 39. So the given metal hydroxide is KOH. The metal is kalium K (Potassium)

Exercise:

The given solution contains 0.4g of MOH dissolved per 100cm. Determine the equivalent weight of MOH.

pakcity.org

The given solution contains 10 g dm⁻³ of caustic soda (NaOH). Find the % purity of the sample.

Solution:

Standard reagent = 0.1 M HCl

Indicator = Phenolphthalein

Principle of titration = Acid - Base neutralization

Equation = $NaOH + HC1 \longrightarrow NaCl + H_2O$

End point = Just colourless

Mole ratio = .1:1

Procedure:

Take HCl in the burette and 10 cm³ of caustic soda solution in the titration flask with the help of pipette. Add one or two drops of phenolphthalein as on indicator. The solution turned pink. Now titrate it against HCl from the bruette drop wise till colourless end point is obtained. Take three concordant readings.

Observations and Calculations:

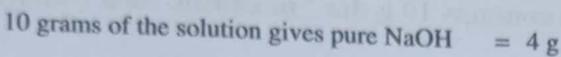
No.	Initial Reading	Initial Reading Final Reading Volume of	
1	0.0	10.0	10.0 cm ³
2	10.0	20.0	10.0 cm ³
3	20.0	30.0	10.0 cm ³

pakcity.org

 $C.R = 10.0 \text{ cm}^3$

$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$

$$\frac{M1 \times 10}{1} = \frac{0.1 \times 10}{1}$$


$$M_1 = 0.1$$

Amount /
$$dm^3$$
 of NaOH = Molarity × Molar mass

$$= 0.1 \times 40$$

HCl

$$=$$
 4.0 g dm⁻³

1 gram of the solution gives pure NaOH =
$$\frac{4}{10}$$

100 grams of the solution gives pure NaOH =
$$\frac{4}{10} \times 100 = 40\%$$

$$\% \text{ impurity} = 100 - 40 = 60\%$$

Result:

6.3g Of Organic Dibasic Acid Have Been dissolved Per dm³. Calculate Relative Molecular Mass Of Organic Dibasic Acid.

Principle:

It is an acid-base titration. Oxalic acid is a weak organic dibasic acid as it furnishes two protons its aqueous solution.

Standard Solution: 0.1 M NaOH

Indicator: Phenolphthalein

End Point: Just colourless

Equation: COOH COONa + 4H₂O

COOH COONa

Mole Ratio: 1:2

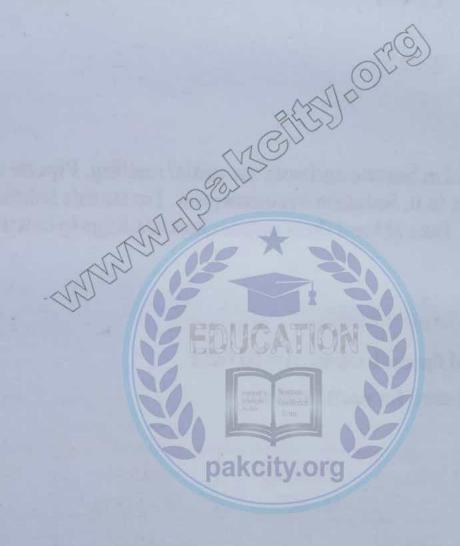
Procedure:

Take the given acid in burette and note the initial reading. Pipette out 10.0cm³ of NaOH in conical flask. Add 1-2 drops of indicator in it. Solution becomes pink. Titrate this solution against acid taken in burette. The end point is just colourless. Take at least three concordant readings to calculate the accurate volume of acid used.

Observations and Calculations:

(i) Vol. of NaOH used for each titration = 10.0cm³

(ii) Vol. of oxalic acid used for each titration.


No. of Obs.	Initial pakcity.org		Vol. of Oxalic	
	Reading	Reading	acid used	
1.	0.0	10.0	10.0cm ³	
2.	10.0	20.0	10.0cm ³	
3.	20.0	30.0	10.0cm ³	

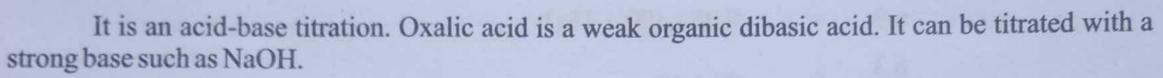
Concordant Reading = 10.0 cm³

Result:

P. W. coll 100 h W & S. Coll 1

The relative molar mass is 126g.mol

OF CRYSTALLIZATION


EXPERIMENT NO-10

The Given Solution Contains 6.3g Of

COOH xH2Odissolved Per dm3. Find Out The Value Of 'x'.

Principle:

化异物面积异苯甲

Standard Solution:

0.1 M NaOH

Indicator:

Phenolphthalein

End Point:

Just colourless

Equation:

COONa COONa

2NaOH + COOH

COONa $+(x+2)H_2O$

pakcity.org

Mole Ratio:

2:4

Procedure:

Take the given oxalic acid solution in burette with the help of funnel and note the initial reading. Pipette out 10.0cm³ of NaOH in conical flask. Add 1-2 drops of phenolphthalein as an indicator. The Solution becomes pink. Titrate this solution against acid solution taken in burette. The end point is just colourless. Note the final reading. Take at least three concordant readings to get the exact volume used.

Observations and Calculations:

- (i) Vol. of NaOH taken for each titration = 10.0cm³.
- (ii) Vol. of H₂C₂O₄.xH₂O used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of Oxalic acid used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Concordant Reading = 10.0 cm³

+ HCI

$$6.3 = 0.05 \times (90 + 18x)$$

$$\frac{6.3}{0.05} = 90 + 18x$$

$$126 = 90 + 18x$$

$$126 - 90 = 18x$$

$$36 = 18x$$

$$x = \frac{36}{18} = 2$$

$$x = 2$$

Result:

Water of crystallization in hydrated oxalic acid is = 2

DETERMINATION OF SOLUBILITY

EXPERIMENT NO-11

Determine The Solubility Of Oxalic Acid Volumetrically At Room Temperature.

Principle:

It is an acid-base titration. Oxalic acid is a weak acid and can be titrated with a base.

Standard Solution: 0.1 M NaOH

Indicator: Phenolphthalein

End Point: Just colourless

Equation: COOH . 2H₂O + 2NaOH + 4H₂O

COOH COONa

Mole Ratio:

Procedure:

Prepare a saturated solution of oxalic acid at room temperature. Take 10.0cm³ of this saturated solution and dilute it to 100cm³. Take this dilute solution in the burette with the help of funnel and note the initial reading. Pipette out 10.0cm³ of NaOH in conical flask. Add 1-2 drops of indicator in it. The Solution becomes pink. Titrate this solution against acid taken in burette. The end point is just colourless. Take at least three concordant readings to get the exact volume of acid used.

Observations and Calculations:

- (i) Vol. of NaOH taken for each titration = 10.0cm³.
- (ii) Vol. of oxalic acid used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of Oxalic acid used
1.	0.0	5.0	5.0cm ³
2.	5.0	10.0	5.0cm ³
3.	10.0	15.0	5.0cm ³

Concordant Reading = 5.0 cm³

$$= 0.1 \times 126$$

$$= 12.6 \text{ g/dm}^3$$

100cm³ dilute solution contain
$$H_2C_2O_4.2H_2O$$
 = $\frac{12.6}{1000} \times 10^{-1}$

$$= 1.26g$$

= 12.6g

10cm³ of saturated solution

10g of saturated solution contain oxalic acid

100g of saturated solution contain oxalic acid

$$= 1.26g (d = 1g/cm^3)$$

$$=\frac{1.26}{10} \times 100 = 12.6g$$

100cm³ of dilute solution

Result:

The solubility of oxalic acid at room temperature is = 12.6g

pakcity.org

The Given Solution Contain 5g Of Soap Dissolved Per 500cm³ Solution.

Determine The Percentage Of Free Alkali In Soap.

Principle:

Soap is formed by the reaction of oil and caustic soda. Washing soap contains NaOH as free Alkali. The soap solution may be titrated against a standard solution of HCl in presence of phenolphthalein as an indicator.

Standard Solution: 0.1 MHCl

Indicator: Phenolphthalein

End point: Just colourless

Equation: NaOH + HCl - NaCl + H2O

Mole ratio: 1:1

Procedure:

Take the given HCl in burette with the help of funnel and note the initial reading. Weigh 5g of toilet soap pieces and put them in hot water. Dissolve the soap and convert solution into 500cm³ measuring flask. Make up the volume upto mark. Take 50cm³ of soap solution in conical flask with the help of pipette. Add 1-2 drops of indicator in it. Titrate this solution against standard acid in burette. The end point is just colourless. Note the final reading. Take at least three concordant readings to calculate the exact volume of acid used.

Observations and Calculations:

- (i) Vol. of soap solution taken for each titration = 50.0cm³.
- (ii) Vol. of HCl used for each titration

No. of Obs.	Initial Pakei	Final Reading	Vol. of HCI used
1.	0.0	8.0	8.0cm ³
2.	8.0	16.0	8.0cm ³
3.	16.0	24.0	8.0cm ³

Concordant reading = 8.0cm³

$$= 0.016 \times 40$$

$$= 0.64 \text{ g/dm}^3$$

$$1000 \text{cm}^3 \text{ solution contain soap} = \frac{5}{500} \times 1000 = 10 \text{g}.$$

100g soap contain free alkali =
$$\frac{0.64}{10} \times 100 = 6.4\%$$

Result:

CASBEL

The given soap solution contain 6.4% free alkali.

The Given Solution Contains 40g Of Vinegar Per 200 Cm³ Of Solution. Calculate The % age Of Acetic Acid (CH, COOH) In This Vinegar Sample.

Principle:

Vinegar is a mixture containing 3-6% CH₃ COOH, Ethyl acetate, Ethyl for mate and a number of fermentation products. The amount of acetic acid can be determine by titrating it against some base. So, it is an acid base titration.

Standard Solution: 0.1 M NaOH

Indicator: Phenolphthalein

End point: Just colourless

Mole ratio: 1:1

Procedure:

Take the given vinegar solution in burette with the help of funnel and note the initial reading. Only CH₃COOH in vinegar will react with NaOH, Pipette out 10.0cm³ of NaOH in conical flask. Add 1-2 drops of indicator in it.

The solution becomes pink. Titrate this solution against the acid taken in burette. The end point is just colourless. Note the final reading. Take at least three concordant readings to get the exact volume of acid used.

Observations and Calculations: EDUCATION

- (i) Vol. of NaOH taken for each titration
- $= 10.0\,\mathrm{cm}^3$
- (ii) Vol. of CH₃COOH used for each titration.

pakcity.org

No. of Obs.	Initial Reading	Final Reading	Vol. of Acetic acid used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Concordant Reading = 10.0cm³

$$\begin{array}{ccc} CH_{3}COOH & NaOH \\ \underline{M_{1}V_{1}} & = & \underline{\frac{M_{2}V_{2}}{n_{2}}} \\ \underline{M_{1}\times 10.0} & = & \underline{0.1\times 10.0} \\ 1 & & & \\ \end{array}$$

 $M_1 = 0.1 \text{ mol/dm}^3 \text{ of } CH_3COOH$ Amounting g/dm³ of CH₃COOH = Molarity × Molecular mass

 $= 0.1 \times 60$ $= 6.0 \text{ g/dm}^{3}$ $200 \text{cm}^{3} \text{ solution contain vinegar} = 40 \text{g}$ $1000 \text{cm}^{3} \text{ solution contain vinegar} = \frac{40}{200} \times 1000$ $= 200 \text{g/dm}^{3}$ $200 \text{g vinegar contain CH}_{3} \text{COOH} = 6 \text{g}$ $100 \text{g vinegar contain CH}_{3} \text{COOH} = 3\%$ $\% \text{ age of CH}_{3} \text{COOH} = 3\%$

Result:

The given vinegar sample contains 3%. CH₃ COOH

The Given Solution Contain 16g Of Na₂CO₃ And NaCl Dissolved /dm³. Calculate the Composition Of each in 80g Of Mixture Volumetrically.

Principle:

It is an acid-base titration. In this mixture Na₂CO₃ is reactive against standard acid like HCl.

Standard Solution:

0.1 M HCl

Indicator:

Methyl Orange

End Point:

Just light pink / orange red

Equation:

 $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$

Mole Ratio:

1:2

Procedure:

Take the given HCl solution in burette and note the initial reading. Pipette out 10.0cm³ of basic mixture in conical flask. Add 1-2 drops of methyl orange as an indicator. The solution becomes yellow. Titrate this solution against HCl solution taken in burette. The end point is just light pink/orange red. Note the final reading. Take at least three concordant readings to calculate the exact volume of acid used.

Observations and Calculations:

- (i) Vol. of mixture taken for each titration = 10.0cm³.
- (ii) Vol. of acid used from burette for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of HCl used
1.	Q.Q.city	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Concordant Reading = 10.0 cm³

Na ₂ CO ₃	HCI
M_1V_1	M_2V_2
n ₁	n ₂
$\underline{M_1 \times 10.0}$	0.1×10.0
	2
$M_1 =$	0.05 mol/dm ³ of Na ₂ CO ₃
Amount per dm ³ of Na ₂ CO ₃	= molarity × mol. mass
	$= 0.05 \times 106$
	$= 5.3 \text{ g/dm}^3$
16g mixture contain Na ₂ CO ₃	= 5.3g
80g mixture contain Na ₂ CO ₃	$= \frac{5.3g}{16} \times 80 = 26.5 g$
Amount in NaCl	= 80 - 26.5
	= 53.5 g

Result:

The given 80 g mixture contains 26.5g of Na₂CO₃ and 53.5g of NaCl.

Exercise:

- The given solution contains 15g of a mixture of NaOH and Na₂SO₄ dissolved per dm³. Calculate the amount of NaOH in 50g of the mixture.
- (ii) The given solution contains 2.0g of HCl and NaCl dissolved in 500cm³. Calculate % age of NaCl.

The Given Solution Contains 0.84g Of Alkali Metal Bicarbonate dissolved Per 100cm³ Of Solution. Calculate Atomic Mass Of Metal 'M'.

Principle:

It is an acid-base titration. MHCO3 is a weak base. It can be titrated with a strong acid.

Standard Solution: 0.1 M HCl

Indicator: Methyl Orange

End Point: Just light pink / orange red

Equation: MHCO₃ + HCl ----- MCl + H₂O + CO₂

Mole Ratio: 1:1

Procedure:

Take the given HCl solution in burette with the help of funnel and note the initial reading. Pipette out 10.0cm³ of MHCO₃ in conical flask. Add 1-2 drops of methyl orange in it. The solution becomes yellow. Titrate this solution against HCl taken in burette. The end point is just light pink/orange red. Note the final reading. Take at least three concordant readings to calculate the accurate volume of acid used.

Observations and Calculations:

- (i) Vol. of MHCO₃ taken for each titration = 10.0cm³.
- (ii) Vol. of HCl used from burette for each titration.

No. of Obs.	Initial Reading City	Final Reading	Vol. of HCl used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Concordant Reading = 10.0 cm³

$$\begin{array}{ccc} MHCO_3 & & HC1 \\ \frac{M_1V_1}{n_1} & = & \frac{M_2V_2}{n_2} \\ \frac{M_1\times 10.0}{1} & = & \frac{0.1\times 10.0}{1} \end{array}$$

 $M_1 = 0.1 \text{ mol/dm}^3 \text{ of MHCO}_3$

 100cm^3 solution contain MHCO₃ = 0.84 g

1000 cm³ solution contain MHCO₃ = $\frac{0.84}{100} \times 1000$

 $= 8.4 \text{ g/dm}^3$

Amount of MHCO₃ in $g/dm^3 = molarity \times mol. mass of MHCO₃$

8.4 =
$$0.1 \times \text{mol. mass of MHCO}_3$$

Mol. mass of MHCO₃ = $\frac{8.4}{0.1}$ = 84

Atomic mass of M = mol mass of MHCO₃ - Formula mass of HCO₃

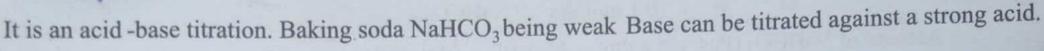
= 84 - 61

Atomic mass of M = 23

Result:

MATTER

The atomic mass of metal 'M' is 23 so, the metal is sodium Na (Natrium).


pakcity.or

www.pakcty.org

The Given Solution Contains 2.5g Of Impure Baking Soda (NaHCO3) dissolved per 250cm³. Calculate The %age Purity Of Sample Volumetrically:

Principle:

Standard Solution: 0.1 MHCl

Indicator: Methyl orange

End point: Just light pink / orange red

Equation: NaHCO₃ + HCl NaCl + H₂O + CO₂

Mole ratio: 1:1

Procedure:

Take the given acid in the burette with the help of funnel and note the initial reading. Pipette out 10.0cm³ of baking soda sample in conical flask. Add 1-2 drops of indicator in it. The solution becomes yellow. Titrate this solution against the solution taken in burette. The end point is just light pink/orange red. Take at least three concordant readings to calculate the exact volume of acid used.

Observations and Calculations:

- (i) Volof NaHCO₃ taken for each titration = 10.0 cm
- (ii) Vol. of Acid used for each titration.

EDUCATION

No. of Obs.	Initial Reading Final Reading	Vol. of HCI used
1.	0.8	-10.0cm ³
2	10.0 pakcity.org.0	10.0cm ³
3	20.0 30.0	10.0cm ³

Concordant reading = 10.0cm

pakcity.org

$$\begin{array}{ccc} NaHCO_{3} & & HCI \\ \underline{M_{1}V_{1}} & = & \underline{\frac{M_{2}V_{2}}{n_{2}}} \\ \underline{M_{1} \times 10.0} & = & \underline{0.1 \times 10.0} \\ 1 & & & & \\ \end{array}$$

 $M_1 = 0.1 \text{ mol/dm}^3 \text{ of NaHCO}_3$

Amount of NaHCO₃ (Pure) in g/dm³ = Molarity × Mol. mass

 $= 0.1 \times 84$ $= 8.4 \text{ g/dm}^3$

250 cm³ solution contains impure sample = 2.5g.

 $1000 \text{ cm}^3 \text{ solution contain impure sample} = \frac{2.5}{250} \times 1000$ = 10.0 g.

10.0g baking soda contain pure NaHCO₃ = 8.4g

100.0g backing soda contain pure NaHCO₃ =

 $= \frac{8.4}{10} \times 100$ = 84%

% age purity = 84%

Result:

The given impure sample of baking soda contains pure NaHCO₃ = 84%

Exercise:

The given soln contains 7.5g of impure baking soda NaHCO₃ dissolved per 500 cm³. Calculate % purity of the sample.

pakcity.org

The Given Solution Contains 8.0g Of Impure Na₂CO₃ (soda Ash) dissolved per dm³.

Calculate The % age Of Pure Na₂CO₃ Volumetrically.

Principle:

It is an acid base titration. Na₂CO₃ being a weak base can be titrated with a strong acid.

Standard Solution: 0.05M H₂SO₄

Indicator: Methyl orange

End point: • Just light pink / orange red

Equation: Na₂CO₃ +H₂SO₄ Na₂SO₄ +CO₂ +H₂O

Mole ratio: 1:1

Procedure:

Take the given H₂SO₄ in the burette with the help of funnel and note the initial reading. Pipette out 10.0cm³ of Na₂CO₃ in the conical flask. Add 1-2 drops of Methyl orange as an indicator in conical flask. The solution becomes yellow. Titrate this solution against acid taken in burette. The end point is just light pink/orange red colour. Note the final reading. Take at least three concordant readings to calculate the exact volume of acid used.

Observations and Calculations:

- (i) Vol. of Na₂CO₃ taken for each titration = 10.0cm³
- (ii) Vol. of Acid used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of H ₂ SO ₄ used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Concordant reading = $10.0cm^3$

Result:

The given impure sample of soda ash contain 66.25% pure Na₂CO₃.

Exercise:

- The given solution contains 5g of impure sample of soda ash Na₂CO₃ dissolved per 500cm³.

 Calculate the %age purity of sample.
- (ii) The given solution contains 2g of washing soda dissolved per 250cm³ of solution. Calculate the %age purity of Na₂CO₃ in the sample.

pakcity.org

SECTION-II REDOX (KMnO₄ Titration)

Redox Reaction:

A reaction in which both oxidation and reduction reactions occur simultaneously is called redox reaction.

🛞 pakcity.org 🫞

Oxidation:

Oxidation may be defined in a number of way as if the reactant.

- Gains oxygen.
- (2) Losses electrons.
- Losses hydrogen.
- Increase in oxidation number, then the process of oxidation occurs.

Reduction:

Reduction is the opposite of oxidation. In this reaction, if the reactant.

- Gains hydrogen.
- (2) Gains electrons.
- (3) Losses oxygen.
- There is a decrease in oxidation number.

The process of oxidation and reduction are opposite to each other. They take place simultaneously. No reaction occurs alone.

Consider The Followwing Reaction:

Since FeSO₄ is converted into Fe₂ (SO₄)₃ there is a loss of electrons.

We can calculate it by the following method.

$$Fe - 2 = 0$$
 $2Fe - 6 = 0$
 $Fe = +2$ $2Fe = +6$
 $Fe = +6/2$

$$Fe^{+2} \rightarrow Fe^{+3} + 1e^{-}$$
 Fe = +3

Since there is loss of e, So oxidation take place in the above reaction.

Similarly

OR

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{+2} + 4H_2O$$

$$(+1)+Mn+4(-2)=0$$
 $Mn+(+6)+4(-2)=0$

$$Mn+1-8=0$$
 $Mn+6-8=0$

$$Mn-7 = 0 \qquad Mn-2 = 0$$

$$Mn = +7 \qquad Mn = +2$$

Since
$$M_n^{+7} + 5e^- \longrightarrow M_n^{+2}$$

There is a gain of electrons so reduction take place.

The branch of volumetric analysis in which an oxidizing agent is titrated against a reducing agent or vice versa is called Redox titration.

A substance that gains electrons during a chemical reaction is called oxidizing agent e.g. KMnO₄. The positive charge of an oxidizing agent is reduced during a chemical reaction.

Oxidizing agent is always reduced in the reaction.

A substance that losses or donates electrons in a chemical reaction is called a reducing agent e.g FeSO₄ 7H₂O. The positive charge of reducing agent is increased during the chemical reaction. Reducing agent is always exidized in a chemical reaction.

List of Oxidizing Agents:

- (I) KMnO₄
- (2) K₂Cr₂O₇
- (3) Conc. HNO,

List of Reducing Agents:

- (1) FeSO₄.7H₂O
- (2) FeSO₄. (NH₄)₂ SO₄. 6H₂O (Mohr's Salt)
- (3) H₂C₂O₄. 2H₂O
- (4) Na₂C₂O₄.
- (5) K₂C₂O₄.
- (6) (NH₄)₂ C₂O₄ . H₂O

Indicator:

KMnO₄ itself acts as an indicator in these reaction because it is a colour substance. Oxidation-reduction reaction is a colourless reaction. At the end point one drop of KMnO₄ indicates the end point by changing the colour of solution pink.

Reaction of KMnO4 with FeSO, .. 7H,O.

$$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$$

 $[2FeSO_4 + H_2SO_4 + [O] \longrightarrow Fe_2(SO_4)_3 + H_2O] \times 5$

2KMnO₄ + 8H₂SO₄ + 10FeSO₄ --- K₂SO₄ + 2MnSO₄ + 5Fe₂(SO₄)₃+ 8H₂O

Reduction of KMnO4 with Mohr's Salt:

 $2KMnO₄ + 3H₂SO₄ \longrightarrow K₂SO₄ + 2MnSO₄ + 3H₂O + 5(O)$

Reaction of KMnO4 with Oxalic Acid:

$$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5(O)$$

$$\begin{bmatrix} COOH \\ COOH \end{bmatrix} + (O) \longrightarrow 2CO_2 + H_2O \end{bmatrix} \times 5$$

$$2KMnO_4 + 3H_2SO_4 + 5 \xrightarrow{COOH} \longrightarrow K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O$$

Reaction of KMnO, with Salts of Oxalic Acid:

GENERAL INSTRUCTIONS FOR KMNO, TITRATIONS:

- (1) Always take KMnO₄ in the burette KMnO₄ being a coloured liquid, its upper meniscus is read.
- (2) KMnO₄ itself acts as an indicator some other indicator is used in KMnO₄ titration.
- As indicated in the above equations, all redox reactions take place in presence of dilute. H₂SO₄, Therefore always add half test tube of dilute H₂SO₄ in conical flask.
- (4) When titrations with oxalic acid are carried out, 60-70C temperature is needed.
- If the temperature falls below 60C, brown ppt must appear which tells about incomplete reaction, so always titrate hot solution while carrying out titration with oxalic acid.
- In case of Ferrous ions, heating is not necessary because on heating Fe⁺² are easily converted into Fe³⁺ ions, by atmospheric oxygen.
- Sometimes a brownish black colour or brown precipitates are obtained at the end point which may be due to the following reasons.
 - (i) Due to abrupt addition of KMnO₄ solution in form of continuous stream.
 - (ii) Due to insufficient amount of dil. H₂SO₄ added.
 - (iii) Due to incomplete reactions MnO₂ ppt settle down.
- (8) The burette should not be filled upto zero mark because upper meniscus is to be read in the reaction.
- Due to green colour of iron salts solution, during their volume measurement, upper meniscus must be read.

Standardize The Given Solution Of KMnO4 By Volumetric Method.

Principle:

It is a redox titration. KMnO₄ is an oxidizing agent and can be reduced by some reducing agent e.g FeSO₄ 7H₂O in presence of dil. H₂SO₄.

Standard Solution: 0.1M FeSO₄. 7H₂O

Indicator: KMnO₄ (itself)
End point: Just light pink

Equation: 2KMnO₄ + 10FeSO₄.7H₂O + 8H₂SO₄ - K₂SO₄+2MnSO₄ + 5Fe₂(SO₄)₃ + 78H₂O

Mole Ratio: 2:10

Procedure:

Result:

Take KMnO₄ solution in the burrette with the help of funnel and remove the funnel. Note the initial reading. Pipette out 10.0cm³ of FeSO₄. 7H₂O in conical flask. Add half test tube of dil H₂SO₄ in it. Titrate this solution against KMnO₄ solution taken in burette. End point is just light pink. Take at least three concordant readings to get the exact volume of KMnO₄ used₁

Observation and Calculations:

- (1) Vol. of FeSO₄. 7H₂O solution taken in conical flask for each titration = 10.0cm³.
- (ii) Vol. of KMnO, used from burette for each titration

Г	No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO ₄ used
Γ	1.	0.0	10.0	10.0cm ³
T	2.	10.0	20.0	10.0cm ³
	3.	20.0	30.0	10.0cm ³

Cancordant reading = 10.0 cm³

The given KMnO₄ solution is 0.02M having 3.16 g/dm³.

Standardize The Given Solution Of KMnO4. Also Calculate
The Volume Of KMnO4 Required To Prepare 400cm³ Of 0.005M KMnO4.

Principle:

It is a redox-titration KMnO₄ is an oxidizing agent and can be reduced with some reducing agent.

Standard Solution:

0.1M Mohr's salt

Indicator:

KMnO₄ (itself)

End point:

Just light pink

Equation:

 $2KMnO_4 + 10FeSO_4 (NH_4)_2 SO_4 . 6H_2O + 8H_2SO_4$

1

 $K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 10(NH_4)_2SO_4 + 68H_2O$

Mole Ratio:

KMnO₄: Mohr's salt

2

Procedure:

)H

Take given KMnO₄ solution in the burette with the help of funnel, then remove the funnel and note the initial reading. Take 10.0cm³ of Mohr's salt in conical flask with the help of pipette. Add half test tube of dil H₂SO₄ in it. Titrate this solution against KMnO₄ taken in burette. The end point is just light pink colour.

Note the final reading. Take at least three concordant readings to calculate the exact volume of KMnO₄ used.

Observations and Calculations:

(i) Vol. of Mohr's salt soln taken for each titration = 10.0cm³

(ii) Vol. of KMnO4 used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO4 used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Cancordant reading = 10.0 cm³

+ HCI

KMnO₄

Mohr's salt

$$\frac{M_1V_1}{n_1}$$

$$M_1 \times 10.0$$

$$\frac{0.1\times10.0}{10}$$

$$M_1$$

 M_1

$$\frac{0.1 \times 10.0}{10} \times \frac{2}{10.0}$$

0.02 mol/dm3 of KMnO4

+ HCI

Dilution Formula:

$$M_1V_1 =$$

$$M_1V_1 =$$

$$M_2V_2$$

$$0.02 \times V_1$$

$$0.005M \times 400$$

$$0.005M \times 400$$

$$V_1$$

 V_1

Given KMnO₄

 100cm^3

Result:

MA MO

Molarity of given KMnO₄ soln is 0.02 mol/dm³ 100cm³ of this solution is required to mix with 300cmof water to get 0.005M soln of 400cm³ volume.

MIXTURE ANALYSIS

EXPERIMENT NO-20

The Given Solution Contain 8.0 Grams Of A Mixture Of KMnO₄ And K₂SO₄ dissolved Per dm³. Calculate The Amount Of K₂SO₄ In The Mixture Solution.

Principle:

It is a redox titration. KMnO₄ is an oxidizing agent and can be titrated against reducing agent like FeSO₄. 7H₂O in the presence of dil H₂SO₄. In the give mixture, only KMnO₄ is reactive.

Standard Solution

0.1M FeSO₄.7H₂O

Indicator

KMnO₄ (itself)

End Point

Just light pink

Equation:

2KMnO₄ + 10FeSQ₄ + H₂O + 8H₂SO₄

K₂ SO₄ + 2MnSO₄ + 5Fe₂(SO₄)₃ + 78H₂O

Mole Ratio

KINDO!

FeSQ₄. 7H₂C

10

Procedure:

Take mixture solution in the curette and note the initial reading. Pipette out 10.0cm³ of FeSO₄. 7H₂O solution in conical flask. Then add half test take of dil. H₂SO₄ in it. Titrate this solution against mixture taken in burette. The end point is just light pink. Note the final reading. Take at least three concordant reading to calculate the exact volume of KMnO₄ used.

pakcity.org

Observations and Calculations:

- (i) Vol. of FeSO₄. 7H₂O soln taken for each titration =
- (ii) Vol. of KMnO4 used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO4 used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Cancordant reading = 10.0 cm³

10.0cm³.

Amount of KMnO₄in g/dm³ = Molarity × Mol. mass

$$= 0.02 \times 158$$

= 3.16 g/dm³

8.0g mixture contain KMnO₄ = 3.16g

Amount of
$$K_2SO_4 = 8 - 3.16$$

= 4.84g

Result:

In the given mixture of KMnO₄ and K_2SO_4 , the amount of K_2SO_4 is = 4.84g

Exercise:

- The given solution contains 5.0g of a mixture of KMnO₄ and K₂SO₄ dissolved per 500cm³ soln.

 Determine the % age of each component in the mixture.
- The given solution contain 8.0g of mixture of KMnO₄ and K₂SO₄ dissolved per dm³. Find out composition of each in 200g of the mixture.

The Given Solution Contains 6.0g Of Hydrated Oxalic Acid And Sulphuric Acid dissolved per 500 Cm³ Of Solution. Find The % age Composition Of each.

Principle:

It is a redox titration. In this mixture oxalic acid reacts with KMnO4 in the presence of dil. H2SO4.

Standard Solution: 0.02M KMnO₄

Indicator: KMnO₄ (itself)

End Point: Light pink

Equation: $2KMn O_4 + 5$ $2H_2O + 3H_2SO_4$

COOH

Mole Ratio: KMnO₄: Oxalic acid

2 :

Procedure:

H

NH

Take given KMnO₄ solution in the burette and note the initial reading. Pipette out given mixture of oxalic acid and sulphuric acid in the conical flask and then add half test tube of dil. H₂SO₄ in it. Heat the solution upto 60-70C and then titrate this hot solution against KMnO₄. The end point is just light pink. Note the final reading. Take at least three concordant readings to calculate the exact volume of KMnO₄ used.

Observations and Calculations:

(i) Vol. of mixture taken for each titration = 10.0cm

(ii) Vol. of KMnO4 used for each titration.

 No. of Obs.
 Initial Reading
 Final Reading
 Vol. of KMnO₄ used

 1.
 0.0
 10.0
 10.0cm³

 2.
 10.0
 20.0
 10.0cm³

 3.
 20.0
 30.0
 10.0cm³

Cancordant reading = 10.0 cm³

+ HCl

 $K_2SO_4 + 2MnSO_4 + 10CO_2 + 18H_2$

NO

Molarity × Molar mass Amount is g/dm3 of oxalic acid 0.05×126

 6.3 g/dm^3

500cm³ solution contain mixture 6.0g

 $\frac{6}{500} \times 1000 = 12g$ 1000cm³ solution contain mixture

12g mixture contain oxalic acid

 $\frac{6.3}{12} \times 100$ 52.5% 100g mixture contain oxalic acid

% age of $H_2SO_4 = 100 - 52.5$

Result:

The given mixture contains 52.5% oxalic acid and 47.5% of H₂SO₄.

The Given Solution Contain 10 Grams Of A Mixture Of Ammonium Oxalate And Ammonium Sulphate dissolved Per dm3. Find Out % age Of each By Volumetric Method.

Principle:

It is a redox titration. In the given mixture, Ammonium oxalate contain C₂O₄²⁻ ions and can be titrated against oxidizing agent in the presence of dil. H₂SO₄.

> Standard Solution: 0.02M KMnO₄

> Indicator: KMnO₄ (itself)

End point: Just light pink

Equation: $2KMnO_4+5(NH_4)_2C_2O_4$. $H_2O + 8H_2SO_4$

 $K_2SO_4 + 2MnSO_4 + 5(NH_4)_2 SO_4 + 10CO_2 + 13H_2O$

Mole Ratio:

KMnO₄:

(NH₄)₂ C₂Q₄, H₂O

Procedure:

Take KMnO₄ solution in the burette and note the initial reading. Pipette out 10.0cm³ of mixture in the conical flask and add half test tube of dif. PisO, in it. Heat the solution of conical flask upto 60-70C. Now titrate this hot solution against KMnO. The end point is just light pink. Note the final reading. Take at least three concordant readings to get the exact volume of KMnO, used.

Observations and Calculations:

- Vol. of Mixture, taken for each titration = 10.0cm³
- Vol. of KMnO₄ used for each titration.

pakcity.org

No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO4 used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Cancordant reading = 10.0 cm3

$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$

$$\frac{M_1 \times 10.0}{5} = \frac{0.02 \times 10.0}{2} \times \frac{5}{10.0}$$

$$= 0.05M \text{ Amm . Oxalate.}$$
Amount in g/dm³ of (NH₄)₂ C₂O₄ . H₂O = 0.05 \times 142 = 7.1 g/dm³

10g mixture contain (NH₄)₂ C₂O₄ . H₂O = $\frac{7.1}{10} \times 100$
= 71%
% age of (NH₄)₂ SO₄

$$= \frac{710}{2} \times \frac{5}{10.0}$$

Result:

1011 11 N

In the given mixture 71% (NH₄)₂ C₂O₄. H₂O and 29% (NH₄)₂ SO₄ is present.

Exercise:

H

The given solution contains 12g mixture of potassium oxalate and potassium sulphate dissolved per dm³. Find out % age of ecah volumetrically.

The Given Solution Contains 6.3g Of Hydrated Oxalic Acid COOH X H₂O dissolved Per dm³. Find Out Value Of 'x'.

Principle:

It is a redox titration. Oxalic acid is a reducing agent and can be oxidized to CO₂ by an oxidizing agent such as KMnO₄ in the presence of dil. H₂SO₄ at 60-70 C.

Standard Solution:

0.02M KMnO₄

Indicator:

KMnO₄ (itself)

End Point:

Just light pink

Equation:

2KMnO₄ + 5 COOH . xH₂O+ 3H₂SO₄

СООН

 K_2SO_4 $+ 2MnSO_4 + 10CO_2 + (5x + 8) H_2O$

KMnO₄

: Oxalic acid

Mole Ratio:

Procedure:

Take given KMnO₄ solution in the burette with the help of funnel and then remove the funnel. Note the initial reading. Pipette out 10.0cm³ of oxalic acid in conical flask.

Add half test tube of dil. H₂SO₄ in it. Heat the solution upto 60-70C and then titrate this hot solution against standard KMnO₄ solution. End point is just light pink. Note the final reading. Take at least three concordant readings to calculate the exact volume of KMnO₄ used.

Observations and Calculations:

(i) Vol. of oxalic acid taken for each titration

= 10.0cm

(ii) Vol. of KMnO4 used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO ₄ used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

 $M_1 = 0.05M$ oxalic acid

Mol. mass of $H_2C_2O_4$. $xH_2O = 90 + 18x$.

Amount in g/dm³ of oxalic acid = Molarity × Mol. mass

$$6.3 = 0.05 \times (90 + 18x)$$

$$\frac{6.3}{0.05} = (90 + 18x)$$

$$126 = (90 + 18x)$$

$$126 - 90 = 18x$$

$$36 = 18x$$

$$x = \frac{36}{18} = 2$$
 $x = 2$

$$x = 2$$

Result:

The number of water molecules associated with one mole of $H_2C_2O_4$ is = 2

pakcity.org

www.pakcty.org

The Given Solution Contains 13.99 Of FeSO4. XH2O dissolved Per 500cm³ Solution. Find Out Value Of 'x' By Volumetric Method.

Principle:

KALLO

It is a redox titration. FeSO₄ is a reducing agent and can be titrated against standard KMnO₄ solution in the presence of dil. H₂SO₄.

Standard Solution : 0.02M KMnO₄

Indicator : KMnO₄ (itself)

End Point : Just light pink

Equation : $2KMnO_4 + 10FeSO_4 \cdot xH_2O + 8H_2SO_4$

 $K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + (10x + 8)H_2O_4$

Mole Ratio: KMnO₄ : FeSO₄₀ xH₂O

2 :

Procedure:

Take given KMnO₄ solution in the burette and note the initial reading. Pipette out 10.0cm³ of FeSO₄. xH₂O solution in conical flask. Then add half test tube of dilute H₂SO₄ in it. Titrate this solution against KMnO₄ solution taken in burette. The end point is just light pink. Note the final reading. Take at least three concordant readings to get the exact volume of KMnO₄ used.

Observations and Calculations:

- i) Vol. of FeSO₄. xH₂O taken for each titration = 10.0cm³.
- (ii) Vol. of KMnO4 used for each titration =

No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO ₄ used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

 500cm^3 solution contain FeSO₄ . $xH_2O = 13.9g$.

 1000cm^3 solution contain FeSO₄ . $xH_2O = \frac{13.9}{500} \times 1000$ $= 27.8 \text{ g/dm}^3$

Amount in g/dm^3 = Molarity × mol. mass of FeSO₄ . xH_2O .

$$\frac{27.8}{0.1} = 152 + 18x$$

$$\frac{27.8}{0.1} = 152 + 18x$$

$$278 = 152 + 18x$$

$$278 - 152 = 18x$$

$$126 = 18x$$

$$x = \frac{126}{18} = 126$$

$$x = 7$$
EDUCATION

Ferror molecule in hydrated FeSO₄ is 7

Result:

H,

No. of water molecule in hydrated FeSO4 i

pakcity.org

The Given Solution Contains 3.929 Of FeSO, (NH4), SO4.xHO2 dissolved Per 100cm³ Of Solution. Determine Value Of 'x' By Volumetric Method:

Principle:

It is a redox titration. Mohr's salt is a reducing agent and can be titrated with some oxidizing agent like KMnO₄.

Standard Solution: 0.02M KMnO₄

Indicator : KMnO₄ (itself)
End Point : Just light pink

Equation : $2KMnO_4 + 10FeSO_4 \cdot (NH_4)_2 SO_4 \cdot xH_2O + 8H_2SO_4$

 $K_2SO_4 + 2MnSO_4 + 5Fe_2 (SO_4)_3 + 10(NH_4)_2 SO_4 + (10x + 8)H_2O_4$

Mole Ratio: KMnO₄ : Mohr's Salt

2 : 100

Procedure:

Take the given KMaO₄ solution in burette and note the initial reading. Pipette out 10.0cm³ of Mohr's salt solution in the conical flask and then add half test tube of dil. H₂SO₄ in it. Titrate this solution against standard solution taken in burette. The end point is just light pink. Note the final reading. Take at least three concordant readings to calculate the exact volume of KMnO₄ used.

Observations and Calculations: EDUCATION

(i) Vol. of Mohr's salt taken for each titration

10.0cm3

(ii) Vol. of KMnO4 used for each titration.

pakcity.org

No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO ₄ used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0em ³

100cm³ solution contain Mohr's salt = 3.92

$$1000 \text{cm}^3$$
 solution contain Mohr's salt = $\frac{3.92}{100} \times 1000$
= 39.2 g/dm^3

Mol. mass of FeSO₄. $(NH_4)_2 SO_4 . xH_2O = 284 + 18x$.

Amount in g/dm³ = Molarity × Mol. mass of Mohr's salt.

$$39.2 = 0.1 \times (284 + 18x)$$

$$\frac{39.2}{0.1} = 284 + 18x$$

$$392 = 284 + 18x$$

$$392 - 284 = 18x$$

$$108 = 18x$$

$$x = \frac{108}{18}$$

$$x = 6$$

Result:

No. of water molecules in hydrated Mohr's Salt is = 6

pakcity.org

To determine The Solubility Of Mohr's Salt At Room Remperature:

Principle:

It is a redox-titration. Mohr's salt is a reducing agent and can be titrated with standard oxidizing agent e.g KMnO₄ in the presence of dil. H₂SO₄.

Standard Soln : 0.02M KMnO₄

Indicator : KMnO₄ (itself)

End Point : Just light pink

Equation : $2KMnO_4 + 10FeSO_4 (NH_4)_2 SO_4 . 6H_2O + 8H_2SO_4$

 $K_2SO_4 + 2MnSO_4 + 5Fe_2 (SO_4)_3 + 10(NH_4)_2 SO_4 + 68H_2O$

Mole Ratio: KMnO₄: Mohr's Salt

Procedure:

Take the given KMnO₄ solution in burette and note the initial reading. Prepare a saturated soln of Mohr's Salt at room temperature. Now take 10.0cm of this saturated solution and dilute it upto 200cm of solution. Now pipette out 10.0cm of this dilute solution in conical flask. Then add half test tube of dil. H₂SO₄ in it. Titrate this solution against KMnO₄. The end point is just light pink. Note the final reading. Take at least three concordant readings to calculate the exact volume of KMnO₄ used.

Observations and Calculations: EDUCATION

- (i) Vol. of Mohr's Salt taken for each titration
- 10.0cm³.
- (ii) Vol. of KMnO₄ used for each titration =

pakcity.org

No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO4 used
1.	0.0	5.0	5.0cm ³
2.	5.0	10.0	5.0cm ³
3	10.0	15.0	5.0cm ³

Concordant Reading= 5.0cm

$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$

$$\frac{M_1 \times 10.0}{10} = \frac{0.02 \times 5.0}{2}$$

$$M_1 = \frac{0.02 \times 5.0}{2} \times \frac{10}{10.0}$$

 $M_1 = 0.05 \text{ mol/dm}^3$

Amount in g/dm³ = Molarity × Mol. mass of Mohr's Salt

 $= 0.05 \times 392$

= 19.6 g/dm³

1000cm³ solution contain Mohr's Salt = 19.6g

200cm³ solution contain Mohr's Salt =

$$= \frac{19.6}{1000} \times 200 = 3.92g$$

200cm³ dilute soln contain Mohr's Salt = 3.92g

10cm³ of water = 10g of water

200cm³ of dilute soln = 10cm³ of saturated solution.

10cm³ of saturated solution contain Mohr's Salt = 3.92g.

 100cm^3 of saturated solution contain Mohr's Salt = $\frac{3.92}{10} \times 100$

= 39.2 g/100g

→ pakcity.org

Solubility of Mohr's Salt = 39.2g/100g of H₂O.

Result:

The solubility of Mohr's Salt at room temperature is = 39.2g pakeity.org

Determine The Solubility Of Oxalic acid at room temperature.

Principle:

OH

NO.

OK

OH

ONH

)H

It is a redox titration. Oxalic acid is a reducing agent and can be titrated with some oxidizing agent like KMnO₄ at 60-70C°.

Standard Solution : 0.02M KMnO₄

Indicator : KMnO₄ (itself)

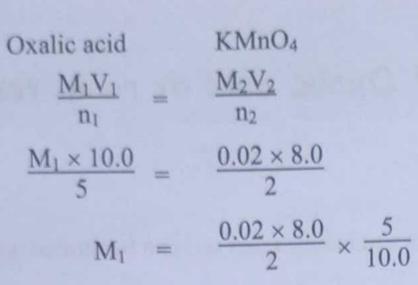
End Point : Just light pink

Equation : $2KMnO_4 + 5H_2C_2O_4 + 2H_2O + 3H_2SO_4$

 $K_2SO_4 + 2MnSO_4 + 10CO_2 + 18H_2O$

Mole Ratio: KMnO₄ : Oxalic acid

Procedure:


Take the given KMnO₄ solution in the burette and Note the initial reading. Prepare a saturated solution of oxalic acid at room temperature. Take 10.0cm³ of this saturated solution and dilute it upto 250cm³ in a measuring flask. Take 10.0cm³ of this dilute oxalic acid solution in conical flask and then add half test tube of dil. H₂SO₄ in it. Heat the solution of conical flask upto 60-70C°. Titrate this hot solution against KMnO₄. The end point is just light pink. Note the final reading. Take at least three concordant readings to calculate the exact volume of KMnO₄ used.

Observations and Calculations:

- (i) Vol. of oxalic acid taken for each titration, org 10.0cm³.
- (ii) Vol. of KMnO₄ used for each titration =

No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO ₄ used
1.	0.0	8.0	8.0cm ³
2.	8.0	16.0	8.0cm ³
3.	16.0	24.0	8.0cm ³

concordant reading = 8.0 cm3

 M_1 0.04M

Amount in g/dm^3 = Molarity × Mol. mass $= 0.04 \times 126$ $= 5.04 \text{ g/dm}^3$

1000cm³ solution contain oxalic acid = 5.04

 250cm^3 solution contain oxalic acid = $\frac{5.04}{1000} \times 250$ = 1.26g

250cm³ dilute solution contain oxalic acid = 126g

10cm³ of water = 10g of water

250cm³ of dilute solution= 10cm³ of saturated solution.

10.0cm³ saturated solution contain oxalic acid = 1.26g.

 100cm^3 of saturated solution contain oxalic acid = $\frac{1.26}{10} \times 100$

 $= 12.6 \text{ g/}100 \text{g of H}_2\text{O}$

Solubility of $H_2C_2O_4$. $2H_2O = 12.6g/100g$ of H_2O .

Result:

Hence the solubility of oxalic acid at room temperature is = 12.6 g

6.5g Of An Impure Sample Of KMno, Is dissolved Per dm³. Determine %age Of Mn Present In The Given Solution:

Principle:

It is a redox titration. KMnO₄ is an oxidizing agent and can be reduced to Mn²⁺ ions by a suitable reducing agent such as Mohr's Salt.

Standard Solution

0.1M Mohr's Salt

Indicator

KMnO₄ (itself)

End Point

Just light pink

Equation

 $2KMnO_4 + 10 FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 6H_2O + 8H_2SO_4$

 $K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 10(NH_4)_2 SO_4 + 68H_2O$

Mole Ratio:

KMnO₄

Mohr's Salt

2

Procedure:

IH.

Take the given KMnO₄ solution in burette and Note the initial reading. Pipette out 10.0cm³ of Mohr's Salt in conical flask and add half test tube of dilute H₂SO₄ in it. Titrate this solution against KMnO₄. The end point is just light pink. Note the final reading. Take at least three concordant Reading. to calculate the exact volume of KMnO₄ used.

Observations and Calculations:

(i) Vol. of Mohr's salt taken for each titration

10.0cm

(ii) Vol. of KMnO₄ used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO ₄ used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Amount in g/dm³ = Molarity × relative Atomic mass of Mn. $= 0.02 \times 55$ $= 11 \text{ g/dm}^3$

6.5 g of the sample contains Mn = 1.1 g 1 g of the sample contains Mn = $\frac{1.1}{6.5}$

100 g of the sample contains Mn = $\frac{1.1}{6.5} \times 100 = 16.92\%$

Result:

The given sample of KMnO₄ contain 16.92% Mn.

Exercise:

Find out the % age of Mn in the given sample of KMnO₄,1.65g of which has been dissolved per 500c

The Given Solution Contain 30.0g Per dm³ Of A partially Oxidized Ferrous Sulphate Calculate The Percentage Oxidation By Volumetric Method:

Principle:

FRe-mare

It is a redox titration. FeSO₄ is a reducing agent and get oxidized easily in atmosphere. It can be titrated against some standard oxidizing agent like $KMnO_4$ in the presence of dil. H_2SO_4 .

Standard Solution : 0.02M KMnO₄

Indicator : KMnO₄ (itself)

End Point : Just light pink

Equation : $2KMnO_4 + 10FeSO_4 \cdot 7H_2O + 8H_2SO_4$

 $K_2SO_4 + 2MnSO_4 + 5Fe_2 (SO_4)_3 + 78H_2O$

Mole Ratio: KMnO₄: FeSO₄. 7H₂O

1

Procedure:

Take the given KMnO₄ solution in the burette and note the initial reading. Pipette out 10.0cm³ of FeSO₄ (Partially Oxidized) in conical flask and then add half test tube of dil. H₂SO₄ in it. Titrate this solution against KMnO₄. The end point is just light pink.

Note the final reading. Take at least three concordant readings to calculate the exact volume of KMnO₄used.

Observations and Calculations:

- (i) Vol. of FeSO₄ taken for each titration
- (ii) Vol. of KMnO₄ used for each titration = pakcity.org

10.0cm³.

No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO ₄ used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Amount in g/dm³ of FeSO₄ .7H₂O = Molarity × Mol. mass
=
$$0.1 \times 278$$

= 27.8 g/dm^3

30g sample contain pure FeSO₄ . $7H_2O = 27.8g$

Amount of oxidized FeSO₄
$$.7H_2O = 30 - 27.8 = 2.2$$

% of partially oxidised FeSO₄ =
$$\frac{2.2}{30} \times 100 = 7.33$$
 %

Result:

The given impure sample contains 7.33% partially oxidized FeSO₄ .7H₂O.

The Given Solution Contains 27.89 Of FeSO₄.7H₂O Dissolved per dm³. Find The Amount Of Iron In The Given Sample By Volumetric Method:

Principle:

It is redox titration. FeSO₄. 7H₂O is a reducing agent and can be titrated against KMnO₄ in the presence of dil. H₂SO₄.

Standard Solution: 0.02M KMnO₄

Indicator : KMnO₄ (itself)

End Point : Just light pink

Equation : $2KMnO_4 + 10FeSO_4 \cdot 7H_2O + 8H_2SO_4$

 $K_2SO_4 + 2MnSO_4 + 5Fe_2 (SO_4)_3 + 78H_2O$

Mole Ratio: KMnO₄: FeSO₄. 7H₂O

2 : 1

Procedure:

Take the given KMnO₄ in the burette and Note the initial reading. Pipette out 10.0cm³ of FeSO₄. 7H₂O solution in the conical flask. Then add half test tube of dil. H₂SO₄ in the flask. Titrate this solution against KMnO₄ in the burette. The end point is just light pink. Note the final reading. Take at least three concordant readings to calculate the exact volume of KMnO₄ used.

Observations and Calculations:

(i) Vol. of FeSO₄. 7H₂O solution taken

10.0cm

(ii) Vol. of KMnO₄ used for each titration.

pakcity.org

No. of Obs.	Initial Reading	Final Reading	Vol. of KMnO ₄ used
1	0.0	10.0	10.0cm ³
2	10.0	20.0	10.0cm ³
2.	20.0	30.0	10.0cm ³

Concordant Reading = 10.0cm³

+ HCI

Result:

The given solution of FeSO₄. 7H₂O contain 5.6g iron per dm³.

(Viale)

SECTION-III **IODINE TITRATION** (REDOX TITRATIONS)

ODINE TITRATION:

Iodine titration is the type of redox titration. Iodinine acts as an oxidizing agent and can be titrated against reducing agent like Na, S,O,.

OXIDIZING AGENT:

Iodine (I2) itself acts as an oxidizing agent and in the reaction itself reduced.

REDUCING AGENT:

Na₂S₂O_{3.5H₂O (sodium thiosulphate) acts as a reducing agent and in the reaction itself} oxidized.

INDICATOR:

Mostly starch is used as an indicator in Iodimetry. Although Iodine can be used as an indicator because it has an intense yellow to brown colour. But during Titration it is difficult to detect the disappearance of yellow colour, so starch is used near the end point. Starch produces a deep blue complex with iodine. The complex is visible at low concentration of jodine. It gives water insoluble complex with iodine, so that is why we use indicator near to the end point.

Types of Iodine Titrations:

There are two types of Iodine titration.

(1) Iodimetry (2) Iodometry

Iodimetry (Direct Titration):

Iodine is an oxidizing agent. Its standard solution is directly titrated with sodium thiosulphate, which is a reducing agent.

$$I_2 + Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6$$

In this iodine solution is taken in iodine flask. (stopper conical flask). Iodine is slightly soluble in water but when some KI is added, its solubility increase due to formation of I3. Volatility of iodine also decreases by KI due to formation of I.

$$I_2 + KI \longrightarrow I_3^- + K^+$$

 $I_3^- + 2S_2O_3^{2-} \longrightarrow 3I^- + S_4O_6^{2-}$

(2)lodometry (Indirect Titration):

In this titration some oxidizing agent liberate iodine from KI and this liberated I, is titrated against standard solution of reducing agent i.e Na₂S₂O₃. The amount of I₂ liberated from KI is equivalent to the quantity of oxidizing agent present. Some oxidizing agents are K₂Cr₂O₇, CuSO₄, KMnO₄, H₂O₂, Ferric ions, MnO₂, bromine and chlorine.

- (I) $2CuSO_4 + 4KI \longrightarrow Cu_2I_2 + 2K_2SO_4 + I_2$.
- (ii) $K_2Cr_2O_7 + 6KI + 7H_2SO_4 \longrightarrow 4K_2SO_4 + Cr_2(SO_4)_3 + 3I_2 + 7H_2O$.
- (iii) 2KMnO₄ + 10KI + 8H₂SO₄

CHAMBY

 $6K_2SO_4 + 2MnSO_4 + 5I_2 + 8H_2O$

In above reactions, liberated iodine is titrated against standard Na₂S₂O₃ solution.

 $2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI$

GENERAL INSTRUCTIONS FOR IODINE TITRATIONS:

- (1) Always add sodium thiosulphate solution in burette.
- (2) In iodometry titration; add oxidizing agent in the conical flask or iodine flask.
- (3) The medium of solution should be acidic.
- (4) Add KI solution in excess because volatility of I, decreases.
- (5) In iodimetry make solution of I2 in potassium iodide.
- (6) Add indicator near the end point when colour of solution is light yellow.
- Always use fresh solutions of starch indicator and sodium thiosulphate. Prepare solution of Na₂S₂O₃, 5H₂O with recently boiled water because CO₂ present in water an bacteria decompose the solution.
- (8) Do not expose the solution of Na₂S₂O₃ to light for long time.
- (9) Perform this titration in iodine flask or stopper flask.
- (10) Use sucker pipette to transfer iodine solution into iodine flask. Do not use ordinary pipette.

EXPERIMENT No-31 & pakcity.org

Standardize The Given Solution Of Iodine. You Are Provided With O.1M Na2S2O3 Solution:

Principle:

It is redox titration. I2 is an oxidizing agent and can be titrated against some reducing agent like Na₂S₂O₃. (Iodimetry)

Standard Solution

0.1M Na₂S₂O₃

Indicator

Starch solution

End Point

Blue to colourless

Equation

 $I_2 + 2Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + 2NaI$

Mole Ratio

Procedure:

Take Na₂S₂O₃ solution in burette with the help of furnel and then remove the funnel. Note the initial reading. Pipette out 10.0cm3 of I2 solution in a conical flask with the help of pipette sucker. Add 20cm³ of distilled water in flask Titrate this I₂ solution against standard Na₂S₂O₃ solution. When the solution becomes pale yellow, and 1-2 drops of starch as an indicator. The solution becomes blue. Now titrate further till the blue colour disappears. This is the end point. Note the final reading. Take at least three concordant reading to calculate the exact volume of Na2S2O3 used.

Observations and Calculations:

- Vol. of I₂ solution taken for each titration (1)
- (ii) Vol. of Na₂S₂O₃ soln used for each titration

No.	Initial Reading	Final Reading	Volume of Na ₂ S ₂ O ₃
1.	0.0	pakeity.org	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Result:

The given I₂ solution is 0.05M having 12.7 g/dm³ strength.

Exercise:

Standardize the given solution of I 2 you are provided with 0.05M Na₂S₂O₃ solution.

12.7 g/dm³

Standardize The Given Solution Of I, And Find Out Volume Of This Iodine Solution Required To Prepare 400cm³ Of 0.025m I, Solution:

Principle:

MOMO

It is redox titration. I₂ is an oxidizing agent and can be titrated with some standard reducing agent like Na₂S₂O₃ directly. (Iodimetry).

Standard Solution: 0.1M Na₂S₂O₃

Indicator : Starch solution

End Point : Blue to colourless

Equation : $I_2 + 2Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + 2NaI$

Mole Ratio : 1:2

Procedure:

Take the given Na₂S₂O₃ solution in burette and note the initial reading. Pipette out 10.0cm³ of I₂ solution in conical flask with pipette sucker. Add 20cm³ of water in it. Titrate this solution against Na₂S₂O₃ solution in burette. When the solution becomes pale yellow, add 1-2 drops of indicator in it. The solution becomes blue. Further titrate the solution till the blue colour disappears. This is the end point. Note the final reading. Take at least three concordant readings to calculate the exact volume of Na₂S₂O₃ used

Observations and Calculations:

(i) Vol. of I₂ taken for each titration

10.0cm

(ii) Vol. of Na₂S₂O₃ used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of Na ₂ S ₂ O ₃ used
1.	0.0	pakcity.org 10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

Dilution Formula:

$$I_2 \text{ Soln given} = I_2 \text{ soln required}$$
 $M_1V_1 = M_2V_2$
 $0.05 \times V_1 = 0.025 \times 400$
 $V_1 = \frac{0.025 \times 400}{0.05}$
 $V_1 = 200 \text{cm}^3$

Result:

The given I₂ solution is 0.05M and the volume required to prepare 400cm³ of 0.025 MI₂ solution is 200cm³ mixed with 200cm³ water.

Exercise:

Standardize the given solution of I₂ and calculate the volume of this solution required to make 500cm³ of 0.025MI₂ solution. Given 0.1M Na₂S₂O₃ solution.

pakcity.org

24.8g Sample Of Alkali Metal Thiosulphate M₂S₂O₃. 5H₂O Have Been Dissolved Per dm³ Of Solution. Calculate The Atomic Mass Of Metal 'M' By Volumetric Method.

Principle:

It is a redox titration. I₂ is an oxidizing agent and can be titrated with some reducing agent like Na₂S₂O₃ (Iodimetry).

Standard Solution: 0.05 M I₂ solution

Indicator : Starch solution

End Point: Blue to colourless

Equation : $I_2 + 2M_2S_2O_3 \longrightarrow 2MI + M_2S_4O_6$

Procedure:

Take M₂S₂O₃ solution in burette and note the initial reading. Pipette out 10.0cm³ of I₂ solution in conical flask with pipette sucker. Add 20cm³ of water in it. Titrate this solution against solution in burette. When the solution becomes pale yellow, add 1-2 drops of indicator in it. The solution becomes blue. Further titrate the solution till the blue colour disappears. It is the end point Note the Final reading. Take at least three concordant readings to calculate the exact volume of M₂S₂O₃ used.

Observations and Calculations:

- (i) Vol. of I₂ taken for each titration = 10.0cm
- (ii) Vol. of M₂S₂O₃ used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of M ₂ S ₂ O ₃ used
1.hts fort	0.0	10.0	10.0cm ³
2.	10.0	pake yorg	10.0cm ³
3.	20.0	30.0	10.0cm ³

Concordant reading $= 10.0 \text{cm}^3$

Result:

So the atomic mass of metal M in M2S2O3 . 5H2O is 23g/mol which is sodium Na (Natrium).

Exercise:

12.4g of M₂S₂O₃. 5H₂O have been dissolved per 500m³ of solution. Find out the atomic mass of 'M' by volumetric method.

Calculate The Percentage Purity Of Given Sample Of Hypo, 7g Of Which Have I Been dissolved Per 250cm3 Of Solution:

Principle:

It is redox titration. Hypo (Na₂S₂O₃ . 5H₂O) is a reducing agent and can be titrated with I₂ solution directly (Iodimetry).

Standard Solution

0.05M I₂ solution

Indicator

Starch solution

End Point

Blue to colourless

Equation

 $I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6$

Mole Ratio

Procedure:

H

0,

H,

Take hypo solution in burette and note the initial reading. Take 10.0cm3 of I2 solution in conical flask with pipette sucker. Add 20cm3 of distilled water in it. Titrate this solution against the solution in burette. When the solution becomes pale yellow, add 1-2 drops of starch solution it. The solution becomes blue in colour. Further titrate the solution till the blue colour disappears. This is the end point. Note the final reading. Take at least three concordant readings to calculate the exact volume of hypo used.

Observations and Calculations:

3.

Vol. of I₂ taken for each titration = 10.0cm³

Vol. of hypo used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of Na ₂ S ₂ O ₃ used
1.	0.0	10.0	10.0cm ³
2.	10.0	pakcite6.9rg	10.0cm ³
	A or a		1 4 4 1

20.0

Concordant Reading = 10.0cm

10.0cm

30.0

Amount in $g/dm^3 = Molarity \times Mol.$ mass of hypo

$$= 0.1 \times 248$$

$$= 24.8 g/dm3$$

 250cm^3 solution contain hypo = 7.0 g

$$1000 \text{cm}^3 \text{ solution contain hypo} = \frac{\frac{7}{250} \times 1000}{28}$$

28g impure sample contain pure Na₂S₂O₃ = 24.8g 100g of impure sample contain pure Na₂S₂O₃

$$= \frac{24.8}{28} \times 100$$

$$= 88.75\%$$
ty = 88.75%

Result:

The given impure sample of hypo contains 88.75% pure Na₂S₂O₃. 5H₂O.

20g Of Na₂S₂O₃ . 5H₂O Have Been dissolved per dm³ Of Solution. Find Out The %age Of Sulphur In The Sample By Volumetric Method:

Principle:

rocedure:

OH

ONH,

LA COMPANY

It is a redox titration. I_2 is an oxidizing agent and can be titrated with a reducing agent like $Na_2S_2O_3$. (Iodimetry).

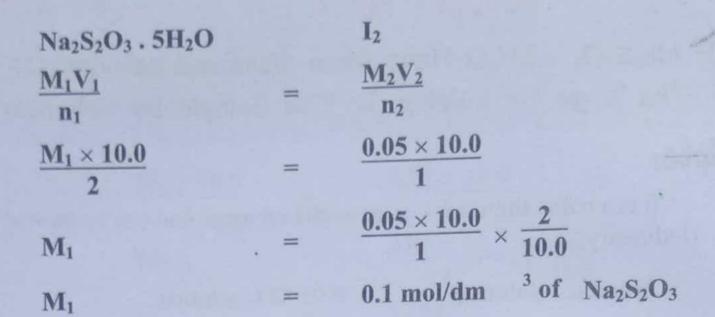
Standard Solution: 0.05 M I₂ solution

Indicator : Starch solution

End Point : Blue to colourless

Equation: $I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6$

Mole Ratio : 1 : 2


Take hypo solution in burette and note the initial reading. Take 10.0cm³ of I₂ solution in conical flask with pipette sucker. Add 20cm³ of distilled water in it. Titrate this solution against the solution in burette. When the solution becomes pale yellow, add 1-2 drops of starch solution it. The solution becomes blue in colour. Further titrate the solution till the blue colour disappears. This is the end point. Note the final reading.

 No. of Obs.
 Initial Reading
 Final Reading
 Vol. of Na₂S₂O₃ used

 1.
 0.0
 10.0
 10.0cm³

 2.
 10.0
 pakcity.200
 10.0cm³

 3.
 20.0
 30.0
 10.0cm³

Amount in g/dm³ of sulphur = Molarity × atomic mass = $0.1 \times (32 \times 2)$ = 6.4g/dm³

20g sample contain sulphur(S) = 6.4g

100g sample contain sulphur(S) =

 $= \frac{6.4}{20} \times 100$ = 32%

% age of S

Result:

MATHU

The given sample of Na₂S₂O₃ contain 32% sulphur (S).

pakcity.org

24.8g Of Na₂S₂O₃ . XH₂O Have Been dissolved Per Dm³ Of Solution. Find Out Value Of 'x'.

Principle:

It is a redox titration I₂ is an oxidizing agent and can be titrated against some reducing agent like sodium thiosulphate directly (Iodimetry).

Standard Solution : 0.05M I₂

Indicator : Starch solution

End Point : Blue to colourless

Equation: $I_2 + 2Na_2S_2O_3 \cdot xH_2O \longrightarrow 2NaI + Na_2S_4O_6 \cdot 2XH_2O$

Mole Ratio : 1 : 2

Procedure:

Take the given Na₂S₂O₃ solution in burette and note the initial reading. Pipette out 10.0cm³ of I₂ solution in conical flask and then add 20cm³ of distilled water in it. Titrate this solution against solution in burette. When the solution becomes pale yellow, add 12 drops of indicator in it. The solution becomes blue. Further titrate the solution till the blue colour just disappear. This is the end point. Note the final reading. Take at least three concordant readings to calculate the exact volume of Na₂S₂O₃ used.

Observations and Calculations:

- (i) Vol. of I₂ taken for each titration 10.0cm
- (ii) Vol. of Na₂S₂O₃ used for each titration.

No. of Obs.	Initial Reading	Final Reading	Vol. of Na ₂ S ₂ O ₃ used
1.	0.0	10.0	10.0cm ³
2.	10.0	20.0	10.0cm ³
3.	20.0	30.0	10.0cm ³

pakcity.org

Molecular mass of Na₂ S₂ O₃ . XH₂O =

Amount in g/dm³ = Molarity × Mol. mass

 $24.8 = 0.1 \times (158 + 18x)$

158 + 18x

 $\frac{24.8}{0.1} = 158 + 18x$

248 = 158 + 18x

248 - 158 = 18x

90 = 18x

 $x = \frac{90}{18}$

X

Result:

No. of water of crystallization in $Na_2S_2O_3$ is = 5 Exercise:

2.48g of Na₂S₂O₃ . xH₂O have been dissolved per 100cm³ of solution calculate the value of 'x'.

