Bahawalpur Board-2024

Mathematics	(A)	L.K.No. 1468	Paper Code No. 8191	
Paper II	(Objective Type)	Inter (Ist - A - Ex	xam 2024)	
Time :	30 Minutes	Inter (Part - II)	Session (2020 – 22) to (2022 – 24)	
Marks :	20			

Note: Four choices A, B, C,D to each question are given. Which choice is correct fill that circle in front of that Question No. on the Objective Bubble Sheet. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

	
Q.No	A function of the form f (x,y) = 0 is called:
1 (1)	(A) Parametric Function (B) Identity Function (C) Explicit Function (D) Implicit Function
(2)	$\frac{e^{2x}-1}{2e^x} = : \text{pakcity.org} \qquad \text{(A) Sinx (B) Cos x (C) Sinhx (D) Coshx}$
(3)	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ is equal to: (A) f'(x) (B) f'(0) (C) f'(a) (D) f'(2)
(4)	$\frac{d}{dx}\left(\frac{1}{ax+b}\right) \text{ is equal to : (A) } \frac{1}{(ax+b)^2} \text{ (B) } \frac{-a}{(ax+b)^2} \text{ (C) } \frac{a}{(ax+b)^2} \text{ (D) In (ax + b)}$
(5)	Derivative of Sin ² x with respect to $\cos^2 x$ is: (A) -1 (B) 1 (C) tanx (D) cotx
(6)	Derivative of Sinh x with respect to x is :
	(A) $\frac{1}{\sqrt{1-x^2}}$ (B) $\frac{1}{\sqrt{1+x^2}}$ (C) $\frac{-1}{\sqrt{1-x^2}}$ (D) $\frac{-1}{\sqrt{1+x^2}}$
(7)	For $n \neq -1$, $\int x^n dx = :$
	$(A) \frac{x^{n-1}}{n-1} + C (B) x^{n+1} + C (C) \frac{x^{n+1}}{n+1} + C (D) \frac{x^n}{n+1} + C$ $\int Sec^2 n x dx = : (A) \frac{n}{3} \sec nx + c (B) n \tan nx + c (C) \tan nx + c (D) \frac{1}{n} \tan nx + c$
(8)	$\int Sec^2 n x dx = : (A) \frac{n}{3} \operatorname{sec} nx + c (B) n \tan nx + c (C) \tan nx + c (D) \frac{1}{n} \tan nx + c$
(9)	When expression $\sqrt{x^2 - a^2}$ involve in integration , we substitute : (A) $x = asec\theta$ (B) $x = asin\theta$ (C) $x = atan\theta$ (D) $x = sin\theta$
(10)	$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = : (A) \frac{\pi}{2} (B) \pi (C) \frac{\pi}{4} (D) \frac{\pi}{3}$ If Distance of point (5, x) from x – axis is 3 then x = : (A) 7 (B) 5 (C) 3 (D) –5
(11)	
(12)	If '\alpha' is inclination of line '\mathcal{l}' then it must be true that : (A) $0 \le \alpha < \frac{\pi}{2}$ (B) $\frac{\pi}{2} \le \alpha < \pi$ (C) $0 \le \alpha \le 2\pi$ (D) $0 < \alpha < \pi$
(13)	If lines are parallel then point of intersections are : (A) Does not exist (B) Finite (C) Infinite (D) Both B and C
(14)	A Feasible Solution which maximize or minimize the objective function is called: (A) Solution (B) Optimal Solution (C) Minimum Solution (D) Maximum Solution
(15)	Axis of Parabola x^2 = 4ay is : (A) $y = 0$ (B) $x = y$ (C) $x = 0$ (D) $y = -x$
(16)	Length of major and minor axis of ellipse $x^2 + 16y^2 = 16$ is: (A) 4,1 (B) 10,5 (C) 16,2 (D) 8,2
(17)	If eccentricity e > 1 then the conic is : (A) Hyperbola (B) Ellipse (C) Circle (D) Parabola
(18)	Direction Cosines of y – axis are : (A) (1,0,0) (B) (0,1,0) (C) (0,0,1) (D) (0,0,0)
(19)	$ \underline{a} \times \underline{b} = :$
	(A) Area of Triangle (B) Area of Circle (C) Area of Parallelogram (D) Area of Trapezium
(20)	Projection of Vector $\underline{r} = a\hat{i} + b\hat{j} + c\hat{k}$ on $x - axis$ is : (A) a (B) b (C) c (D) $\sqrt{a^2 + b^2 + c^2}$
L	

Bahawalpur Board-2024

Roll No.	L.K. NO.1468-	Inter (Part II)	Session
	20000		(2020 –22) to (2022 – 24)
Mathematics (Subjective)	Inter (I st – A – I	Exam 2024)	Time 2 : 30 Hours Marks : 80

Note: It is compulsory to attempt any (8 – 8) Parts each from Q.No. 2 and Q.No.3 while attempt any (9) Parts from Q.No.4. Attempt any (3) Questions from Part – II. Write same Ouestion No. and its Part No. as given in the Question Paper.

	F
Part - I	$25 \times 2 = 50$

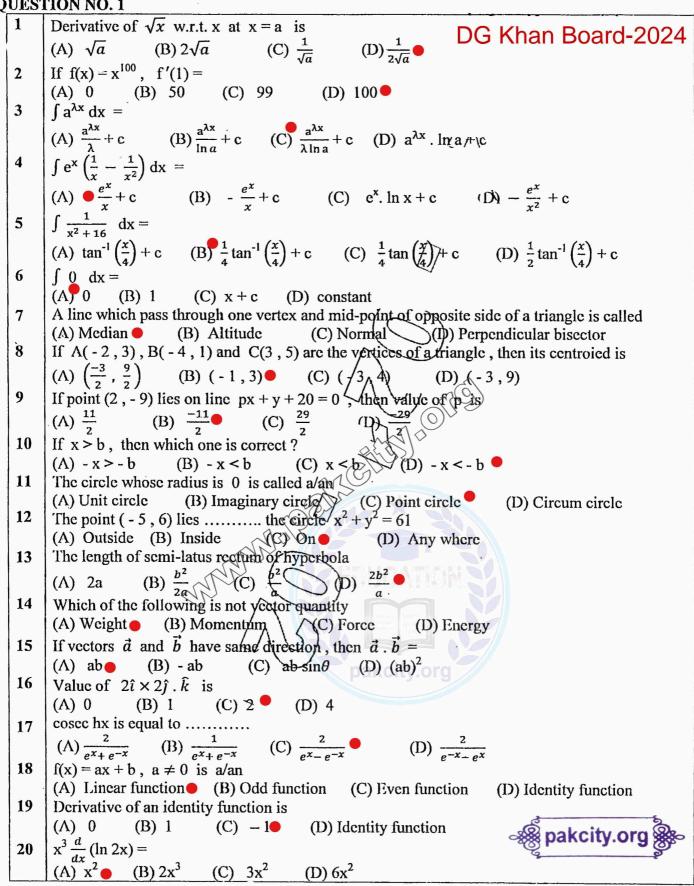
Q.No.2	(i)	Show that the Parametric Equations	/ = at	, y = 2at represent the Parabola $y = 4ax$
	(II)	2_3r		
	(11)	Evaluate $\lim_{x \to -\infty} \frac{2 \sin x}{\sqrt{3+4x^2}}$ pakcity.org		
	(iii)	Evaluate $\lim_{x\to\infty} (\frac{x}{1+x})^x$		
	(iv)	Express the Perimeter "P" of a	(v)	Differentiate $\frac{2x-3}{2x+1}$ with respect to x
		square as a function of its area A.		Differentiate $\frac{1}{2x+1}$ with respect to x
	(vi)	Differentiate x ² Sec 4x w.r.t the	(vii)	Find $\frac{dy}{dx}$ if:
		variable involved.		$4x^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$
	(viii)	Find $\frac{dy}{dx}$ if $x = at^2$ and $y = 2at$	(ix)	Differentiate In (x ² + 2x) w.r.t . ' x '
	(x)	Find y_2 if $y = \ln\left(\frac{2x+3}{3x+2}\right)$	(xi)	Expand a ^x in the Maclaurin Series.
	(xii)	Find extreme values of $f(x) = 3x^2$		
Q.No.3	(i)	Find δy if y = \sqrt{x} when 'x' changes	(ii)	Evaluate $\int \frac{ax+b}{ax^2+2bx+c} dx$
		from 4 to 4.41		OV UN I ZDX I'E
	(iii)	Evaluate $\int Cosec x dx$	(igg)	Evaluate $\int tan^{-1} x dx$
	(v)	Evaluate $\int_{-1}^{1} (x^{1/3} + 1) dx$	(vi)	Find the area between the x-axis and
	(vii)	Solve the Differential Equation $\frac{dy}{dx} =$	$=\frac{1-x}{y}$	the curve $y = 4x - x^2$
(viii) Find the Coordinates of the point that divides the join of A (-6		des the join of A (-6,3) and		
	B (5, -2) in the ratio 2:3 externally.			
	(ix)	The coordinates of a point ' P' are	(-6,	9). The axes are translated through
		the point $O'(-3,2)$. Find the Coord	inates	of 'P' referred to the new axes.
	(x)	Convert $4x + 7y - 2 = 0$ into intercept	form.	y.org
	(xi)	Find the point of intersection of the li		
	(xii)	Find the lines represented by $6x^2 - 19$	9xy + 1	$1.5y^2 = 0$
Q.No.4	(i)	Draw the graph of linear inequality 2	k≥ -3	3 in xy – plane.
	(ii)	Define the Optimal Solution.		
	(iii)	Find the Centre and Radius of the circ		
	(iv)	Write down equations of Tangent to	circle	$x^2 + y^2 = 25$ at (4,3)
	(v)	Define Circle.		
	(vi)	Find an equation of Ellipse having Cer	ntre at	t (0 , 0) , Focus at (0 , – 3) and
		One Vertex at (0,4).		

Bahawalpur Board-2024

(1	vii)	Write equation of normal to the Parabola $x^2 = 16y$ at the point whose Abscissa is 8
(v	riii)	Find Centre and Vertices of conic $\frac{(y+2)^2}{9} - \frac{(x-2)^2}{16} = 1$
(i	ix)	Find a vector whose magnitude is 2 and is parallel to $-\underline{i} + \underline{j} + \underline{k}$
(1	x)	Calculate the projection of \underline{b} along \underline{a} , when $\underline{a} = 3\underline{i} + \underline{j} - \underline{k}$, $\underline{b} = -2\underline{i} - \underline{j} + \underline{k}$
()	ki)	Find a vector perpendicular to each of the vectors $\underline{\mathbf{a}} = 2\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}$, $\underline{\mathbf{b}} = 4\underline{\mathbf{i}} + 2\underline{\mathbf{j}} - \underline{\mathbf{k}}$
(x	cii)	Write Direction Cosines of a vector $\underline{\mathbf{r}} = x\underline{\mathbf{i}} + y\underline{\mathbf{j}} + z\underline{\mathbf{k}}$
(x)	iii)	Find the volume of the parallelepiped determined by :

(Part - II)

3 x 10 = 30


Q.No.5	(a)	If $f(x) = \begin{cases} 3x & \text{if } x \le -2 \\ x^2 - 1 & \text{if } -2 < x < 2 \\ 3 & \text{if } x > 2 \end{cases}$	(5)
		$ \text{If } f(x) = \begin{cases} x^2 - 1 & \text{if } -2 < x < 2 \end{cases}$	
		$ (3 if x \ge 2) $	
		Discuss Continuity at $x = 2$ and $x = -2$	
	(b)	Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = tan^{-1}(\frac{x}{y})$	(5)
Q.No.6	(a)		(5)
	(b)	Evaluate the integral $\sqrt{4-5x^2}$ dx	(5)
Q.No.7	(a)	Evaluate $\int_0^{\pi/4} cos^4 t dt$	(5)
	(b)	Maximize the function defined as ; $f(x,y) = 2x + 3y$	(5)
		subject to constraints $2x + y \le 8$; $x + 2y \le 14$; $x \ge 0$; $y \ge 0$	
Q.No.8	(a)	Find equation of the tangent drawn from $(-1, 2)$ to $x^2 + y^2 + 4x + 2y = 0$	(5)
	(b)	Prove that Perpendicular Bisectors of the sides of a triangle are Concurrent	(5)
Q.No.9	(a)	Find the Centre, Foci, Eccentricity of Ellipse	(5)
		$x^2+16x+4y^2-16y+76=0$	>
	(b)	Find 'h' such that the points A (h, 1), B (2, 7) and C $(-6, -7)$ are	(5)
		vertices of a Right Triangle with Right Angle at the vertex A.	

LALEK CONE - 0179 12th CLASS - 1st Annual 2024 **OBJECTIVE**

TIME: 30 MINUTES MARKS: 20

NOTE: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero marks in that question.

OUESTION NO. 1

Q

i	NO. 2 Write short answers any Eight (8) of the following Express perimeter 'p' of a square as a function of its area 'A'
ii	Without finding inverse state domain and range of f^{-1} if $f(x) = (x-5)^2$, $x \ge 5$
iii	Evaluate $\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x}$
iv	Evaluate the limit $\lim_{\theta \to 0} \frac{\sin^2 \theta}{\theta}$
v	Differentiate with respect to 'x' $\frac{1}{x-a}$ by definition
vi	Differentiate with respect to 'x' $\frac{a+x}{a-x}$
vii	Find $\frac{dy}{dx}$ by making suitable substitution of $y = (3x^2 - 2x + 7)^6$
viii	Differentiate with respect to 'x' $\frac{1}{a} \sin^{-1}\left(\frac{a}{x}\right)$
ix	Differentiate $(\ln x)^x$ with respect to 'x'
X	Find y_2 if $x^2 + y^2 = a^2$
xi	Show that $\cos(x+h) = \cos x - h \sin x - \frac{h^2}{2!} \cos x + \frac{h^3}{3!} \sin x + \dots$
xii	Find interval in which 'f' is increasing or decreasing $f(x) = \cos x$, $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

QUESTION NO. 3 Write short answers any Eight (8) of the following i Find δy and dy of $y = x^2 - 1$, when x changes from 3 to 3.02

ii	Evaluate $\int \frac{(\sqrt{\theta}-1)^2}{\sqrt{\theta}} d\theta$
iii	Find the area between the x-axis and the curve $y = 4x$
iv	Solve the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$, $(y > 0)$.
v	Evaluate $\int_{-1}^{3} (x^3 + 3x^2) dx$

vi Evaluate $\int x \ln x \, dx$

vii Find $\int \frac{-2x}{\sqrt{4-x^2}} dx$

viii Find distance between the points A(-8, 3) (B(2, -1). Also find mid-point between them

ix The coordinates of a point p are (-6.2) The axes are translated through the point O' (-3, 2). Find the coordinates of P referred to the new axes

x Show that points (-4, 6); (3, 8) and (10, 10) lie on the same line

xi Find the distance from the point P(6, -1) to the line 6x - 4y + 9 = 0

xii Find measure of the angle between the lines represented by $x^2 - xy - 6y^2 = 0$

QUESTION NO. 4 Write short answers any Nine (9) of the following

i Graph the inequality x + 3y > 6
 ii Define feasible region and feasible solution

iii Find the centre and radius of circle $x^2 + y^2 - 6x + 4y + 13 = 0$

iv Find the slope of normal to the circle $x^2 + y^2 = 25$ at (4, 3)

v Check the position of the point (5, 6) w.r.t circle $x^2 + y^2 = 81$

vi Find the focus and directrix of parabola $x^2 = -16y$

vii Find centre and foci of ellipse $25x^2 + 9y^2 = 225$

viii Find eccentricity and vertices of $x^2 - y^2 = 9$

ix Find a vector whose magnitude is 2 and is parallel to -i + j + k

x | Find cosine of the angle between \underline{u} and \underline{v} where $\underline{u} = [-3, 5]$ and $\underline{v} = [6, -2]$

xi Compute $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ and $\underline{\mathbf{b}} \times \underline{\mathbf{a}}$ if $\underline{\mathbf{a}} = \underline{\mathbf{i}} + \underline{\mathbf{j}}$ and $\underline{\mathbf{b}} = \underline{\mathbf{i}} - \mathbf{\mathbf{j}}$

xii If $\underline{a} + \underline{b} + \underline{c} = 0$ then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c}$

xiii Find the volume of the parallelepiped determined by $\underline{\mathbf{u}} = \underline{\mathbf{i}} + 2\underline{\mathbf{j}} - \underline{\mathbf{k}}$, $\underline{\mathbf{v}} = \underline{\mathbf{i}} - 2\underline{\mathbf{j}} + 3\underline{\mathbf{k}}$ and $\underline{\mathbf{w}} = \underline{\mathbf{i}} - 7\underline{\mathbf{j}} - 4\underline{\mathbf{k}}$

18

DG Khan Board-2024

SECTION-II

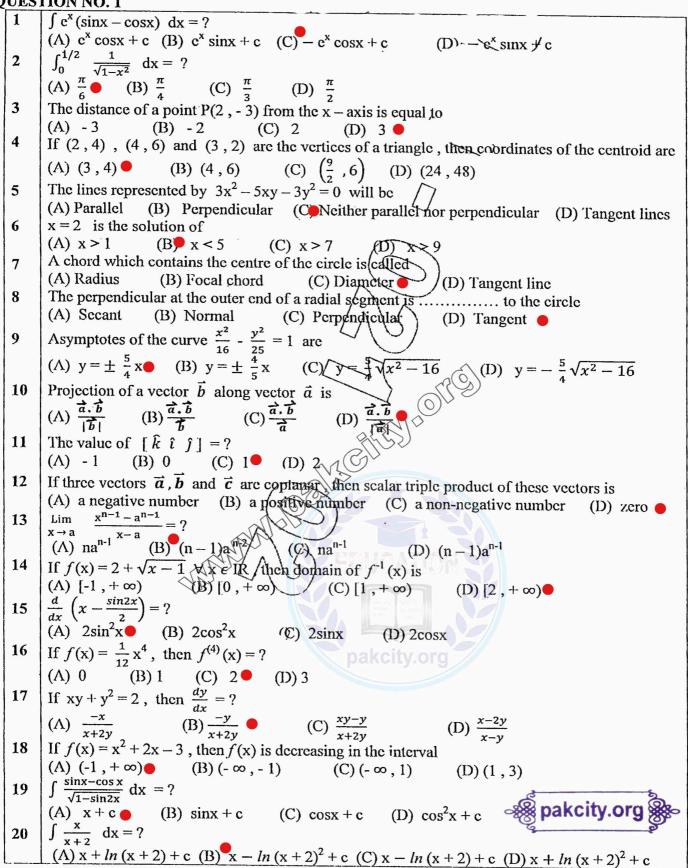
ote: Attempt any Three questions from this section

 $10 \times 3 = 30$

Q.5- (A)	Discuss continuity of f at $x = 3$, when $f(x) = \begin{cases} x - 1 & \text{if } x < 3 \\ 2x + 1 & \text{if } x \ge 3 \end{cases}$
(B)	Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$
Q.6- (A)	If $y = (\cos^{-1} x)^2$, prove that $(1 - x^2) y_2 - xy_1 - 2 = 0$
(B)	Evaluate: $\int \sqrt{4-5x^2} dx$
Q.7-(A)	20 200520
(B)	Maximize $f(x, y) = x + 3y$ subject to the constraints $2x + 5y \le 30$; $5x + 4y \le 20$; $x \ge 0$; $y \ge 0$
Q.8-(A)	
(B)	Prove that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ using vectors
Q.9-(A)	Find centre, foci, eccentricity and directrices of hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$
(B)	Find equation of line through the intersection of $x-y-4=0$ and $7x+y+20=0$ and perpendicular to the line $6x+y-14=0$

14 (Sub) - 1st Annual 2024

DG Khan Board-2024


MATHEMATICS GROUP: SECOND

PAPER CODE - 8196 12th CLASS – 1st Annual 2024 **OBJECTIVE**

TIME: 30 MINUTES MARKS: 20

NOTE: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill

the circles. Cutting or filling two or more circles will result in zero marks in that question. **QUESTION NO. 1** $\int e^{x} (\sin x - \cos x) dx = ?$

118 (Obj) -1^{st} Annual 2024

SEQUENCE – 3

(PAPER CODE - 8196)

answers any Eight (8) of the following DG Khan Board-2024 16 QUES"

TION	NO. 2 Write short answers any Eight (b) of the
i	NO. 2 Write short answers any regard (by each of its area Λ). Express the perimeter P of a square as a function of its area Λ .
ii	Express the perimeter P of a square as a rune
iii	Evaluate $\lim_{x \to -1} \frac{x^3 - x}{x + 1}$ $(x + 2, x \le -1)$
iv	Evaluate $x \to -1$ $x+1$ Find c such that $\lim_{x \to -1} f(x)$ exist where $f(x) = \begin{cases} x+2, & x \le -1 \\ c+2, & x > -1 \end{cases}$
v	Find $\frac{dy}{dx}$ by definition when $y = 2x^2 + 1$
vi	Find $\frac{dy}{dx}$ when $y = \frac{2x-3}{2x+1}$
vii	If $x = \theta + \frac{1}{\theta}$ and $y = \theta + 1$, find $\frac{dy}{dx}$
viii	Differentiate sin x w.r.t. cot x
ix	If $y = x e^{\sin x}$, find $\frac{dy}{dx}$
x	Find y_2 when $x = at^2$, $y = bt^4$
xi	Find the extreme values of $f(x) = 3x^2$

Find y_2 when $y = 2x^5 - 3x^4 + 4x^3 + x - 2$

QUESTION NO. 3 Write short answers any Eight (8) of the following Use differentials to find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ of $x^4 + y^2 = xy^2$ Evaluate $\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$ ii Evaluate $\int \frac{dx}{x^2 + 4x + 13}$ iii Evaluate $\int x^2 \tan^{-1} x \, dx$ iv Evaluate $\int \frac{(a-b)x}{(x-a)(x-b)}$ ٧ Evaluate $\int_1^2 \frac{x^2+1}{x+1} dx$ vi Solve the differential equation vii Show that points A(-1, 2), B(7, 5) and C(2, -6) are vertices of right triangle viii In a triangle A(8, 6), B(-4,2), O(-2, -6) find slope of any one median of triangle Find the slopes of lines l1 and 12 where 🎇 pakcity.org 🎇 l_1 : Joining (2, 7) and (7, 10)

Find the distance between parallel lines 2x + y + 2 = 0, 6x + 3y - 8 = 0xii QUESTION NO. 4 Write short answers any Nine (9) of the following

Find the lines represented by $3x^2 + 7xy + 2y^2 = 0$

 l_2 : Joining (1, 1) and (-5, 3)

xi

18 Indicate the solution set of the system of linear inequalities $3x + 7y \ge 21$, $x - y \le 2$ Define feasible region ii Find centre and radius of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$ iii Find vertex and directrix of parabola $(x-1)^2 = 8(y+2)$ iv Define axis of parabola v Find an equation of hyperbola with foci $(0, \pm 6)$ and e = 2vi Find centre and vertices of ellipse $25x^2 + 9y^2 = 225$ vii Find equation of tangent to the conic $y^2 = 4ax$ at point (x_1, y_1) viii Find direction cosines of the vector $6\hat{\imath} - 2\hat{\jmath} + \hat{k}$ ix If the vectors $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} - \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 3\underline{k}$ are perpendicular. Find the value of α Define unit vector. Also give an example хi Find the value of α for which $\alpha \hat{i} + \hat{j}$, $\hat{i} + \hat{j} + 3\hat{k}$ and $2\hat{i} + \hat{j} - 2\hat{k}$ are coplanar xii Define cross product of two vectors u and vxiii

DG Khan Board-2024

SECTION-II

Note: Attempt any Three questions from this section

 $10 \times 3 = 30$

	Prove that $\lim_{x\to 0} \frac{a^x-1}{x} = \log_e a$ If $x = a\cos^3\theta$, $y = b\sin^3\theta$, show that $a\frac{dy}{dx} + b\tan\theta = 0$
Q.6- (A)	If $y = e^x \sin x$, show that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$
(B)	Evaluate: $\int \sqrt{a^2 + x^2} dx$
Q.7-(A)	Evaluate $\int_0^1 \frac{3x}{\sqrt{4-3x}} dx$
(B)	Maximize $f(x, y) = x + 3y$ subject to constraints
	Maximize $f(x, y) = x + 3y$ subject to constraints $2x + 5y \le 30$ $5x + 4y \le 20$; $x, y \ge 0$
Q.8-(A)	Show that the circles $x^2 + y^2 + 2x - 2y - 7 = 0$ and $x^2 + y^2 - 6x + 4y + 9 = 0$ touches externally
(B)	
Q.9-(A)	Find an equation of the ellipse with given data centre $(0,0)$, focus $(0,-3)$, vertex $(0,4)$
(B)	If two vertices of an equilateral triangle are A(-3,0) and B(3,0). Find the third vertex. How many of these triangles are possible?

118 (Sub) - 1st Annual 2024

Objective

Intermediate Part Second

Paper Code **8197**.

MATHEMATICS (Objective) Group - I

Time: 30 Minutes Marks: 20

You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill the relevant circle in front of that question number on computerized answer sheet. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero marks in that question. Attempt as many questions as given in objective type question paper and leave other circles blank.

S.#	Questions	A B			C	D		
1	Two non-parallel lines intersect each other at:	1 pc	oint 🔵	0	poin	t	∞ point	2 points
2	Equation of a straight line passing through P(c, d) and parallel to x-axis is:	x =	= 0	y = 0		x = d	y = d ●	
3	Normal form of equation of straight line is:	A	y = mx	+ c	В	x sin(90°-α)+ycc	$s(90^{\circ} - \alpha) = p$
	Normal form of equation of straight fine is.	С	$\frac{x}{a} + \frac{y}{b}$	=1	D		$x = \frac{y}{2}$	5/2
4	ax + b > 0 is:	An id	entity	A line	ar eq	uation	Equation	Inequality
5	For hyperbola $b^2 = ?$	c ² –	-a ²	a	c^2-c^2	2	$c^2 + a^2$	ac - 1
6	Parametric equations of a circle are:		cosθ, sinθ		asin bco	-	$x = a \cos \theta$, $y = a \sin \theta$	$x = b\cos\theta$, $y = a\sin\theta$
7	The equation $ax^2 + by^2 + 2gx + 2fy + c = 0$ will represent circle if:	a <	< b		a = b	•	a > b	a≠b
8	If terminal point B of vector AB coincides with its initial point A, then such a vector is called?	NGA) v	wector	Unit vector		Init vector Coincident vector		Free vector
9	If α, β, γ are direction angles of a vector, then) < \a	(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$0 \le \alpha \le \frac{\pi}{2}$		0 < α < π	$0 \le \alpha \le \pi$	
10	If $\vec{u} = a\hat{i} + b\hat{j} + c\hat{k}$, then projection of \vec{u} along \hat{k} is equal to:	V.S.		b		c •	ü∙k̂	
11	The equations of the form $x = a\cos\theta$, $y = a\sin\theta$ are called:	4	licit tions	Explicit equations		Parametric equations	Homogeneous equations	
12	Domain of $f(x) = 2 + \sqrt{x-1} \forall x \in \mathbb{R}$ is:	[-1,	+∞)		0,+∞		[l,+∞)	[2,+∞) ●
13	If $f(x) = c^3$, where c is any constant, then $f'(x) = ?$	30	c^2	and the second	c ²		3 c	0 •
14	If $y = x^4 + 2x^2 + 3$, then $\frac{dy}{dx} = ?$	4x√;	y-1	4x	√y-	2	$4x\sqrt{y-3}$	$4x\sqrt{y-4}$
15	At a point of maximum value of a function, its derivative is:	Ze	ero	P	ositiv	е	Negative	Infinite
16	If $y = \sin 3x$, then $y_2 = ?$	3co	s3x	_9	9sin 3	x •	-27 cos 3x	81sin3x
17	$\int_{0}^{\sqrt{3}} \frac{1}{1+x^2} dx = ?$	1	$\frac{\pi}{6}$ $\frac{\pi}{4}$			$\frac{\pi}{3}$	$\frac{\pi}{2}$	
18	$\int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx = ? \text{ is :}$	х-	+ c	si	n x +	С	cosx+c	$\cos^2 x + c$
19	$\int \tan^2 x dx = ?$	tan x -	+ x + c	$2\tan x \sec^2 x + c$		sec x - x + c	$\tan x - x + c$	
20	$\int \ell \mathbf{n} \mathbf{x} \mathbf{dx} = ?$	xℓn	x + c	xℓn	x – x	+c 🛑	$x \ell nx + x + c$	$\ell nx + x + c$

Intermediate Part Second

Roll No.

1209-XII124

MATHEMATICS (Subjective)

Time: 02:30 Hours Marks: 80

SECTION - I

Group – I

16

2. Attempt any EIGHT parts:

- Show that parametric equations $x = a \cos \theta$, $y = b \sin \theta$ represent the equation of Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- If $f(x) = \sqrt{x+1}$, $g(x) = \frac{1}{x^2}$, find (fog)(x)
- (iii) Evaluate the limit: $\lim_{x \to 0} \frac{\sin ax}{\sin bx}$
- Discuss the continuity of $f(x) = \begin{cases} 2x+5, & x \le 2 \\ 4x+1, & x > 2 \end{cases}$ at x = 2
- Use definition to find the derivative of x(x-3) w.r.t. 'x' (v)
- Differentiate $x^4 + 2x^3 + x^2$ w.r.t. 'x'
- (vii) Differentiate $(1 + x^2)^n$ w.r.t. x^2
- (viii) Find $\frac{dy}{dx}$ when $x = y \sin y$
- (ix) If $y = e^{-2x} \sin 2x$, find $\frac{dy}{dx}$
- (x) Find $\frac{dy}{dx}$ when $y = \sinh^{-1}(x^3)$
- Use Maclaurin Series to prove that $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$
- (xii) Find the interval where $f(x) = 4 x^2$, $x \in (-2, 2)$ is increasing or decreasing in the given domain.

3. Attempt any EIGHT parts:

16

- Use differentials, find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ of $x^2 + 2y^2 = 16$
- Evaluate $\int \sin^2 x \, dx$ (ii)
- (iii) Find $\int \frac{dx}{x(\ell n 2x)^2}$
- (iv) Evaluate ∫sin⁻¹ x dx
- Evaluate $\int_{-\infty}^{\infty} \ell nx \, dx$
- Find area above the x-axis, bounded by curve $y^2 = 3 x$ from x = -1 to x = 2
- (vii) Solve differential equation $1 + \cos x \tan y \frac{dy}{dx} = 0$
- (viii) Find point three-fifth of way along the line segment from A(-5, 8) to B(5, 3)
- Two points P and O' are given in xy-coordinate system. Find XY-coordinates of P. $P\left(\frac{3}{2},\frac{5}{2}\right); O'\left(-\frac{1}{2},\frac{7}{2}\right)$
- Find an equation of line through (-4,-6) and perpendicular to the line having slope $-\frac{3}{2}$ (x)
- Express the system 3x + 4y 7 = 0, 2x 5y + 8 = 0, x + y 3 = 0 in matrix form and check whether three lines
- (xii) Find lines represented by $x^2 2xy \sec \alpha + y^2 = 0$

(Continued P/2)

- 2 -

		18
(i)	Graph the solution set of linear inequality $5x - 4y \le 20$ in xy-plane. Representation and particular properties of the solution set of linear inequality $5x - 4y \le 20$ in xy-plane.	
(ii)	Define corner point of solution region.	
(iii)	Find center and radius of the circle $5x^2 + 5y^2 + 14x + 12y - 10 = 0$	
(iv)	Find equation of parabola whose focus is $F(-3, 4)$ and directrix is $3x - 4y + 5 = 0$	
(v)	Find length of the tangent drawn from the point (-5, 4) to the circle $5x^2 + 5y^2 - 10x + 15y - 131 = 0$	
(vi)	Find focus and vertices of Ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$	
(vii)	Find equation of tangent to conic $y^2 = 4ax$ at $(at^2, 2at)$	
(viii)	Find equation of hyperbola with center (0, 0), focus (6, 0) vertex (4, 0).	
(ix) (x)	If O is origin and $\overrightarrow{OP} = \overrightarrow{AB}$, find the point P when A and B are (-3, 7) and (1, 0) respectively. Find direction cosines of vector $\underline{\mathbf{v}} = \underline{\mathbf{i}} - \underline{\mathbf{j}} - \underline{\mathbf{k}}$	
(xi)	Find cosine of the angle θ between vectors $\underline{\mathbf{u}} = 3\underline{\mathbf{i}} + \mathbf{j} - \underline{\mathbf{k}}$, $\underline{\mathbf{v}} = 2\underline{\mathbf{i}} - \mathbf{j} + \underline{\mathbf{k}}$	
(xii)		
		,
	SECTION – II Attempt any THREE questions. Each question carries 10 marks.	
	[[2] 5 [] 7	
(a)If	$f(x) = \begin{cases} \frac{\sqrt{2x+3} - \sqrt{x+7}}{x-2}, & x \neq 2 \\ k, & x = 2 \end{cases}$, find the value of 'k' so that f is continuous at x = 2.	05
(b)Pr	ove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1 - t^2}{1 + t^2}$, $y = \frac{2t}{1 + t^2}$	05
(a)Sł	now that $y = x^x$ has minimum value at x	05
(b)Ev	valuate: $\int \frac{dx}{(1+x^2)^{\frac{3}{2}}}$	05
(a)Fi	nd the area between x-axis and curve $y = \sqrt{2ax - x^2}$ when $a > 0$	05
		05
(0)112	minimize 2 - 5x · y, subject to constraints 5x · 5y £15 , x · 5y £5 , x, y £ 0	05
(a)Fi	nd the length of the chord cut off from the line $2x + 3y = 13$ by the circle $x^2 + y^2 = 26$	05
(b)U	se vector method to show that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$	05
(a) W	rite an equation of the parabola with given elements:	
		05
		03
		05
	(ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (xi) (xiii) (xiii) (a) If (b) Pr (a) Sh (b) Ex (a) Fi (b) M (a) Fi (b) Us (b) Fi (pa	(ii) Define corner point of solution region. (iii) Find center and radius of the circle $5x^2 + 5y^2 + 14x + 12y - 10 = 0$ (iv) Find equation of parabola whose focus is $F(-3, 4)$ and directrix is $3x - 4y + 5 = 0$ (v) Find length of the tangent drawn from the point $(-5, 4)$ to the circle $5x^2 + 5y^2 - 10x + 15y - 131 = 0$ (vi) Find focus and vertices of Ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ (vii) Find equation of tangent to conic $y^2 = 4ax$ at $(at^2, 2at)$ (viii) Find equation of hyperbola with center $(0, 0)$, focus $(6, 0)$ vertex $(4, 0)$. (ix) If O is origin and $\overrightarrow{OP} = \overrightarrow{AB}$, find the point P when A and B are $(-3, 7)$ and $(1, 0)$ respectively. (x) Find direction cosines of vector $\underline{y} = \underline{i} - \underline{j} - \underline{k}$ (xi) Find cosine of the angle θ between vectors $\underline{u} = 3\underline{i} + \underline{j} - \underline{k}$, $\underline{v} = 2\underline{i} - \underline{j} + \underline{k}$ (xii) A force $\underline{F} = 7\underline{i} + 4\underline{j} - 3\underline{k}$ is applied at $P(1, -2, 3)$, find its moment about $Q(2, 1, 1)$ (xiii) Find the volume of the parallelepiped determined by $\underline{u} = \underline{i} + 2\underline{j} - \underline{k}$, $\underline{v} = \underline{i} - 2\underline{j} + 3\underline{k}$, $\underline{w} = \underline{i} - 7\underline{j} - 4\underline{k}$

.oll No.	:	
011	•	

Objective Paper Code

8196

Intermediate Part Second

MATHEMATICS (Objective)
Time: 30 Minutes Marks

ective) Group – II Marks: 20 ☆

You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill the relevant circle in front of that question number on computerized answer sheet. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero marks in that question. Attempt as many questions as given in objective type question paper and leave other circles blank.

S.#	Questions	A	В	C	D
1	The suitable substitution for $\sqrt{x^2 - a^2}$ to be integrated:	$x = a \sin \theta$	$x = a \sec \theta$	$x = a \tan \theta$	$x = a \cos \theta$
2	$\int (ax + b)^n dx = :$	$\frac{(ax+b)^{n+1}}{a(n+1)} + c$	$\frac{(ax+b)^{n+1}}{b(n+1)}+c$	$\frac{(ax+b)^{n+1}}{a(n-1)}+c$	$\frac{a(ax+b)^{n+1}}{n+1}+c$
3	$\int \sqrt{1-\cos 2x} dx = :$	$-\sqrt{2}\cos x + c$	$\sqrt{2}\sin x + c$	$\sqrt{2}\cos x + c$	$-\sqrt{2}\sin x + c$
4	$\int e^{x} \left(\frac{1}{x} + \ell nx \right) dx = :$	$\frac{1}{x}e^{x} + c$	e ^x (ℓnx)+c ●	$\frac{e^{x}}{\ell nx} + c$	$\frac{\ln x}{e^x} + c$
5	$\frac{d}{dx}(y^n) = :$ pakcity.org	ny ^{n–l}	ny ^{n+l}	$ny^{n-1}\frac{dy}{dx}$	$ny^{n-1}\frac{dx}{dy}$
6	$\frac{d}{dx}(3^x) = :$	3 ^x ℓn3 ●	3 ^x	x3 ^{x-1}	3 ^{x+1}
7	If $f(x) = \frac{1}{x-1}$, then $f'(2) = :$	-1	1	0	2
8	$f(x) = -3x^2$ has maximum value at:	x = -2	x = -1	x = 0 ●	x = 1
9	The function $f(x) = (x + 2)^2$ is:	Even	Odn O	Both A and B	Neither even nor odd
10	$\lim_{x \to 0} (1+3x)^{\frac{2}{x}} = :$	e ²	e ⁸	e ⁶	e ⁴
11	$(\underline{\mathbf{i}} \times \underline{\mathbf{k}}) \times \underline{\mathbf{j}} = :$		- <u>j</u>	0	<u>i</u>
12	$ \cos \alpha \underline{\mathbf{i}} + \sin \alpha \underline{\mathbf{j}} + 0\underline{\mathbf{k}} = :$	30	1	2	-1
13	If $\underline{\mathbf{a}} + \underline{\mathbf{b}} + \underline{\mathbf{c}} = 0$ then:	$\underline{\mathbf{a}} \times \underline{\mathbf{b}} \times \underline{\mathbf{c}} = 0$	$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = \underline{\mathbf{b}} \times \underline{\mathbf{c}} = \underline{\mathbf{c}} \times \underline{\mathbf{a}}$	$\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = \underline{\mathbf{b}} \cdot \underline{\mathbf{c}} = \underline{\mathbf{c}} \cdot \underline{\mathbf{a}}$	$\underline{\mathbf{a}} = \underline{\mathbf{b}} = \underline{\mathbf{c}}$
14	Focus of the parabola $x^2 = -16y$ is:	(0,4)	(0,-4)	(4,0)	(-4,0)
15	A circle is called a point circle if:	r=1	r = 0	r = 2	r = 3
16	Eccentricity of ellipse is:	e = 0	e>1	0 < e < 1	e=1
17	The point (-1, 2) satisfies the inequality:	x-y>4	x – y ≥ 4	x + y < 4	x + y > 5
18	Equation of horizontal line through (7,-9) is:	y = −9 •	y = 7	x = -9	x = 7
19	If m ₁ and m ₂ are the slopes of two lines then lines are perpendicular if:	$m_1 m_2 = 0$	$m_1m_2+1=0 \bullet$	$m_1 m_2 + 2 = 0$	$m_1 = m_2$
20	Distance of point (1, -2) from y-axis is:	2	1 •	3	4

1210-XII124-20000

Intermediate I	Part Secon	d
----------------	------------	---

Roll No.

16

.210-XII124

MATHEMATICS (Subjective) Group - II

Time: 02:30 Hours

Marks: 80

SECTION - I

2. Attempt any EIGHT parts:

then find c so that $\lim_{x \to -1} f(x)$ exists. Spakcity.org If $f(x) = \begin{cases} x+2, & x \le -1 \\ c+2, & x > -1 \end{cases}$

Evaluate $\lim_{x \to \infty} \left(\frac{x}{1+x} \right)^x$

(iii) If
$$g(x) = \frac{3}{x-1}$$
, $x \ne 1$; then find $gog(x)$

- Determine whether $f(x) = \frac{3x}{x^2 + 1}$ is even or odd.
- Differentiate $\frac{2x-3}{2x+1}$ w.r.t x (v)
- Find $\frac{dy}{dx}$ if $x = \theta + \frac{1}{\theta}$ and $y = \theta + 1$
- (vii) Differentiate $\cos \sqrt{x} + \sqrt{\sin x}$ w.r.t x
- (viii) Differentiate √tan x w.r.t x
- Find f'(x) if $f(x) = \ell n(e^x + e^{-x})$
- Find y_2 if $x^3 y^3 = a^3$ (x)
- Prove that $\cos x = 1 \frac{x^2}{12} + \frac{x^4}{14} \frac{x^6}{16} + \dots$
- (xii) Determine the interval in which $f(x) = \sin x$ is decreasing; χ

3. Attempt any EIGHT parts:

- Find dy and δy for the function $y = \sqrt{x}$ when x changes from 4 to 4.41 (i)
- Evaluate $\int (3x^2 2x + 1) dx$ (ii)
- Evaluate the integral $\int \frac{1-x^2}{1+x^2} dx$
- Evaluate $\int x^3 \ell nx \, dx$
- Evaluate $\int \frac{2x}{x^2 a^2} dx$
- Solve the definite integral $\int_{0}^{3} (x^3 + 3x^2) dx$
- (vii) Find the area between x-axis and the curve $y = \cos \frac{1}{2}x$ from $x = -\pi$ to $x = \pi$
- (viii) Find 'h' such that points A(-1, h), B(3, 2) and C(7, 3) are collinear.
- (ix) Find the slope and inclination of the line joining the points (4, 6) and (4, 8).
- Find the equation of line through (-4, 7) and parallel to the line 2x 7y + 4 = 0(x)
- Check whether the lines 4x 3y 8 = 0; 3x 4y 6 = 0 and x y 2 = 0 are concurrent or not.
- (xii) Find the angle between the pair of lines $x^2 + 2xy \sec \alpha + y^2 = 0$

(Continued P/2)

-2-

18

4. Attempt any NINE parts: Indicate solution set of linear inequalities $3x + 7y \ge 21$, $x - y \le 2$ (i) Define optimal solution. (ii) Find center and radius of the circle $x^2 + y^2 - 6x + 4y + 13 = 0$ (iii) Find length of tangent drawn from point (-5, 4) to the circle $5x^2 + 5y^2 - 10x + 15y - 131 = 0$ (iv) Find the vertex and directrix of parabola $x^2 = 5y$ (v) Find equation of ellipse with data vertices (-1, 1), (5,1) Foci: (4, 1), (0, 1) (vi) Find equation of hyperbola with data Foci $(0, \pm 9)$, directrices $y = \pm 4$ (viii) Find equation of normal to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at $(a \sec \theta, b \tan \theta)$ Find unit vector in the direction of vector $\underline{\mathbf{v}} = -\frac{\sqrt{3}}{2}\underline{\mathbf{i}} - \frac{1}{2}\underline{\mathbf{j}}$ (ix)Find direction cosines of vector $\underline{\mathbf{v}} = 6\underline{\mathbf{i}} - 2\underline{\mathbf{j}} + \underline{\mathbf{k}}$ (x) Show that the set of points P(1, 3, 2), Q(4, 1, 4) and R(6, 5, 5) forms a right triangle. (xii) Compute cross product $\underline{b} \times \underline{a}$ if $\underline{a} = 3\underline{i} - 2\underline{j} + \underline{k}$, $\underline{b} = \underline{i} + \underline{j}$ (xiii) Prove that vectors $\underline{\mathbf{i}} - 2\underline{\mathbf{j}} + 3\underline{\mathbf{k}}$, $-2\underline{\mathbf{i}} + 3\underline{\mathbf{j}} - 4\underline{\mathbf{k}}$, $\underline{\mathbf{i}} - 3\underline{\mathbf{j}} + 5\underline{\mathbf{k}}$ are coplaner. SECTION - II Attempt any THREE questions. Each question carries 10 marks. 5. (a) If $f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, & x \neq 2, \\ k, & x = 2 \end{cases}$, find the value of 'k' for which is continuous at x = 2. 05 (b) Find $\frac{dy}{dx}$, if $y = x \sin^{-1}\left(\frac{x}{a}\right) + \sqrt{a^2 - x^2}$ 05 6. (a) Show that $y = x^x$ has minimum value at $x = x^x$ 05 (b) Evaluate the indefinite integral $\int \sqrt{4 + 5x^2} dx$ 05 7. (a) Evaluate $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x(2 + \sin x)} dx$ 05 (b) Graph the feasible region of linear inequalities and find corner points: $2x+3y \le 18$; $2x+y \le 10$; $x+4y \le 12$ 05 8. (a) Find an equation of circle passes through A(5, 1) and tangent to line 2x - y - 10 = 0 at B(3, -4) 05 (b) Prove that the angle in a semi-circle is a right angle. 05 9. (a) Find the focus, vertex and directrix of the parabola; $y^2 = -8(x-3)$ 05 (b) Find the lines represented by $9x^2 + 24xy + 16y^2 = 0$ and also find measure of the angle between them. 05

1210-XII124-20000

MATHEMATICS Time: 30 Minutes

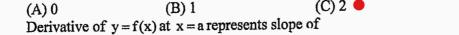
Intermediate Part-II, Class 12th (1stA 424-IV) **OBJECTIVE**

Code: 8197

GROUP: I PAPER: II Marks: 20

You have four choices for each objective type question as A, B, C and D. The choice which you think is Note: correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling of two or more circles will result in zero mark in that question.

- 1-1- $\int Secx Tanx dx = ?$
 - (A) Secx + c
- (B) $Sec^2x + c$
- (C) Tanx + c
- (D) $\ln |Secx + tanx| + c$


pakcity.org

- The focus of parabola $x^2 = -16y$ is 2-
 - (A)(0,-4)
- (B)(0,0)
- (C)(4,0)
- (D)(-4,0)

3- $\int |x| dx$ is

4-

- (A) 0
- (C) 2

- (A) tangent line at x = a (B) secant line
- (C) perpendicular line
- (D) straight line

- 5-Projection of vector <u>v</u> along vector <u>u</u> is
- (B) $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}$
- (C) $\frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{u}}}{|\underline{\mathbf{u}}|}$

- 6-Which one is true?
 - (A) $i \times i = i$
- (B) $\underline{i} \cdot \underline{i} = \underline{i}$
- (C) $\underline{\mathbf{k}} \times \underline{\mathbf{k}} \neq 0 \bullet$

- Which one equation represents a circle? 7-
 - (A) $y^2 = 8x$
- (B) $3x^2 + 3y^2 = 9$
- (C) $3x^2 + 5y^2 = 9$
- (D) $x^2 2y = 0$

- Which one is point-slope form of a straight line? 8-
 - (A) y = mx + c
- (B) $y y_1 = m (x x_1)$ (C) $\frac{x}{a} + \frac{y}{b} = 1$
- (D) $\frac{x}{a} \frac{y}{b} = 1$

- Order of differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} 2x = 0$ is 9-

- (D) 3
- The interval in which $f(x) = 4 x^2$; $x \in (-2, 2)$ is increasing (A) (0, 2) (B) (-2, 0)10-

- (D)(0,1)
- The function $f(x) = \frac{x^2 1}{x 1}$ is not defined at

 (A) x = 011-

- (D) x = -1

- If $f(x) = x^{2/3}$, the f'(8) is 12-
 - (A)3

- (D) $\frac{1}{2}$

- $\int \frac{f'(x)}{f(x)} dx = ?$ 13-
 - $(A) \ln |x| + c$
- (B) $\ln |f(x)| + c$
- (C) $\ln |f'(x)| + c$
- (D) $\ln f(x) \cdot f'(x) + c$
- Slope of the line passing through the points (0, -1) and (7, -15) is 14-(C) 1 V. Or O
 - (A)2

- (D) -2

- 15- $Lim(e^x) = ?$
 - (A) ∞ !
- (B) -∞
- (C) 1

(D) 0

- 16- $[\underline{u} \underline{v} \underline{v}] = ?$
 - (A) 1
- (B) -1
- (C) 0
- (D) <u>v</u>

- Which point is not solution of inequality $x-2y \le 6$ 17-
- (B)(0,-1)
- (C)(14,0)
- (D)(-4,0)

- Major axis of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with (a > b) is 18-
- (B) y = 0
- (C) x = 1
- (D) y = 1

- Derivative of Tan-1x w.r.t. x is 19-
- (B) $\frac{1}{x^2-1}$
- (C) $\frac{1}{1+x^2}$
- (D) $1+x^2$

- Distance of line 5x + 12y + 39 = 0 from origin is 20-
 - Please visit for more data at: www.pak@fortal 424-25000
- (C) 12
- (D) 39

MATHEMATICS

Intermediate Part-II, Class 12th (1stA 424)

Time: 2:30 hours

SUBJECTIVE

GROUP: I PAPER: II Marks: 80

 $(2 \times 8 = 16)$

pakcity.org

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION I

Write short answers to any EIGHT questions: 2.

i- Let
$$f(x) = x^2 - x$$
, find the value of $f(x - 1)$.

ii- State the domain and range of
$$f^{-1}$$
 if $f(x) = \frac{1}{x+3}$

iii- Evaluate
$$\lim_{x\to\pi} \frac{\sin x}{\pi - x}$$

iv- Express
$$\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^{2n}$$
 in term of e.

v- Differentiate
$$\frac{x^2+1}{x^2-3}$$
 w.r.t. 'x'

vi- Find
$$\frac{dy}{dx}$$
 if $x = at^2$ and $y = 2at$

vii- Prove that
$$\frac{d}{dx}(\cot^{-1} x) = \frac{-1}{1+x^2}$$

viii- Differentiate
$$(\cos\sqrt{x} + \sqrt{\sin x})$$
 w.r.t 'x'

ix- Find
$$\frac{dy}{dx}$$
 if $y = \sin h^{-1}(ax + b)$

x- Find
$$\frac{dy}{dx}$$
 if $y = \log_{10}(ax^2 + bx + c)$

xi- Find f'(x) if
$$f(x) = \frac{e^x}{e^{-x} + 1}$$

xii- Define a stationary point.

IS: PRENT TO TREE Write short answers to any EIGHT questions: 3.

i- Use differential to find
$$\frac{dy}{dx}$$
, if $xx = c$

ii- Evaluate
$$\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$$
 $(x>0)$

v- Evaluate
$$\int e^x (\cos x - \sin x) dx$$

vi- Calculate
$$\int_{1}^{2} \frac{x}{x^2 + 2} dx$$

vii- Solve the differential equation
$$\frac{dy}{dx} = \frac{1-x}{y}$$

x- Convert
$$15y - 8x + 3 = 0$$
 in slope intercept form.

xii- Show that the points
$$A(-1, 2)$$
, $B(7, 5)$ and $C(2, -6)$ are vertices of right triangle.

(Turn over)

(2)

Write short answers to any NINE questions: 4.

- What is feasible region?
- Derive equation of circle in standard form.
- Write an equation of circle with centre (-3, 5) and radius 7. iii-
- Check the position of point (5, 6) with respect to circle: $2x^2 + 2y^2 + 12x 8y + 1 = 0$ iv-
- Find equation of hyperbola with foci $(0, \pm 9)$, directrices $y = \pm 4$. V-
- Find the focus and directrix of the parabola if $x^2 = 5y$.
- Find an equation of ellipse with foci (±3,0) and minor axis length 10. vii-
- Indicate the solution set of system of linear inequality by shading $4x-3y \le 12$; $x \ge -\frac{3}{2}$ viii-
- Define equal vector, give an example. ix-
- Find the magnitude and direction cosines of $\underline{v} = 4\underline{i} 5\underline{j}$
- Find scalar " α " so that the vectors $2\underline{i} + \alpha \underline{j} + 5\underline{k}$ and $3\underline{i} + \underline{j} + \alpha \underline{k}$ are perpendicular.
- Which vectors, if any, are parallel or perpendicular xii- $\underline{\mathbf{u}} = \underline{\mathbf{i}} + 2\underline{\mathbf{j}} - \underline{\mathbf{k}}$, $\underline{\mathbf{v}} = -\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}$, $\underline{\mathbf{w}} = \frac{-\pi}{2}\underline{\mathbf{i}} - \pi\underline{\mathbf{j}} + \frac{\pi}{2}\underline{\mathbf{k}}$
- Prove that the vectors $\underline{i} 2\underline{j} + 3\underline{k}$, $-2\underline{i} + 3\underline{j} 4\underline{k}$ and $\underline{i} 3\underline{j} + 5\underline{k}$ are coplanar.

5-

5

- $\frac{\sin \theta}{\theta \to 0} = \frac{\sin \theta}{\sin^3 \theta}$ (b) If $\tan y(1 + \tan x) = 1 \tan x$, show that $\frac{dy}{dx}$ (a) If $x = \sin \theta$, $y = \sin m\theta$ shows that $\frac{dy}{dx}$ 5 6-
 - (b) Evaluate $\int \frac{\sqrt{2}}{\sin x + \cos x} dx$ 5
- (a) Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin x} dx$ 5
 - (b) Maximize f(x,y) = 2x + 5y, subject to the constraints $2y x \le 8$; $x y \le 4$; $x \ge 0$; $y \ge 0$. 5
- (a) Find the length of the chord cut off from the line 2x + 3y = 13 by the circle $x^2 + y^2 = 26$. 8-5
 - (b) Prove that in any $\triangle ABC$, $b^2 = c^2 + a^2 2ca \cos B$ 5
- 9-(a) Find the interior angles of a triangle with vertices A(-2,11), B(-6,-3) and C(4,-9)5
 - (b) Find the centre, foci, eccentricity, vertices and directrices of the Ellipse $x^2 + 4y^2 = 16$ 5

313-1stA 424-25000

5

Roll No. of Candidate Intermediate Part-II, Class 12th (1stA 424-IV) **GROUP: II MATHEMATICS** PAPER: II **OBJECTIVE** Time: 30 Minutes Marks: 20 Code: 8198 You have four choices for each objective type question as A, B, C and D. The choice which you think Note: is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling of two or more circles will result in zero mark in that question. Differential of \sqrt{x} is 1-1-(D) $\frac{-1}{\sqrt{x}}$ dx (B) $\frac{2}{\sqrt{x}} dx$ (C) $\frac{1}{2\sqrt{x}} dx$ $(A) \frac{1}{\sqrt{x}} dx$ If a = b then equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ represent 2-(C) Parabola (D) Hyperbola (B) Circle (A) Ellipse Degree of differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 3x = 0$ is 3-(B)2(D) 3 (C) 1 • $\frac{d}{dx}(\sin \ln x) = ?$ 4-(B) $\frac{e^{x} + e^{-x}}{2}$ (A) $\frac{e^x - e^{-x}}{2}$ (D) $e^{x} + e^{-x}$ Magnitude of a vector $\mathbf{v} = -\mathbf{i} + \mathbf{j}$ is 5-(D) $\sqrt{3}$ (B) $\sqrt{2}$ (A) a If dot product of two non-zero vectors is zero then vectors will be 6-(C) collinear (D) all of these (B) parallel (A) perpendicular • Length of latus ractum of parabola y² 7-(D) $\frac{1}{20}$ (A) 2aEvery homogeneous equation $ax^2 + 2hxy + by^2 = 0$ represent two real lines through origin if 8-(B) $h^2 - ab > 0$ (C) $h^2 = ab$ (D) both (B) and (C) If α is constant then [cot α dy is 9-(B) $-\sin\alpha + c$ (C) $x\sin\alpha + c$ (D) $ycot\alpha + c \bullet$ (A) $Sin\alpha + c$ If f(x) = Cosx, then $f'(\frac{\pi}{2})$ is 10-(D) $\frac{1}{2}$ (A) -1(B) 1 (C) 0 $\lim_{x \to a} \frac{x^3 - a^3}{x - a} = ?$ (A) $3a^2 \bullet$ 11- $(B) a^2$ (D) un-defined (C) 0Derivative of \sqrt{x} at x = a is 12-(B) $-\frac{1}{2\sqrt{a}}$ $(A)^{\frac{1}{\sqrt{2}}}$ (C) $\frac{1}{2\sqrt{a}}$ (D) $2\sqrt{a}$

(Turn over)

(2)

13- $\int \frac{\ln x}{x} dx$ is equal to

$$(A) \ln (\ln x) + c$$

(B)
$$\frac{(\ln x)^2}{2} + c \bullet$$

(C)
$$\ln x + c$$

(D)
$$\frac{\ln x}{2}$$
 + c

14- Slope intercept form of a line is

$$(A) y = mx + c \quad \bullet$$

(B)
$$\frac{x}{a} + \frac{y}{b} = 1$$

(C)
$$x = 0$$

(D)
$$y = 0$$

15- The function $f(x) = \frac{2+3x}{2x}$ is not continuous at

(B)
$$x = 0$$

(C)
$$x = -\frac{2}{3}$$

(D)
$$x = 1$$

16- $\frac{1}{6}[\underline{\mathbf{u}} \ \underline{\mathbf{v}} \ \underline{\mathbf{w}}]$ is formula to calculate

- (A) area of triangle
- (C) volume of tetrahedron
- 17- (2, 1) is solution of in-equality

(A)
$$2x + y > 5$$

(B)
$$x - 2y > 1$$

(C) 2v 5v 7

(B) volume of parallelpipped

(D) area of parallelogram

(D) 2x + y < 5

18- Eccentricity of hyperbola is

(A)
$$e < 1$$

$$(B) = 0$$

(C) e = 1

(D) e > 1

19- $\frac{d}{dx} \left[\frac{1}{g(x)} \right]$ is equal to

$$(A) \frac{1}{[g(x)]^2}$$

$$(B) \frac{-g'(x)}{g(x)}$$

$$(C) \frac{-1}{[g(x)]^2}$$

(D)
$$\frac{-g'(x)}{[g(x)]^2}$$

20- Distance of point (Cos3x, Sin3x) from origin is

(A) 9

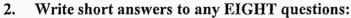
(B) 6

pakcit(C) 3

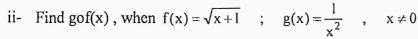
(D) 1 •

314-(IV)-1stA 424-24000

Intermediate Part-II, Class 12th (1stA 424)


MATHEMATICS Time: 2:30 hours

SUBJECTIVE


Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION I

pakcity.org §

Define rational function. Give one example also.

iii- Evaluate
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta}$$

iv- Find 'c' so that
$$\lim_{x\to -1} f(x)$$
 exists, when $f(x) = \begin{cases} x+2, & x \le -1 \\ c+2, & x > -1 \end{cases}$

- Differentiate $(x^2 + 5)(x^3 + 7)$ w.r.t x.
- Find derivative of $Tan^3\theta Sec^2\theta$ w.r.t θ .

vii- Find
$$\frac{dy}{dx}$$
, if $y = \sinh^{-1}\left(\frac{x}{2}\right)$

- Define critical value and critical point of function f. viii-
- Differentiate Cot⁻¹ $\left(\frac{x}{a}\right)$ w.r.t x.
- Find derivative of $\frac{x^2+1}{x^2-3}$ w.r.t x.

3.

Write short answers to any EIGHT questions:

i- Find δy if $y = x^2 - 1$ and x changes from ii- Evaluate $\int \frac{(1 - \sqrt{x})^2}{x^2}$

ii- Evaluate
$$\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$$

ii- Evaluate
$$\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$$

iii- Evaluate $\int \frac{dx}{x(\ln 2x)^3}$
iv- Evaluate $\int x \tan^2 x dx$

iv- Evaluate
$$\int x \tan^2 x dx$$

v- Evaluate
$$\int \frac{e^x(1+x)}{(2+x)^2} dx$$

vi- Evaluate
$$\int_{0}^{\pi/6} x \cos x \, dx$$

- Solve the differential equation Siny Cosec x $\frac{dy}{dx} = 1$
- Find the distance and midpoint of line joining A(-8, 3) and B(2, -1).
- Find an equation of line with x-intercept:-9 and slope:-4 ix-
- Transform the equation 5x-12y+39=0 into slope intercept form.
- Determine the value of P such that the lines 2x-3y-1=0, 3x-y-5=0 and 3x+Py+8=0meet at a point.
- xii-Find the angle between the lines represented by $x^2 - xy - 6y^2 = 0$

(Turn over)

 $(2 \times 8 = 16)$

GROUP: II

PAPER: II

Marks: 80

(2)

pakcity.org § $(2 \times 9 = 18)$

Write short answers to any NINE questions:

- Define feasible region.
- Graph the feasible region of inequality $3x + 2y \ge 6$, $x \ge 0$, $y \ge 0$
- Write an equation of circle with centre (5, -2) and radius 4. iii-
- Write down equation of tangent to $x^2 + y^2 = 25$ at (4, 3)iv-
- Find the focus and vertex of parabola $y^2 = 8x$
- Write equation of the ellipse whose foci (±3,0) and minor axis of length 10. vi-
- Find the foci and eccentricity of $\frac{x^2}{4} \frac{y^2}{9} = 1$ vii-
- Find the length of tangent drawn from point (-5, 4) to the circle $x^2 + y^2 2x + 3y 26 = 0$ viii-
- Find a unit vector in the same direction of the vector $\underline{\mathbf{v}} = [3, -4]$ ix-
- Write the direction cosine of vector $\underline{\mathbf{v}} = -\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ X-
- Find a scalar ' α ' so that vectors $2\hat{i} + \alpha\hat{j} + 5\hat{k}$ and $3\hat{i} + \hat{j} + \alpha\hat{k}$ are perpendicular. xi-
- If $\underline{\mathbf{a}} = 4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\underline{\mathbf{b}} = 2\hat{\mathbf{i}} \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, find $|\underline{\mathbf{a}} \times \underline{\mathbf{b}}|$ xii-
- A force $\underline{F} = 4\hat{i} 3k$ passes through A(2, -2, 5). Find its moment about B(1, -3, 1). xiii-

SECTION II

- Evaluate: $\lim_{\theta \to 0} \frac{1 \cos \theta}{1 \cos \theta}$ 5-
- (a) If $y = e^x Sinx$; show that $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0$ (b) Evaluate: $\int_0^{\pi/4} \frac{Sinx 1}{Cos^2x} dx$ (b) Graph the form 5 6-
- 5
 - (b) Graph the feasible region of the following system of linear inequalities and find the corner points $2x-3y \le 6$ $2x + 3y \le 12$ $x \ge 0$, $y \ge 0$
- Find an equation of the circle passing through the points A(1, 2) and B(1, -2) and touching 5 8the line x+2y+5=0
 - Use vectors, to prove that the diagonals of a parallelogram bisect each other.
- Find the equation of perpendicular bisector of a segment joining the points A(3, 5)5 9and B(9, 8).
 - 5 Find the equation of parabola with focus (-3, 1) and directrix x = 3.

314-1stA 424-24000

5

5

5

5

5

Lahore Board-2024

(To be filled in by the candidate)

(Academic Sessions 2020 - 2022 to 2022 - 2024)

MATHEMATICS

224-1st Annual-(INTER PART – II)

Q.PAPER – II (Objective Type)

GROUP - I

Time Allowed: 30 Minutes

Maximum Marks: 20

PAPER CODE = 8195

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

two or more circles will result in zero mark in that question.

1-1 If $f(x) = 3 - \sqrt{x}$ then j	f'(1) is equal to:
-------------------------------------	--------------------

(B) 0

(C) $\frac{1}{2}$

(D) 1

pakcity.org

 $\frac{\pi/4}{4}$ $4 \int \sin 2x \, dx = :$

(D) $\sqrt{3}$

(A) $4-2\sqrt{2}$ (B) $\frac{\sqrt{3}}{2}$ $\lim_{x \to 0} \frac{\sin ax}{\sin bx} = :$

(B) $-\frac{b}{a}$

Let $f(x) = \sqrt{1 - x^2}$ in R then domain of f is:

(D) Integers

(C) Negative real numbers (D) $|x| \le 1$ If $\int x e^{x^2} dx = k e^{x^2}$ then k =:

If f(x) has second derivative at c such that f'(c)=0 and f''(c)<0 then c is point of:

(A) Maxima

(B) Minima

(C) Point of inflection

(D) Origin

If $y = \cot x$, then $\frac{dy}{dx}$ is given by :

(C) $\tan x$

(D) $-\cos ec x \cot x$

 $\int \frac{1}{x^2 + a^2} dx = :$

(A) $\tan^{-1}\frac{x}{a} + c$ (B) $\frac{1}{a}\tan^{-1}\frac{x}{a} + c$ (C) $\frac{a}{x}\tan^{-1}\frac{x}{a} + c$ (D) $\frac{1}{a}\tan^{-1}\frac{a}{x} + c$

1-10	For $y = \log_e 5x$, $\frac{dy}{dx} =$	= :		-‱ pakcity.org ∰-
	$(A) \frac{1}{x}$	(B) 5	(C) $\frac{1}{5x}$	(D) 1
11	The straight line $y =$	mx + c is tangent to t	he parabola $y^2 = 4ax$	t if:
	(A) $c = \frac{a}{m}$	(B) $c = \frac{m}{a}$	$(C) c = \frac{a^2}{m^2}$	(D) $c = am$
12	y-coordinate of any p	ooint on x-axis is:		
	(A) 0	(B) x elepiped determined b	(C) 1	(D) <i>y</i>
13	The volume of parall	elepiped determined b	$\underline{u} = \underline{i} + 2\underline{j} - \underline{k} ,$	$\underline{v} = \underline{i} - 2\underline{j} + 3\underline{k} ,$
	$\underline{w} = \underline{i} - 7\underline{j} - 4\underline{k}$ is:			
	(A) 48	(B) 50	(C) 52	(D) 55
14	The distance between	the centres of the circ	cles $x^2 + y^2 + 2x + 2$	y+1=0 and
	$x^2 + y^2 - 4x - 6y - 3 =$	0 is:		
	(A) 1	(B) 4	(C) 5	(D) 15
15	If $a+b+c=0$ the	n which one is correct	:	
	i i			
	$(A) \underline{a} \times \underline{b} \times \underline{c} = 0$	$(B) \underline{a} \times \underline{b} = \underline{b}$	V = - 5 V (2)	
	(C) $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c}$	$\underline{a} \qquad \text{(D)} \underline{a} = \underline{b} = \underline{c}$		
16	Ine x-intercept of the	2x + 3y - 1 = 0		
	(A) 2 The graph of $2x-3y$ (A) On the origin si (C) Not decided	(B) 3	(C) $\frac{1}{3}$	(D) $\frac{1}{2}$
17	The graph of $2x - 3y$	≤6 is color		
	(A) On the origin si	de (B) Not on t	he origin side	
	(C) Not decide	(D) Through		
				en hv
18	The area of the triang	gle having \underline{a} and \underline{b} as		
	(A) $ \underline{a} \cdot \underline{b} $	(B) $\frac{1}{2} \underline{a} \cdot \underline{b} $ pal	$C[(C) \underline{a} \times \underline{b} $	(D) $\frac{1}{2} \underline{a} \times \underline{b} $
19	Homogeneous equati	on of second degree	$ax^2 + 2hxy + by^2 = 0$	where a, b, h are
	not all zero, represen	ts two imaginary lines	s if:	
	(A) $h^2 = ab$	(B) $h^2 > ab$	(C) $h^2 < ab$	(D) $h = ab$
20	The eccentricity of the	(B) $h^2 > ab$ ne ellipse $\frac{x^2}{64} + \frac{y^2}{28} = 1$	is:	
	(A) $\frac{3}{4}$	(B) $\frac{4}{3}$	(C) $\sqrt{\frac{3}{4}}$	(D) $\sqrt{\frac{4}{3}}$

173-224-I-(Objective Type)- 8500 (8195)

Lahore Board-2024 .oll No

(To be filled in by the candidate)

(Academic Sessions 2020 - 2022 to 2022 - 2024)

MATHEMATICS

224-1st Annual-(INTER PART – II)

PAPER – II (Essay Type)

GROUP – I

Time Allowed: 2.30 hours Maximum Marks: 80

SECTION - I

Write short answers to any EIGHT (8) questions:

(i) Prove that $\cos h^2 x - \sin h^2 x = 1$

(ii) If $f(x) = \sqrt{x+4}$ then find f(x-1)

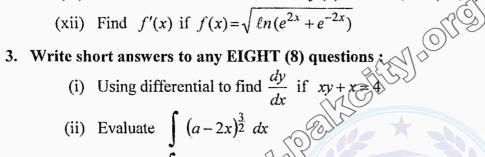
(iii) Evaluate
$$\lim_{x \to 3} \frac{x-3}{\sqrt{x} - \sqrt{3}}$$

(iv) Evaluate
$$\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$$

(v) Differentiate
$$y = (x^2 + 5)(x^3 + 7)$$
 with respect to x.

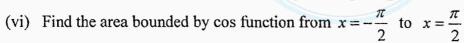
(vi) Differentiate
$$\frac{x^2+1}{x^2-3}$$
 with respect to x.

(vii) Find derivative of
$$(x^3+1)^9$$
 with respect to x.


(viii) Differentiate
$$\cos \sqrt{x} + \sqrt{\sin x}$$
 with respect to the variable involved.

(ix)
$$\frac{dy}{dx} = ?$$
 If $y = e^{x^2 + 1}$

(x) Find Maclaurin Series for
$$\sin x$$


(xi) Determine the interval in which
$$f(x) = 4 - x^2$$
, $x \in (-2, 2)$ is increasing or decreasing.

(xii) Find
$$f'(x)$$
 if $f(x) = \sqrt{\ln(e^{2x} + e^{-2x})}$

(ii) Evaluate
$$\int (a-2x)^{\frac{3}{2}} dx$$

(v) Evaluate
$$\int_{1}^{2} \frac{x}{x^2 + 2} dx$$

(vii) Solve the differential equation
$$\frac{dy}{dx} = \frac{y}{x^2}$$

(viii) Find h such that
$$A(-1,h)$$
, $B(3,2)$ and $C(7,3)$ are collinear.

(ix) The coordinates of a point P are
$$(3,2)$$
. The axes are translated through the point $O'(1,3)$. Find the coordinates of P referred to new axes.

(x) Find k so that the line joining A (7,3); B (k,
$$-6$$
) and the line joining C (-4 , 5); D (-6 , 4) are parallel.

(xi) Find the point of intersection of the lines
$$x-2y+1=0$$
 and $2x-y+2=0$

(xii) Find measure of the angle between the lines represented by
$$9x^2 + 24xy + 16y^2 = 0$$

Please visit for more data at: www.pakcity.org

16

(Turn Over)

16

5

5

5

5

5

5

5

4. Write short answers to any NINE (9) questions :

- (i) Graph the solution set of inequality $3x-2y \ge 6$
- (ii) Define feasible region.
- (iii) Find the equation of circle whose ends of diameter are (-3, 2) and (5, -6)
- (iv) Find the position of the point (5, 6) w.r.t the circle $2x^2 + 2y^2 + 12x 8y + 1 = 0$
- (v) Find the focus and vertex of parabola $y^2 = -8(x-3)$
- (vi) Find the eccentricity of ellipse $x^2 + 4y^2 = 16$
- (vii) Find the centre and eccentricity of the conic $\frac{y^2}{4} x^2 = 1$
- (viii) Identify the conic represented by $4x^2 4xy + y^2 6 = 0$
 - (ix) Find the work done by a constant force $\vec{F} = 2\hat{i} + 4\hat{j}$, if its point of application to a body moves it from A(1,1) to B(4,6)
 - (x) Find the value of ' α ' such that $\alpha \underline{i} + \underline{j}$, $\underline{i} + \underline{j} + 3\underline{k}$ and $2\underline{i} + \underline{j} 2\underline{k}$ are coplanar.
 - (xi) If $\vec{u} = 2i j + k$ and $\vec{v} = 4i + 2j k$ find $\vec{u} \times \vec{v}$
- (xii) Find a vector whose magnitude is 4 and is parallel to $2\underline{i} 3\underline{j} + 6\underline{k}$
- (xiii) If A(1,-1), B(2,0), C(-1,3) and D(-2,2) are given points, find the sum of the vectors \overrightarrow{AB} and \overrightarrow{CD}

SECTION - II

Note: Attempt any THREE questions.

5. (a) Find m and n, so that given function f is continuous at x = 3

$$f(x) = \begin{cases} mx & \text{if } x < 3\\ n & \text{if } x = 3\\ -2x + 9 & \text{if } x > 3 \end{cases}$$

- $f(x) = \begin{cases} mx & \text{if } x < 3 \\ n & \text{if } x = 3 \\ -2x + 9 & \text{if } x > 3 \end{cases}$ (b) Prove that $y \frac{dy}{dx} + x = 0$ if $x = 1 + t^2$, $y = \frac{2t}{1 + t^2}$ 6. (a) If $y = e^{-ax}$, then show that $\frac{d^3y}{dx^3} + a^3y = 0$
 - (b) Evaluate the indefinite integral $\int \sqrt{x^2 a^2} dx$
- 7. (a) Solve the differential equation $2e^x \tan y \, dx + (1-e^x) \sec^2 y \, dy = 0$
 - (b) Maximize f(x,y) = x + 3y subject to the constraints $2x + 5y \le 30$; $5x + 4y \le 20$, $x \ge 0$, $y \ge 0$
- 5 (a) Find equations of the tangents to the circle $x^2+y^2=2$ perpendicular to the line 3x+2y=65
 - (b) Using vectors, prove that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$
- (a) Find centre, foci, eccentricity, vertices and equation of directrices of $\frac{(y+2)^2}{0} \frac{(x-2)^2}{16} = 1$ 5
 - (b) Find the equations of altitudes of the triangle whose vertices are A(-3,2),B(5,4),C(3,-8)

173-224-I-(Essay Type)-34000

Lahore Board-2024

Roll No _			(To be filled in by t	he candidate)
Q.PAPER Note : Fo	MATICS R – IL (Objective Typour possible answers All that circle in front	PAPER CODE A, B, C and D to each quest	NTER PART – II) Tin – II Ma = 8192 tion are given. The choice ter or Pen ink in the answ	me Allowed: 30 Minutes aximum Marks: 20 e which you think is correct, wer-book. Cutting or filling
1-1	1	which of the following		
	(A) x^4	(B) x^2	(C) 1	(D) $\frac{1}{x^4}$
2	What is the value o	$ \begin{array}{c} \text{f } Lim\left(x\sin x\right) : \\ \xrightarrow{x\to 0} \end{array} $		
	(Α) α	(B) – 1	(C) 1	(D) 0
3	What is the value o	$\int \sqrt{1-x^2} \frac{d}{dx} (\sin^{-1} x + \cos^{-1} x)$	$\cos^{-1} x$) :	
,	$(A) \sqrt{1-x^2}$	$\int_{0}^{\infty} \sqrt{1-x^2} \frac{d}{dx} (\sin^{-1} x + \cos^{-1} x)$ (B) 0	(C) 2	(D) $\frac{1}{x}$
4	$\frac{d}{dx} \left(\sin h^{-1} x \right) = :$			
	$(A) \frac{1}{\sqrt{1-x^2}}$	$(B) \frac{-1}{\sqrt{1-x^2}}$	$(C) \sqrt{1+x^2}$	$(D) \frac{-1}{\sqrt{1+x^2}}$
5	Derivative of x^3	w.r.t x^3 is:	Silver	
	(A) 0	(B) 1 Go	(C) x^3	(D) $3x^2$
6	If $f(x) = a^x$ then	f'(x) = :		
	(A) $a^x \ell na$	(B) $a^x \ln x$	(C) $a^x(\ell na)^2$	(D) $(a^x)^2 \ell na$
7	$\int x^{-1} dx :$		Amusia fundas Husia Husia Anto Company	
	(A) 0	(B) $-x^{-2}+c$	(C) ∝	(D) $lnx + c$
8	$\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx = :$			
	(A) $\frac{\pi}{6}$	(B) $\frac{n}{4}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$
9	$\int \tan x dx = :$		We will control to the control to th	
	(A) $\ell n \cot x + c$	(B) $ln \sec x + c$	(C) $\ell n \sin x + c$	(D) $ln\cos ec x + c$

(Turn Over)

Lahore Board-2024

(2)

1.10	$\int_{0}^{\pi} \sin x dx = :$	≈ pakcity	.org	
	(A) 0 (B)	1	(C) 2	(D) π
11	A linear equation in two va			(D) n
		Ellipse	(C) Hyperbola	(D) Straight line
12	Intercept form of equation		(0) 113/10010	(2) Straight inte
	(A) $\frac{x}{a} + \frac{y}{b} = 1$ (B)	$\frac{x}{a} + \frac{y}{b} = 0$	(C) $\frac{x}{a} - \frac{y}{b} = 1$	(D) $\frac{x}{a} - \frac{y}{b} = 0$
13	Distance of point $(\cos 3x)$	$\sin 3x$) from origi	n is:	
	(A) 3 (B)	6	(C) 9	(D) 1
14	(0,0) is one of the soluti	on of inequality:		
	(A) $3x + 5y > 4$ (B)	2x + 3y < 4	(C) $x + 3y > 5$	(D) $2x + 3y > 5$
15	Equation of circle with cer	atre (3,0) and rad	$\sqrt{9}$ is:	***************************************
	(A) $x^2 + y^2 - 6x = 0$	$(B) x^2 - 6x = 9$	~ (S)	
		(D) $9x^2 + y^2 = 9$		
16	Equation of directrix of pa	rabola $y^2 = -12x$	is े.	
	(A) $x = -3$ (B)	x = 3	(C) $y = 3$	(D) $y = -3$
17	Co-vertices of ellipse $\frac{x^2}{b^2}$	$\sqrt{\frac{y^2}{a^2}} = 1$; $a > b$ ar	e :	
	(A) $(\pm a, 0)$ (B)		(C) $(0,\pm b)$	(D) $(\pm b, 0)$
18	Which of the following ve	ctors is equal to the	e vector $\underline{i}.\underline{j} \times \underline{k}$:	
	(A) 0 (B)		(C) -1	(D) <u>i</u>
19	For what value of P[2 P	3) bala		(2) !
	(A) $\frac{2}{3}$ (B)	-1	(C) 1	(D) $\sqrt{5}$
20	If \underline{a} and \underline{b} are parallel vec	ctors then $\underline{a} \times \underline{b} = :$		
	(A) 0 (B)	1	(C) -1	(D) 2

174-224-II-(Objective Type)- 8500 (8192)

(To be filled in by the candidate)

(Academic Sessions 2020 – 2022 to 2022 – 2024)

MATHEMATICS

224-1st Annual-(INTER PART – II)

Maximum Marks: 80

Time Allowed: 2.30 hours

PAPER – II (Essay Type)

GROUP - II

SECTION - I

Write short answers to any EIGHT (8) questions:

(i) Given that $f(x) = \cos x$ find $\frac{f(a+h)-f(a)}{h}$ and simplify. Representation parameters $f(x) = \cos x$ find $\frac{f(a+h)-f(a)}{h}$ and simplify.

(ii) If
$$f(x)=(-x+9)^3$$
, find $f^{-1}(x)$

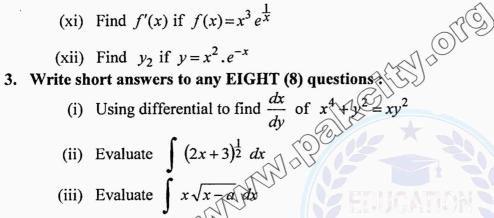
(iii) By rationalizing, find
$$\lim_{x\to 0} \frac{\sqrt{x+a} - \sqrt{a}}{x}$$

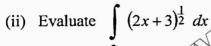
(iv) Write down the domain and range of
$$f(x)=2x-5$$

(v) Calculate derivative of
$$f(x) = x^{\frac{2}{3}}$$
 at $x = 8$

(vi) Find derivative of
$$\frac{1+x}{1-x}$$
 w.r.t. x

(vii) If
$$y = x^4 + 2x^2 + 2$$
, find $\frac{dy}{dx}$


(viii) Find
$$\frac{dy}{dx}$$
 of implicit function $x^2 - 4xy - 5y = 0$


(ix) Apply chain rule to find
$$\frac{dy}{du}$$
 if $y = x^2 + \frac{1}{x^2}$ and $u = x - \frac{1}{x}$

(x) Differentiate
$$\sin^2 x$$
 w.r.t $\cos^4 x$

(xi) Find
$$f'(x)$$
 if $f(x) = x^3 e^{\frac{1}{x}}$

(xii) Find
$$y_2$$
 if $y = x^2 \cdot e^{-x}$

(iii) Evaluate
$$\int x\sqrt{x-a} dx$$

(iv) Evaluate
$$\int (\ln x)^2 dx$$

(v) Evaluate
$$\int_{1}^{2} \left(x + \frac{1}{x} \right)^{\frac{1}{2}} \left(1 - \frac{1}{x^2} \right) dx$$

(vi) Find the area bounded by cos function from
$$x = -\frac{\pi}{2}$$
 to $x = \frac{\pi}{2}$

(vii) Solve
$$\frac{dy}{dx} + \frac{2xy}{2y+1} = x$$

(viii) Find the mid-points of the line joining the two points
$$A(-8,3)$$
, $B(2,-1)$.

(ix) Find h such that the points
$$A(-1,h)$$
, $B(3,2)$ and $C(7,3)$ are collinear.

(x) In the triangle A
$$(8,6)$$
, B $(-4,2)$, C $(-2,-6)$, find the slope of altitude of triangle.

(xi) Using slopes, show that the triangle with vertices A
$$(6, 1)$$
, B $(2, 7)$, C $(-6, -7)$ is a right triangle.

(xii) Find the point of intersection of the lines
$$\frac{x}{x}$$

$$x - 3y + 3 = 0$$

Please visit for more data at: www.pakcity.org (Turn Over)

16

16

Lahore Board-2024

(2)

4. Write short answers to any NINE (9) questions : (i) Define feasible region.

(ii) 'Graph the solution set of $5x-4y \le 20$ | pakeity.org

- (iii) Write the standard and general equation of circle.
- (iv) Find centre and radius of $5x^2 + 5y^2 + 24x + 36y + 10 = 0$
- (v) Check the position of the point (5,6) with respect to the circle $x^2 + y^2 = 81$
- (vi) Find the length of the tangent drawn from the point (-5, 4) to the circle $5x^2 + 5y^2 - 10x + 15y - 131 = 0$
- (vii) Find foci and eccentricity of ellipse $x^2 + 4y^2 = 16$
- (viii) Find the points of intersection of $x^2 + y^2 = 8$ and $x^2 y^2 = 1$

(ix) If
$$\underline{u} = 2\underline{i} - 7\underline{j}$$
, $\underline{v} = \underline{i} - 6\underline{j}$ and $\underline{w} = -\underline{i} + \underline{j}$, find $\frac{1}{2}\underline{u} + \frac{1}{2}\underline{v} + \frac{1}{2}\underline{w}$

- (x) Find a vector whose magnitude is 4 and is parallel to $2\underline{i} 3\underline{j} + 6\underline{k}$
- (xi) Find α so that the vector \underline{u} and \underline{v} are perpendicular; $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} \underline{k}$ and $\underline{v} = \underline{i} + \alpha \, \underline{j} + 3 \, \underline{k}$
- (xii) Find the area of parallelogram whose vertices are A (1, 2, -1); B (4, 2, -3); C(6,-5,2);D(9,-5,0)

Note:

5. (a) Evaluate $\lim_{x \to 0} \frac{\sec x - \cos x}{x}$

5

18

the secondary of the derivative w.r.t. $x \sin \sqrt{\frac{1+2x}{1+x}}$ (a) If $y = (\cos^{-1}x)^2$, prove that $(x \cos^{-1}x)^2$ b) Evaluate $\int_{-2x}^{2x} e^{-x} dx$

5

5

6. (a) If $y = (\cos^{-1} x)^2$, prove that $(1 - x^2)y_2 - xy_1 - 2 = 0$

5

(b) Evaluate $\int \frac{2x}{1-\sin x} dx$

- 5
- (a) Find the area between the x-axis and the curve $y = \sqrt{2ax x^2}$ when a > 0(b) Maximize f(x,y)=2x+5y subject to the constraints
 - $2y-x \le 8$; $x-y \le 4$, $x \ge 0$, $y \ge 0$

- 5
- 8. (a) Find equation of the circle passing through the points A (3, -1), B (0, 1) and having centre at 4x-3y-3=0
- 5

(b) Use vectors to prove that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$

- 5
- 9. (a) Mid-points of sides of triangle are (1,-1), (-4,-3) and (-1,1). Find coordinates of vertices of triangle.

5

(b) Show that equation of parabola with focus at $(a\cos\alpha, a\sin\alpha)$ and directrix $x\cos\alpha + y\sin\alpha + a = 0$ is $(x\sin\alpha - y\cos\alpha)^2 = 4a(x\cos\alpha + y\sin\alpha)$

5

174-224-II-(Essay Type)-34000

Multan Board-2024

_	Paper Code 2024 (1st-A)							
_	ber: 4193	INTERMED	IATE PART-II (1	2 th Class)	Roll No:			
	THEMATICS PA		ROUP-I	NOTE 170	A STANTING NO A DIT	ZC. 20		
	E ALLOWED: 30		OBJEC		AXIMUM MARK			
Q.No	correct, fill tha	t bubble in front o	f that question num	ber. on bubble sl	ieet. Use marker o	r pen to fill the		
			more bubbles will					
S.#	QUEST	TIONS	A	В	C	D		
1	Length of latus rac	ctum of ellipse	$2a^2$	a^2	b^2	$\frac{2b^2}{}$		
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is:		$\frac{2a^2}{b}$	$\frac{a^2}{b}$	${a}$	a		
	$\frac{1}{a^2} + \frac{1}{b^2} = 1$ is:		_					
2	Equation of tanger	nt to circle	$xx_1 + yy_1 = a^2$	$xx_1 - vy_1 = a^2$	$xy_1 + x_1y = a^2$	$xy_1 - x_1y = a^2$		
	$x^2 + y^2 = a^2$ at (x		• • • • • • • • • • • • • • • • • • • •					
3	If α , β , γ are dire							
	of a vector then		3	1 •	2	0		
	$\cos^2 \alpha + \cos^2 \beta + c$	$200^2 \times -2$						
1	For what value of	The state of the s	***					
4			-3.	15	-15	3		
	$5\hat{i} - \hat{j} + \hat{k}$ and α	•	-3.			3		
	parallel to each otl			A Comment				
5	If any two vectors		1		200	0 🌘		
	product are equal	then value is:				2		
6	$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{2n} = ?$		e^{-1}	V±V	Alle ²	e^3		
	$\left \begin{array}{c} \lim_{n\to\infty} 1+- \\ n\end{array}\right = ?$		A	ë (
7		2 . 1	VIA 3					
'	The function $f(x)$	$=\frac{x^2+1}{x^2}$ is	x = 2	x = 0	x = -1	x=1		
		x-1						
8	discontinuous at:	*.1	0		1	c		
0	Derivative of x^0 w	vith			1			
	respect to 'x' is:		CIT ()]		f![=(-)]=!(-)	f[a(w)]a'(w)		
9	$\frac{d}{dx}[fog(x)]=?$	An area constitution	f'[g(x)]	3 (XX)	f'[g(x)]g'(x)	f[g(x)]g'(x)		
10				Cli	Classes	Clampof		
10	Geometrically dy	means.	Tangent of	Slope of line	Slope of	Slope of tangent		
	Geometrically $\frac{dy}{dx}$	incaus.			x – axis			
11	$\lim_{h \to \infty} \frac{f(a+h) - f}{h}$	$(a)_{-2}$	90(a)	f'(x)	f'(a+h)	f(a)		
	$\lim_{h\to 0} \frac{h}{h}$	—=:		30/				
12	c f'(x)		$\ell n x +c$	$\ln f(x) + c$	$\ln f'(x) + c$	f(x)		
	$\int \frac{f'(x)}{f(x)} dx = ?$				ا ارده) داده			
13	3 (3399)	re n C	Construction of the second	$(ax+b)^{n+1}$	$(ax+b)^{n+1}$	$\frac{(ax+b)^{n+1}}{a+c}$		
1.5	$\int (ax + b) dx \text{ whe}$		+c	$\frac{(ax+b)^{n+1}}{a}+c$	$\frac{(ax+b)^{n+1}}{a(n+1)}+c$	+ c		
	Villa .	AND.	n+1	Las Molton	u(// 1)	"		
14	(21.4. 2)		$x2^{x-1} + c$	$2^{x} \ln 2 + c$	2x+l	2×		
1-7	$\int 2^x dx = ?$		12 +0	2 112+6	$\frac{2^{x+1}}{x+1} + c$	$\frac{2^x}{\ell n 2} + c \bullet$		
	N.		pak	city.org	x+1	ln2		
15	When expression	Va ² 2X	w = a sin 0	W = 0 20 = 0	x = a ta= 0	$x = \sin \theta$		
	involve in integrat	ion, we	$x = a \sin \theta$	$x = a \sec \theta$	$x = a \tan \theta$	$\lambda = \sin \theta$		
	substitute:							
16	All points (x, y) v	with $x < 0$, $y < 0$	I	II	III	IV.		
	lies in quadrant:	e glane			_			
17	Slope of line passi	ing through	x_2-x_1	$y_2 + y_1$	y_2-x_2	$y_2 - y_1$		
	points $A(x_1, y_1)$ a	and	$\frac{z}{y_2-y_1}$		$\frac{y_1-x_1}{y_1-x_1}$	$\frac{y_2 - y_1}{x_2 - x_1} \bullet$		
	$B(x_2, y_2)$ is:		F2 F1	$x_2 + x_1$	71 21			
18	Equation of vertic	al line through	y=-5	y=5	x=3	x=-3		
	points $(3, -5)$ is:				•			
19	Which of the follo	wing ordered	(1, 1)	(3, 0)	(-2, 1)	(0, 0)		
1,7	pair does not satis		(1, 1)	(3, 0)	2, 2)	(3, 5)		
20	-		5	25	I.	5		
20	Radius of circle x	$+y^{-} = 5 18$:	3	23	√5	$\frac{5}{2}$		
				A A	224/1 St A2 15000	1		

INTE	RMEDIATE PART-II (12th Class)		2024 (1 st -A)			Roll No:		
	HEMATICS PAPER-II GROUP-I		CALL ALL COLLARS			NA A SYNDAYINA NA A DYZG. DO		
	E ALLOWED: 2.30 Hours		SUBJECTIVE			MAXIMUM MARKS: 80		
NOTE	E: Write same question number and its parts		oer or	i answer b	ook, as	given in the question paper.		
2. At		tan		ard-20	24	8 × 2 = 16		
(i)	Discuss continuity of $g(x) = \frac{x^2 - 9}{x - 3}$, $x \ne 3$ at $x \ne 3$		(ii)	Detern		ether $f(x) = \sin x + \cos x$ is even		
(iii)	Define Constant Function. Give one example a	lso.	(iv)			when $f(x) = \frac{2x+1}{x-1}$ where $x > 1$		
(v)	Differentiate $\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$ w.r.t 'x'.		(vi)	Find 6	$d \frac{dy}{dx}, \text{ if } y^2 + x^2 - 4x = 5$			
(vii)	Find derivative of $x^2 - \frac{1}{x^2}$ w.r.t. x^4		(viii	Prove	that $\frac{d}{dx}[\cot^{-1} x] = -\frac{1}{1+x^2}, x \in R$ e Taylor series expansion of function f			
(ix)	Determine the values of x for which f defined	as	(x)	Define at x =				
(xi)	$f(x) = x^2 + 2x - 3 \text{ is increasing.}$ Find y_2 , if $y = \ln\left(\frac{2x + 3}{3x + 2}\right)$		(xii		$\frac{dy}{dx}$, if y	- Ya sin x		
	(3x+2)		1	Find -	$\frac{dx}{dx}$, "	The second secon		
	tempt any eight parts.					8 × 2 = 16		
(i)	Find dy if $y=x^2+2x$ and x changes from 2 to 1.8.	(i	i)	Evaluate	$\int \frac{dx}{\sqrt{x}(\sqrt{x})}$	+1)		
(iii)	Evaluate $\int \cos 3x \sin 2x dx$	(i	v)	Evaluate	$\int \sec x$	dx		
(v)	Evaluate $\int x^2 \ln x \ dx$	(v	ri)	Evaluate	$\int_{0}^{\pi/4} \sec x (s)$	dx = cx + tan x) dx		
(vii)	Solve the differential equation $\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$	(v	riii)			its $A(3, 1)$, $B(-2, -3)$ and ces of an isosceles triangle.		
(ix)	Find slope and inclination of the line joining the points $(3, -2)$ and $(2, 7)$.							
(x)	Find an equation of the line through $(-5, -3)$	and	(9, -1	1).	00)		
(xi)	Convert the equation $15y-8x+3=0$ into nor	mal f	orm.	6	115			
(xii)	Find the angle from the line with slope $\frac{-7}{3}$ to	he li	ne wit	h slope 5.				
4. At	tempt any nine parts.		2			9 × 2 = 18		
(i)	What are Decision Variables?	N	(ii)	Draw the	graph o	f inequality $2x + 3y \le 12$		
(iii)	Find the centre and radius of the circle $x^2 + 3x^2$	×6×	+4y	+13 = 0				
(iv)	Check the position of the point (5, 6) with res	ect t	o the	circle x ² +	$y^2 = 81$			
(v)	Find the focus and directix of the parabola x^2				-			
(vi)	Write an equation of the ellipse with centre (0,	-		(3.), ve	rtex (0,	4).		
(vii)	Find foci and eccentricity of $x^2 - y^2 = 9$	j E	DI.	GAIR	JN			
(viii)	Find the length of the tangent drawn from the p	oint	P(-5	, 10) to the	circle 5	$5x^2 + 5y^2 + 14x + 12y - 10 = 0$		
(ix)	Write the direction cosines of $\underline{v} = 2\underline{i} + 3\underline{j} + 4\underline{k}$			East atolism (a) Layria				
(x)	Find a vector whose magnitude is 4 and paralle	l to 2	2i-3j	+ 6 <u>k</u>	TV5	//		
(xi)	Find $\underline{b} \times \underline{a}$ where $\underline{a} = 3\underline{i} - 2\underline{j} + \underline{k}$, $\underline{b} = \underline{i}$	+ <u>j</u>	pak	city.or	g			
(xii)	Find the value of $3\underline{i} \cdot \underline{k} \times \underline{i}$		(xiii)		$+\underline{c}=0$,	then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c}$		
NOTE		CTI	ON-I	<u> </u>		3 × 10 = 30		
5.(a)	1 (1)	If	v=0.0	ος ³ θ - 11-	-h sin ³	θ , show that: $a\frac{dy}{dt} + b \tan \theta = 0$		
6.(a)	Show that $\lim_{x \to 0} \frac{a^2 - 1}{x} = \log_e a$ (b) If $y = (\cos^{-1} x)^2$, prove that (b)					ax		
						$\frac{a^2}{2}\sin^{-1}\frac{x}{a} + \frac{x}{2}\sqrt{a^2 - x^2} + c$		
7.(a)	$(1-x^{2})y_{2} - xy_{1} - 2 = 0$ Evaluate $\int_{0}^{\sqrt{3}} \frac{x^{3} + 9x + 1}{x^{2} + 9} dx$ (b)					$5y$ subject to the constraints $x \ge 0$, $y \ge 0$		
8.(a)	Write an equation of the circle that passes thro	ıgh	A(-7)	7, 7), B(5)	(6, -1), (6, -1)	C(10, 0)		
(b)	Prove that in any triangle ABC $a = b \cos C$							
9.(a)	Find the focus, vertex and directix of the parab					akcity.org		
	The midpoints of the sides of a triangle are (1, find coordinates of the vertices of the triangle.	-1),	(-4,	-3) and (-1, 1).	% harron 1 a see		

2024 (1st-A) Paper Code Roll No: Multan Board-2024 INTERMEDIATE PART-II (12th Class) Number: 4196 MATHEMATICS PAPER-II **GROUP-II MAXIMUM MARKS: 20 OBJECTIVE TIME ALLOWED: 30 Minutes** Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. S.# **QUESTIONS** y - 4 = 0The equation of directix of the parabola x + 4 = 0x - 4 = 0 $x^2 = -16y$ is: 2 The eccentricity of $\frac{y^2}{4} - x^2 = 1$ is: 2 $\sqrt{5}$ $3\hat{i}\cdot(2\hat{j}\times\hat{k})=?$ 6 3 $Cos \theta$ equal to: $\hat{a} \times \hat{b}$ $\hat{a} \times \hat{b}$ $\underline{a} \times \underline{b}$ 4 2 The length of the vector $2\hat{i} - 2\hat{j} - \hat{k}$ is: 5 The function $x^2 + xy + y^2 = 2$ of x **Explicit** mplicit 6 Constant Even If f(x)=2x-8, then $f^{-1}(x)=?$ 8-2xx+87 x ln3 $3^{x} lnx$ $\frac{d}{dx}(3^x) = ?$ pakcity.org If $y = \cos^{-1} \frac{x}{a}$, then $\frac{dy}{dx} = ?$ $\frac{a}{\sqrt{a^2 - x^2}}$ $\frac{d}{dr}(\cos x) = ?$ sec xsec x $-\sin x$ 11 If $y = \cos^{-1} \frac{x}{a}$, then $\cos y = \frac{x}{a}$ sin y 12 $\int \sin x \, dx = ?$ cosπ 0 1 2 13 $\ln |\sec x| + c$ $\ln |\cot x| + c$ $\ln |\cos ecx| + c$ $\ln |\sin x| + c$ $\int \tan x \, dx = ?$ $\int \frac{e^x}{e^x + 5} dx = 2.$ $e^{2x} + 7 + c$ $e^{2x} + 5$ $\ln(e^x + 5) + c$ $(e^{x}+5)+c$ cosecx + c $\cot x + c$ $\cos x + c$ 15 $\int -\cos e c^2 x \ dx = ?$ Symmetric Two-points If α is the inclination of line ℓ , then Point-slope Normal form 16 $\frac{x-x_1}{\cos\alpha} = \frac{y-y_1}{\sin\alpha} = r(say)$ is called: form form form v = xy = 0Equation of line bisecting first and x = 0third quadrant is: 17 0 3 2 18 The perpendicular distance of line 3x+4y-15=0 from the origin is: Left Half Right Half Upper Half Lower Half 19 The graph of $2x \ge 4$ lies in: Plane Plane Plane Plane 25 Radius of circle $x^2 + y^2 = 5$ is: 5 -520 $\sqrt{5}$ 16(Obj)(公公公)-2024(1⁵¹-A)-12000 (MULTAN)

	<u>tan Board-2024</u> Rmediate Part-II (12 th C	lass)	1	2024	(1 st -A)		Roll No:	
		ROUP-II						
TIME	TIME ALLOWED: 2.30 Hours SUBJECTIVE MAXIMUM MARKS: 80 NOTE: Write same question number and its parts number on answer book, as given in the question paper.							
NOTE	: Write same question number an	id its parts	number on SECTI	answe	er book, as give	en in t	ne question paper.	
2. Att	empt any eight parts.						8 × 2 = 16	
(i)	Define Implicit Function.	(ii) Wit	hout finding	the inv			n and range of f^{-1} $f(x) = \sqrt{x+2}$	
(iii)	Prove that $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$			(iv)	Evaluate Lin	$\frac{\sin x}{x}$	்-ஆீ pakcity.org 🦠	
(v)	Find by definition, derivative of $2x^2 + 1$ with respect to x			(vi)	Differentiate	with re	espect to 'x' $\frac{x^2+1}{x^2-3}$	
(vii)	Find $\frac{dy}{dx}$ if $y^2 - xy - x^2 + 4 = 0$)		(viii)	Find $\frac{dy}{dx}$ if $x = y \sin y$			
(ix)	Find $f'(x)$ if $f(x) = x^3 e^{\frac{1}{x}}$, x			(x)	Find y_2 if $y = \ln\left(\frac{2x+3}{3x+2}\right)$			
(xi)	By Maclaurin's series, show that			(xii)			interval f' is increasing or	
	$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$				_		ain mentioned	
	2! 4! 6!				f(x) = 4 - x	x^2 , x	:∈(-2, 2)	
	empt any eight parts.						8 × 2 = 16	
(i)	Find δy and dy in $y = x^2 - 1$	where x	changes fron	n 3 to 3	3.02.			
(ii)	Evaluate the integral $\int \frac{1}{x^2 + 4x + }$	$\frac{1}{13} dx$		(iii)	Evaluate the i	integra	$\int x \ln x dx$	
(iv)						ed by the curve $y = x^3 + 3x^2$ and		
(vi)	(vi) Solve the differential equation $\sin y \cos ec x \frac{dy}{dx} = 1$ (vii) Find the general solution of the equation $\frac{dy}{dx} - x = xy^2$							
(viii)	Show that the points $A(3, 1)$, $B(-1)$	-2, -3) an	C(2,2)	are ver	tices of an isoso	celes tr	iangle.	
(ix)	The xy – coordinate axes are rotat	ed about th	e origin thro	ugh the	indicated angl	e and	the new axes are OX and OY .	
	Find the xy - coordinates of P wi				s P(-5, 3);	=30)	6	
(x)	Write down an equation of the stratand parallel to a line passing through				(xi) Fin	d the p +7y:	point of intersection of the lines $= 35$, $3x - 7y = 21$	
(xii)	Find an equation of the line with x	- intercep	t-3 and y	-inter	cept 4.			
	empt any nine parts.		1 (2//	~ ·		9 2 = 18	
(i)	Define Feasible Solution.				the inequality	x+2	<i>y</i> < 6	
(iii)	Find the equation of the circle with	centre at	√200 3√3) and r	adius $2\sqrt{2}$.			
(iv)	Find focus and directix of the paral	bola $\chi^2 = \frac{1}{2}$	-8(x-3)					
(v)	Find length of tangent from the poi	int (-5, 10) to the circl	$e 5x^2$	$+5y^2 + 14x$	+12y	-10 = 0	
(vi)	Find the centre and the foci of ellip	$se 9x^2 + v^2$	=18 (vii)	Wri	te equation of h	yperbo	ola with foci (±5,0) and vertex (3,0)	
(viii)							$\overrightarrow{B} = 4\underline{i} - 2\underline{j}$ and B is the point $(-2,5)$.	
(x)	If $\alpha \underline{i} + (\alpha + 1)\underline{j} + 2\underline{k} = 3$. Fin	d the value	of α .		of a Nametra	1		
(xi)	Show that the vectors $3\underline{i} - 2\underline{j} + \underline{i}$	$\underline{k}, \underline{i} - 3\underline{j}$	+5k and $2k$	<u>i</u> + <u>j</u> -	4k form a right	nt angl	e./	
(xii)	If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove the	at $\underline{a} \times \underline{b} =$	$=\underline{b}\times\underline{c}$					
(xiii)	A force $\underline{F} = 2\underline{i} + \underline{j} - 3\underline{k}$ acting a	at a point A	4(1, -2, 1)	. Find	the moment of	F abo	out the point $B(2, 0, -2)$	
			SECTION	ON-II				
NOTE						(b)	3 × 10 = 30	
5.(a) .	If $f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+1}}{x-2} \\ k, \end{cases}$	$\frac{7}{x}$, $x \neq x = x = x$	2			(b)	Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = \tan^{-1} \frac{x}{y}$	
	Find value of k' so that f' is co	ontinuous a	t x=3.					
6.(a)	If $y = e^x \sin x$, show that $\frac{d^2y}{dx^2}$					(b)	Evaluate $\int \sqrt{3-4x^2} dx$	
7.(a)	Evaluate $\int_{0}^{\sqrt{3}} \frac{x^3 + 9x + 1}{x^2 + 9} dx$			(b)	linear inequal	ities an	egion of the following system of and find the corner points. $y \le 10$, $x+4y \le 12$, $x \ge 0$, $y \ge 0$	
8.(a)	Find volume of the tetrahedron wit	h vertices	4(2 1 8) D	(3.2	· · · · · · · · · · · · · · · · · · ·			
(b)						aiu L	(0, 0, 10)	
	Write equations of two tangents fro							
9.(a) (b)	Show that the equation $9x^2 - 18x$ Find an equation of medians of the	•	•		-			

x - intercept of the line

2x + 5y - 1 = 0 is:

Slope of y - axis is:

19.

20.

Rawalpindi Board-2024

Roll No AVESTo be filled in by the candidate

HSSC-(P-II)- A-2024

Paper Code 8

9 5

Mathematics (Objective)

(For All Sessions)
(GROUP-I)

Time: 30 Minutes

 $\frac{1}{2}$

-1

1

5

(D) Undefined

(D)

Marks: 20

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

1.1	Midpoint of $A(2,0)$, $B(0,2)$ is:	(A)	(0, 2)	(B)	(2,0)	(C)	(2,2)	(D)	(1, 1)
2.	The point satisfies $x + 2y < 6$	(A)	(4, 1)	(B)	(3,1)	(C)	(1,3)	(D)	(1, 4)
3.	In a conic, the ratio of the distance from a fixed point to the distance from a fixed line is:	(A)	Focus	(B)	Vertex	(C)	Ecentricity	(D)	Centre
4.	Standard equation of Parabola is:	(A)	$y^2 = 4ax$	(B)	$x^2 + y^2 = a^2$	(C)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(D)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
5.	Equation of tangent to circle $x^2 + y^2 = a^2$ at $P(x_1, y_1)$ is:	(A)	$xx_1 + yy_1 = a^2$	(B)	$xx_1-yy_1=a^2$	(C)	$xy_1 + yx_1 = a^2$	(D)	$xy_1 - yx_1 = a^2$
6.	The volume of parallelopiped =	(A) ($(\underline{u}\times\underline{v}).\underline{\omega}$	(B)	$(\underline{u} \times \underline{v}) \times \underline{\omega}$	(C)	$\underline{u} \times (\underline{v} \times \underline{\omega})$	(D)	<u>u</u> × (<u>u</u> × <u>v</u>)
7.	The non-zero vectors are perpendicular when:	(A)	<u>u</u> . <u>v</u> = 1	(B)	$ \underline{u},\underline{v} =1$	(C)	$\underline{u}.\underline{v}=0$	(D)	$\underline{u}.\underline{v} \neq 0$
8.	<u>j</u> × <u>k</u> =	(A)	<u>i</u>	(B)	<u>-</u> <u><u>í</u></u>	(C)	0	(D)	<u>k</u>
9.	The range of $f(x) = 2 + \sqrt{x-1}$ is:	(A)	[1,+∞)	(B)	● [2, +∞)	(C)	(1,+∞)	(D)	(2,+∞)
10.	The perimeter P of square as a function of its area A:	(A)	3√A	(B)	 4√A 		\sqrt{A}	(D)	$2\sqrt{A}$
11.	If $f(x) = \frac{1}{x^2}$ then $f(3) = \frac{1}{x^2}$.	(A)	1 9	(B)	A START	(C)		(D)	1 27
12.	If $f(c) = 0 \& f''(c) > 0$ then C is point of:	(A)	Maxima	1	Minima	(C)	Inflection	(D)	Constant
13.	$\frac{d}{dx}(\log_a x) = \underline{\hspace{1cm}}.$	(A)	xlna	(B)	$\frac{lna}{x}$	(C) ·	$\frac{1}{x}$	(D)	$\frac{-1}{xlna}$
14.	$\frac{d}{dx}(\cot ax) = \underline{\hspace{1cm}}.$	M	cosec ² ax	(B)	a cosec²ax	(C)	−a cosec²ax	(D)	-a cosec ax
15.	$\int \frac{1}{\sqrt{1-x^2}} dx = \underline{\qquad}.$.(A)		(8)	$Cos^{-1}x + c$	(C)	$-Sin^{-1}x + c$	(D)	$-Cos^{-1}x + c$
16.	$\int \frac{1}{x} dx = \underline{\qquad}.$	(A)	lnx + c	(B)	$ak(\frac{1}{x^2}+c)rg$	(C)	$-\frac{1}{x^2}+c$	(D)	$\frac{1}{x} + c$
	J x								
17.	The solution of differential equation $\frac{dy}{dx} = -y \text{ is:}$	(A)	$y = xe^{-x}$	(B)	$y = ce^{-x}$	(C)	$y = e^x$	(D)	$y = ce^x$

(B)

3

1

· (C)

(C)

2

0

(A)

(A)

Rawalpindi Board-2024

Roll No to be filled in by the candidate

Mathematics (Subjective)

HSSC-(P-II)-A/2024 (For All Sessions)

(GROUP-I) SECTION-I

pakcity.org §

(8x2=16)

Marks: 80

Time: 2:30 hours

Write short answers of any eight parts from the following: 2.

- If f(x) = 2x + 1, then find $f \circ f(x)$.
- Evaluate $\lim_{h\to 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$ iii.
- Differentiate $\left(\sqrt{x} \frac{1}{\sqrt{x}}\right)^2 w. r. t x$
- Differentiate $x^2 sec4xw.r.tx$ vii.
- Find f(x) if $f(x) = e^x(1 + lnx)$ ix.
- Prove that $ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{2} \frac{x^4}{4} + \cdots$ χi.

- Express the area A of a circle as a function of its circumference C.
- Define continuous function. iv.
- vi. Find $\frac{dy}{dx}$ if $y^2 xy x^2 + 4 = 0$
- viii. Differentiate sin²xw.r.t. cos⁴x
- x. Find y_2 if $y = ln(x^2 9)$
- xii. Determine the interval in which f(x) = cosx is decreasing; $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Write short answers of any eight parts from the following: 3.

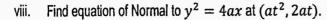
(8x2=16)

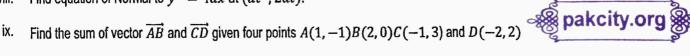
- Solve the differential equation $sec^2 x tan y dx + sec^2 y tan x dy = 0$
- Find the area between x axis and the curve $y = x^2 + 1$ from x = 1 to x = 2ii.
- iii. $\int x \ln x \, dx$

iv. Evaluate the integral $\int \frac{-2x}{\sqrt{4-x^2}} dx$

Evaluate: $\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx$

- vi. Evaluate the integral $\int (a + 2x)^{3/2} dx$
- Find the approximate change in the volume of a cube if length of its each edge changes from 5 to 5.02. νii.
- Show that the points A(0,2), $B(\sqrt{3},-1)$ and C(0,-2) are vertices of a right triangle. Viii.
- Convert the equation of line 4x + 7y 2 = 0 into normal form. ix.
- Fine the angle from the line with slope $\frac{-7}{3}$ to the line with slope $\frac{5}{2}$. X.
- Find the pair of lines represented by $3x^2 + 7xy + 2y^2 = 0$. χi.
- Find the point of intersection of lines 3x + y + 12 = 0 and x + 2y 1 = 0. xii.


4. Write short answers of any nine parts from the following:


(9x2=18)

Define feasible region. ĺ.

- Graph the solution set of in-equality $3x + 7y \ge 21$.
- iii. Find equation of circle with ends of diameter at (-3, 2) and (5, -6).
- Write down equation of tangent to the circle $x^2 + y^2 = 25$ at $(5 \cos\theta, 5 \sin\theta)$ İ۷.
- Find focus and vertex of Parabola $x^2 = 4(y 1)$ vi. Find equation of ellipse with data Foci (± 3 , 0) Minor axis of length 10. ٧.
- Find center of hyperbola $x^2 y^2 + 8x 2y 10 = 0$ VII.

Rawalpindi Board-2024

Find \propto , so that $|\propto \underline{i} + (\propto +1)j + 2\underline{k}|=3$ X.

xii. If
$$\underline{v}$$
 is a vector for which \underline{v} . $\underline{i} = 0\underline{v}$. $\underline{j} = 0\underline{v}$. $\underline{k} = 0$, find \underline{v}

Find the area of triangle determined by the points P(0,0,0) Q(2,3,2) and R(-1,1,4)Χij.

Find the value of $2\hat{\imath} \times 2\hat{\jmath}$. \hat{k} xiii.

SECTION-II

Attempt any three questions. Each question carries equal marks: Note

(10x3=30)

(05)

(05)

Find the values of m and n, so that given function f 5. (a) is continuous at x = 3 when

$$f(x) = \begin{cases} mx, & \text{if } x < 3\\ n, & \text{if } x = 3\\ -2x + 9, & \text{if } x > 3 \end{cases}$$

(b) Find
$$\frac{dy}{dx}$$
, when $x = \frac{a(1-t^2)}{1+t^2}$, $y = \frac{2bt}{1+t^2}$

6. (a)

(05)

(05)

If $y = (cos^{-1}x)^2$, prove that $(1-x^2)y_2 - xy_1 - 2 = 0$.

Evaluate the integral $\int e^x \sin x \cos x \, dx$.

Solve the differential equation $y - x \frac{dy}{dx} = 3(1+x \frac{dy}{dx})$.

Graph the feasible region and corner a 7. (a)

(b)

(05)

$$2x + y \leq 10$$

$$x + 4y \le 12; x + 2y \le 10$$

 $2x + y \le 10; \qquad x + 4y \le 12; x + 2y \le 10;$ Show that the circles: $x^2 + y^2 + 2x - 8 = 0$; $x^2 + y^2 - 6x + 6y - 46 = 0$ touch internally. (05)8. (a)

(05)

Using vector method, for any triangle ABC, prove that: $c^2 = a^2 + b^2 - 2ab \cos C$. (b)

Find the focus, vertex and directrix of the Parabola; $x^2 = 4(y-1)$ 9. (a)

(05)

Find the lines represented by $3x^2 + 7xy + 2y^2 = 0$ and also find measure of the angle between them. (05)(b)

Rawalpindi Board-2024

Roll No

HSSC-(P-II)- A-2024 (For All Sessions)

Paper Code	8	1	9	4

Mathematics (Objective)

(GROUP-II)

Time: 30 Minutes

Marks: 20

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer									
you o	you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.								
1.1	If $r = 0$, the circle is called:	(A)	Unit circle	(B)	Circle	(C)	Ellipse	(D) Po	int circle

you o	onsider correct, in the corresponding circle	, n, D,	O O D GIVET IIT HORE O	1 cac	ar question with marke	1011	of the difference and the offer	or bio	ridou.
1.1	If $r=0$, the circle is called:	(A)	Unit circle	(8)	Circle	(C)	Ellipse	(D)	Point circle
2.	[i i k]=	(A)	<u>i</u>	(8)	- <u>i</u>	(C)	ì	(D)	• 0
3.	If $\underline{u} = 2\underline{i} - \underline{j} + \underline{k}$, $\underline{v} = 4\underline{i} + 2\underline{j} - \underline{k}$ then $\underline{u} \times \underline{u} =$	(A)	u ²	(B)	• 0	(C)	1	(D)	2
4.	If \underline{u} , \underline{v} are two non-zero vectors, then area of parallelogram =	(A)	$ \underline{u} \times \underline{v} $	(B)	$\frac{1}{2} \underline{u}\times\underline{v} $	(C)	$\frac{1}{6} \underline{u}\times\underline{v} $	(D)	$\frac{1}{2}(\underline{u}\times\underline{v})$
5.	If k is any real number, $\lim_{x \to a} [kf(x)] =$	(A)	$\lim_{x\to a}f(x)$	(B)	$\lim_{\kappa \to a} k$	(C)	$\bullet \ k \lim_{x \to a} f(x)$	(D)	f(x)
6.	If $(fx) = x + 3$ then: $\lim_{x \to \tilde{3}} f(x) =$	(A)	6	(B)	0	(C)	-3	(D)	3
7,	If $y = e^{f(x)}$ then $\frac{dy}{dx} =$	(A)	e ^{f(x)}	(B)	$f(x)e^{f(x)}$	(C)	$f(x)e^{f(x)}$	(D)	
8.	Derivative of $x\sqrt{x^2+3} w.r.tx$ is:	(A)		(B)	$\frac{3x}{2\sqrt{x^2+3}}$	(Ć)	$\frac{3x^2+3}{x\sqrt{x^2+3}}$	(D)	$\frac{3x^2+3}{2x\sqrt{x^2+3}}$
9	Derivative of $tanh(x^2)$ is:	(A)	2x sech ² x	(B)	2 sech ² x ²	760	2x sech ² x ²	(D)	sech ² x ²
10.	Derivative of "x" w.r.t "x" is:	(A)	x ²	(B)	2 (0)	(C)	0	(B)	1
11.	In integration, substitution of $\sqrt{4-x^2}$ is:	(A)	$x = sin\theta$	(B)	=2 sinθ	(C)	$x = \sin 2\theta$	(D)	$x = 2 \cos\theta$
12.	$\int Tan x dx =$	(A)	ln cos x + c	,	$\frac{1}{\ln \cos x} + c$	(0)	$-ln \cos x +c$	(D)	$Sec^2x + c$
13.	Solution of differential equation: $(e^* +$	· e ^{-x})	$\frac{dy}{dx} = e^x - e^x \text{ is:}$			3			
	(A) $-ln(e^x + e^{-x}) + c$ (B)	N	$\ln\left(e^{x}-e^{-x}\right)+c$	Ē	$(0)^{\circ}$ In $(e^x +$	e-x)	+ c (D)	(e ^x	$\frac{+e^{-x})^2}{2}$
14.	$\int SinxCos \ x \ dx =$	(A)	$\frac{Sin^2x}{2} + c$	(B)	$\frac{\cos^2 x}{2} + c$	(C)	-Sin x + c	(D)	Cosx + c
15.	The line: $ay + b = 0$ is	(A)	Parallel to y-axis	(B)	Parallel to x-axis	(C)	Passing through origin	(D)	Lies in Quad. I
16.	The slope of line joining the points $(-2,4)$; $(5,11)$ is:	(A)*	1	(B)	pakc <u>i</u> ty.org	(C)	45°	(D)	45°
17.	The location of the plane of the point $P(x, y)$ for which $y = 0$ at:	(A)	Origin	(8)	y – axis	(C)P	= x - axis	(D)	Ist Quad
18.	The maximum and minimum values occur at:	(A)	Corner point	(B)	Any point	(C)	Convex region	(D)	Corner points of feasible region
19.	The line intersect the circle at:	(A)	One point	(B)	Two points	(C)	Infinite points	(D)	More than two points
20.	Diameter of circle: $x^2 + y^2 = 16$ is:	(A)	8	(B)	4	(C)	16	(D)	32

to be filled in by the candidate Roll No

Mathematics (Subjective)

HSSC-(P-II)-A/2024

(GROUP-II)

Marks: 80

SECTION-I

Write short answers of any eight parts from the following: 2.

(8x2=16)

- Define even function with example.
- Evaluate: $\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2}$ iii.
- Find $\frac{dy}{dx}$ from first principles if $y = \frac{1}{\sqrt{x+a}}$.
- Find $\frac{dy}{dx}$ if $x^2 4xy 5y = 0$. vii.
- Find f(x) if $f(x) = x^3 e^{1/x}$.
- Apply Maclaurin Series expansion to prove that: $cosx = 1 - \frac{x^2}{2i} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$

- Find $f \circ g(x)$ if f(x) = 2x + 1, $g(x) = \frac{3}{x-1}$, $x \neq 1$.
- Prove that Sinh2x = 2 Sinhx Coshx. iv.
- Differentiate w. r. t x; $\frac{(x^2+1)^2}{x^2-1}$ vi.
- Differentiate w.r.t θ ; $tan^3\theta sec^2\theta$. viii.
 - Find y_2 if $y = 2x^5 3x^4 + 4x^3 + x 2$.
- Find extreme values for $f(x) = 3x^2$ χij.

Write short answers of any eight parts from the following: 3.

(8x2=16)

- i. Evaluate $\int x\sqrt{x^2-1} dx$
- Evaluate: $\int \frac{x}{\sqrt{4+x^2}} dx$ iii.
- Evaluate: $\int_{-\infty}^{\infty} \frac{x}{x^2 + 2} dx$
- Solve the differential equation $\frac{1}{x}\frac{dy}{dx} = \frac{1}{2}(1+y^2)$ vii.
- Use differentials to approximate the value of (31)5
- iv. Evaluate the integral $\int \frac{e^{m \tan^{-1}x}}{x^{1+x^2}} dx$
- Find the area between x = ax and the curve $y = 4x x^2$
- The points A(-5, -2) and B(5, -4) are ends of a diameter of a circle. Find the centre and radius of circle. viii.
- The coordinates of a point p are (-6, 9). The axes are translated through the point O(-3, 2). Find the coordinates ix. of p referred to the new axes.
- Check whether the origin and the point p(5, -8) lies on the same side or on the opposite sides of the line 3x + 7y + 15 = 0X.
- By means of slopes, show that the following points lie on the same line (-4,6); (3,8); (10,10). xi.
- Determine the value of p such that the lines 2x 3y 1 = 0, 3x y 5 = 0 and 3x + py + 8 = 0 meet at a point. χij.

Write short answers of any nine parts from the following: 4.

(9x2=18)

- Graph the solution set of $3y 4 \le 0$ in xy plane. i.
- ii. Define convex region.
- Find an equation of circle of radius a and lying in the second quadrant tangent to both the axes. iii.
- Find center and radius of circle $5x^2 + 5y^2 + 24x + 36y + 10 = 0$. i٧.
- Write down equation of normal to the circle $x^2 + y^2 = 25$ at (4, 3). ٧.
- Find vertex and directrix of the parabola $y^2 = -12x$. νi.
- Find the point of intersection of conics $x^2 + y^2 = 8$ and $x^2 y^2 = 1$. vii.
- Find center and foci of hyperbola $\frac{y^2}{4} x^2 = 1$. viii.
- ix. Find a vector of magnitude 4 and is parallel to $2\underline{i} 3j + 6\underline{k}$.
- Find direction cosines of \overrightarrow{PQ} where P = (2, 1, 5) and Q = (1, 3, 1).
- Find volume of parallelopiped whose edges are $\underline{u} = \underline{i} 2\underline{j} + 3\underline{k}$, $\underline{v} = 2\underline{i} j \underline{k}$ and $\underline{w} = \underline{j} + \underline{k}$ χi.
- xiii. Find \propto so that $\underline{u} = \propto \underline{i} + 2 \propto \underline{j} \underline{k}$ and $\underline{v} = \underline{i} + \propto \underline{j} + 3\underline{k}$ are perpendicular. Find the value of $\begin{bmatrix} \underline{k} & \underline{i} & j \end{bmatrix}$. XII.

Rawalpindi Board-2024

SECTION-II

Note Attempt any three questions. Each question carries equal marks:

(10x3=30)

5. (a) Evaluate:
$$\lim_{\theta \to o} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$$

(b) Differentiate
$$\cos \sqrt{x}$$
 from the first principle. (5+5)

6. (a) Show that
$$y = \frac{mx}{x}$$
 has maximum value at $x = e$

(b) Evaluate:
$$\int x^3 \cos x \, dx$$
 (5+5)

7. (a)
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x \, dx}{\sin x \, (2 + \sin x)} \, dx$$

(b) Minimize
$$z = 2x + y$$
 subject to constraints $(5+5)$ $x + y \ge 3$ $7x + 5y \le 35$ $x \ge 0$ $y \ge 0$

- 8. (a) Find the coordinates of the points of intersection of the line x + 2y from the circle: $x^2 + y^2 2x 2y 39 = 0$ (5)
 - (b) If $\underline{a} = 4\underline{i} + 3\underline{j} + \underline{k}$ and $\underline{b} = 2\underline{i} \underline{j} + 2\underline{k}$. Find a unit vector perpendicular to both \underline{a} and \underline{b} . Also find the sine of the angle between them.
- 9. (a) Find the focus, vertex and directrix of the Parabola $x + 8 y^2 + 2y = 0$ (5)
 - (b) Find coordinates of the circumcenter of the triangle whose vertices are A(-2,3), B(-4,1) and C(3,5). (5)

1224	Warning:- Please write (Inter Part – II)	your Roll No. in the sp (Session 2020-22 to		Roll No Student					
Mathe	matics (Objective)	(Group 1st) Paper	(II)					
Time Allowed:- 30 minutes PAPER CODE 4197 Maximum Marks:- 20 Note:- You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the Answer Sheet and fill bubbles accordingly, otherwise the student will be responsible for the situation. Use of Ink Remover or white correcting fluid is not allowed. Q. 1 1) If $f(x) = e^{\sqrt{x}-1}$, then $f'(0) = \frac{1}{x}$									
ŕ		(B) $\frac{1}{e}$	(C) $\frac{1}{2}$	(D) ∞					
2)	$\int e^x (\sin x + \cos x) dx =$								
	(A) $e^x \sin x + c$	(B) $e^x \cos x + c$	$(C) - e^x \sin x + c$	(D) $-e^x \cos x + c$					
3)	$\int \frac{dx}{x(\ln 2x)^3} =$								
	$(A) \ln(\ln 2x)^3 + c$	$(B) \frac{(\ln 2x)^4}{4} + c$	$(C) \frac{1}{(\ln 2x)^3} + c$	(D) $-\frac{1}{2(\ln 2x)^2} + c$					
4)	If $f(x) = x^2$, then range	of f is							
	(A) [0,∞[(B) $]-\infty$, $0]$	(C)]0,∞[(D) R					
5)	If $f(x) = x \sec x$, then $f(x) = x \sec x$	$f(\pi) = $							
	If $f(x) = x^2$, then range (A) $[0, \infty[$ If $f(x) = x \sec x$, then $f(x) = x \sec x$.	(B) (2#	$(C) - \pi$	(D) -2π					
6)	If $y = e^{-ax}$, then $y \frac{dy}{dx}$								
	(A) ae^{-2ax}	(B) -ae	a^2e^{-ax}	(D) $-ae^{-ax}$					
7)	$f(x) = 4 - x^2$ decreases	in the interval	city.org						
	(A)]-∞,0[(B)]0, ∞[(C)(-2,2)	(D) $(-\infty, +\infty)$					
8)	$\frac{1}{1+x^2}$ is the derivative of	of							
	(A) $\sin^{-1} x$	(B) $\cos^{-1} x$	(C) $\tan^{-1} x$	(D) $\cot^{-1} x$					
	P.T.O	1223 - 1224 -	9000 (4)						

- 9) A vector perpendicular to both $2\hat{i}$ and \hat{k} is
 - (A) \hat{i}

- (B) $-2\hat{j}$
- (C) \hat{k}

- (D) 2i+k
- 10) The angle between the vectors $2\hat{i} + 3\hat{j} + \hat{k}$ and $2\hat{i} \hat{j} \hat{k}$ is

(B) 45°

(C) 60°

(D) 90°

- $11) \int_{-\infty}^{\pi/4} \sec^2 x \ dx =$
 - (A) 0

(B) 1

(C) $\sqrt{2}$

(D) $\frac{1}{\sqrt{2}}$

 $12) \int_{0}^{3} x^3 dx =$

(B) 40

(C) 60

- (D) 80
- 13) The lines represented by $ax^2 + 2hxy + by^2 = 0$ are perpendicular if
 - (A) a = b
- (B) a = -b
- (C) $a \neq b$
- (D) $a \ge b$

- 14) The equation of y-axis is

- (D) x + y = 0
- (B) y = 0 (C) y = x(B) y = 0 (C) y = x(C) y = x(D) 3

- (D) $\frac{4}{3}$

- 16) The graph of the Inequality y < b is a van
 - (A) Upper half plane
- (B) Lower half plane
- (C) Right half plane
- (D) Left half plane

- 17) Angle Inscribed in a semi-circle is
 - (A) $\frac{\pi}{}$

(C) $\frac{\pi}{2}$

- (D) 0
- 18) Equation of normal to the circle $x^2 + y^2 = 25$ at point (4, 3) is
 - (A) 4x + 3y = 5
- (B) 4x + 3y = 25
- (C) 4x + 3y = 0
- (D) 3x 4y = 0
- 19) If $c = \sqrt{65}$, b = 7 and a = 4, then eccentricity of hyperbola is
 - (A) $\frac{7}{4}$

- (B) $\frac{65}{16}$
- (C) $\frac{\sqrt{65}}{2}$
- (D) $\frac{\sqrt{65}}{4}$
- 20) If P(2,3) and Q(6,-2) are two points in the plane, then vector \overrightarrow{PQ} is
 - (A)
- 4i 5j
- (B) -4i + 5j
- (C) 4i + 5j
- (D) 8i + j

1224 Warning:- Please, do not write anything on this question paper except your Roll No. (Group 1st) (Inter Part – II) Paper (II) Mathematics (Subjective) Maximum Marks: 80 (Session 2020-22 to 2022-24) Time Allowed: 2.30 hours Section ----- I $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-2. Define exponential function. (ii) Prove the identity $\sec h^2 x = 1 - \tanh^2 x$ pakeity.org (i) For real valued functions f and defined as (iii) $f(x) = 3x^4 - 2x^2$, $g(x) = \frac{2}{\sqrt{x}}$, $x \neq 0$ Find fog(x) and gof(x)Evaluate the limit by algebraic techniques $\lim_{h\to 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$ (iv) Find by definition, the derivative of $x^{\frac{5}{2}}$ with respect to 'x' (vi) Differentiate with respect to x of $\frac{(x^2+1)^2}{x^2+1}$ (v) Find $\frac{dy}{dx}$ if $x^2 - 4xy - 5y = 0$ (viii) Differentiate with respect to ' θ ' of $\tan^3 \theta \sec^2 \theta$ (vii) Find $\frac{dy}{dx}$ if $y = x^2 \ln \sqrt{x}$ (x) Find y_4 if $y = \sin 3x$ (ix) Prove that $e^{x+h} = e^x \{1 + h + \frac{h^2}{2!} + \frac{h^3}{2!} + \dots \}$ (xi) Find interval in which 'f' is increasing or decreasing if $f(x) = x^2 + 3x + 2$, $x \in (-4, 1)$ (xii) Answer briefly any Eight parts from the followings: 3. Using differentials, find $\frac{dx}{dy}$ when $xy - \ln x = c$ (ii) Evaluate $\int \frac{3 - \cos 2x}{1 + \cos 2x} dx$ (i) Find the area between the x - axis and the curve $y = \sin 2x$ from x = 0 to $x = \frac{\pi}{3}$ (iii) Solve the differential equation $\sec x + \tan y \frac{dy}{dx} = 0$ (v) Evaluate $\int_{0}^{\pi/6} x \cos x \, dx$ (iv)

- Evaluate $\int x^2 \ln x \, dx$ (vii) Find $\int \frac{x^2}{4 + x^2} \, dx$ (vi)
- Find the point three fifth of the way along the line-segment from A(-5, 8) to B(5, 3). (viii)
- Write down an equation of straight line passing through (5, 1) and parallel to line passing through (ix) points (0, -1), (7, -15)
- (x) The xy – coordinate axes are translated through point O' whose coordinates are given in xy – coordinate system. The coordinates of P are given in XY-coordinate system. Find coordinates of P in xy – coordinate system, here P(-5, -3), O'(-2, -6).
- Find area of the triangular region whose vertices are A(5,3), B(-2,2), C(4,2). (xi)
- Find an equation of each of the lines represented by $10x^2 23xy 5y^2 = 0$ (xii)

1224 -- 1224 -- 9000 P.T.O

4. Answer briefly any Nine parts from the followings:-

 $9 \times 2 = 18$

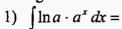
- (i) What is an objective function?
- Graph the solution set of $3x 2y \ge 6$ (ii)

- Find centre and radius of circle $x^2 + y^2 + 12x 10y = 0$ (iii)
- Write an equation of the circle with centre (-3, 5) and radius 7. (iv)
- (v) Find the focus and directrix of parabola $x^2 = 4(y-1)$
- Find the focus and vertex of parabola $y = 6x^2 1$ (vi)
- Find the foci and vertices of ellipse $9x^2 + y^2 = 18$ (vii)
- Find the eccentricity of hyperbola $25x^2 16y^2 = 400$ (viii)
- Find the direction cosines of vector $\underline{v} = 6\underline{i} 2j + \underline{k}$ (ix)
- Find ' α ' so that $|\alpha i + (\alpha + 1)j + 2\underline{k}| = 3$ (x)
- Calculate the projection of $\underline{a} = 3\underline{i} + \underline{j} \underline{k}$ along $\underline{b} = -2\underline{i} j + \underline{k}$ (xi)
- (xii) Prove that $\underline{a} \times (\underline{b} + \underline{c}) + \underline{b} \times (c + a) + c \times (a + b) = 0$
- Find the value of α , so that $\alpha i + j$, $\underline{i} + j + 3\underline{k}$ and $2\underline{i} + \underline{j} 2\underline{k}$ are coplaner. (xiii)

Section ----- II

Note: Attempt any three questions.

 $(10 \times 3 = 30)$


- 5-(a) Evaluate the limit $\lim_{\theta \to 0} \frac{\tan \theta \sin \theta}{\sin^3 \theta}$
 - (b) If $y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + \dots}}}$
- **6-(a)** Show that $Y = X^X$ has minimum value at $X = \frac{1}{1}$
- (b) Evaluate $\int \frac{x}{x^4 + 2x^2 + 5} dx$ 7-(a) Evaluate $\int \cos^4 t \ dt$
- - (b) Maximize f(x, y) = 2x + 5y subject to the constraints $2y x \le 8$; $x y \le 4$; $x \ge 0$; $y \ge 0$
- 8 -(a) Find an equation of a circle of radius 'a' and lying in the second quadrant such that it is tangent to both the axes.
 - (b) Prove that the line segments joining the mid points of the sides of a quadrilateral taken in order form a parallelogram.
- 9 -(a) Find centre, foci and directrices of the ellipse $x^2 + 16x + 4y^2 16y + 76 = 0$
 - (b) Find a joint equation of lines through the origin and perpendicular to the lines $x^2 - 2xy \tan \alpha - y^2 = 0$

1224 -- 1224 -- 9000

Warning:- Please write your Roll No. in the space provided and sign. Roll No----(Inter Part – II) (Session 2020-22 to 2022-24) Sig. of Student -----(Group 2nd) Mathematics (Objective) Paper (II)

PAPER CODE 4196 Time Allowed: - 30 minutes Maximum Marks:- 20 Note:- You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the Answer Sheet and fill bubbles accordingly, otherwise the student will be responsible for the situation. Use of Ink Remover or white

correcting fluid is not allowed.

$$2) \quad \int \frac{e^x}{e^x - 1} \, dx =$$

(A)
$$\ln|1-e^x|+c$$
 (B) $\ln|1+e^{-x}|+c$ (C) $\ln|e^x-1|+c$ (D) $\ln|1-e^{-x}|+c$

3)
$$\lim_{x\to 0} (1+3x)^{\frac{2}{x}} =$$
(A) e^2 (B) e^8 (C) e^6 (D) e^4

4) The perimeter P of a square as a function of its area A is

The perimeter P of a square as a function of its area A is

(A)
$$P = \sqrt{A}$$

(B) $P = 4\sqrt{A}$

(D) $P = \frac{1}{4}\sqrt{A}$

If $f(x) = \cot x$ then $f'\left(\frac{\pi}{6}\right) = \frac{\pi}{4}$

5) If $f(x) = \cot x$ then $f'\left(\frac{\pi}{6}\right) =$ (D) $-\frac{1}{4}$

(A)
$$-4$$
 (B) $-\frac{d}{dx} \left[\ln(e^x + e^{-x}) \right] =$ (D) $-\frac{d}{dx} \left[\ln(e^x + e^{-x}) \right] =$

(A)
$$\frac{e^x - e^{-x}}{e^x - e^{-x}}$$
 (B) $\frac{e^x - e^{-x}}{e^x + e^{-x}}$ (C) $\frac{e^x - e^{-x}}{-e^x + e^{-x}}$ (D) $\frac{-e^x + e^{-x}}{e^x + e^{-x}}$

7) If
$$y = Sin h^{-1}(x^3)$$
 then $\frac{dy}{dx} =$

(A)
$$\frac{x^3}{\sqrt{1+x^6}}$$
 (B) $\frac{-3x^2}{\sqrt{1+x^6}}$ (C) $\frac{1}{\sqrt{1+x^6}}$ (D) $\frac{3x^2}{\sqrt{1+x^6}}$

8) The derivative of $y = \sec^{-1} \frac{x}{a}$ is

(A)
$$\frac{a}{x}(a^2-x^2)^{\frac{-1}{2}}$$
 (B) $-x(a^2-x^2)^{\frac{1}{2}}$ (C) $x(a^2-x^2)^{\frac{-1}{2}}$ (D) $x(a^2-x^2)^{\frac{3}{2}}$

P.T.O **1225** - 1224 -9000 (3)

-(2)- Sargodha Board-2024

The	lines	ioining	the mid	points of any	two sides	of a trian	ole is alway	s to	the third	side
1116	111162	Jonning	the init	points of any	iwo sides	or a uran	gic is alway:	S 1U	ine umu	Side

- (A) Equal
- (B) Parallel
- (C) Perpendicular
- (D) Base

- 10) If \underline{u} and \underline{v} be any vectors, then $\underline{u} \times \underline{v}$ is
 - (A) parallel to u and \underline{v} (B) parallel to \underline{u}
- (C) perpendicular to \underline{u} (D) orthogonal to \underline{u}

11)
$$\int_{a}^{b} f(x) dx =$$
 pakcity.org

- (A) $\int_{a}^{a} f(x) dx$ (B) $-\int_{a}^{a} f(x) dx$
- (C) $[f(x)]_a^b$
- (D) f(b) f(a)

$$12)\int_{0}^{4} x \ dx =$$

(A) 0

(B) 6

(C) 8

(D) 16

- 13) The slope of the line 2x + 3y 1 = 0 is
 - $(A) \frac{2}{2}$

- (C) $-\frac{3}{2}$
- (D) $\frac{3}{2}$

- 14) The lines lying in the same plane are called
 - (A) Collinear
- (B) Coplanar
- (C) Concurrent
- (D) Coincident
- 15) If the points (a, 0), (0, b) and (x, y) are collinear then
 - (A) $\frac{x}{a} + \frac{y}{b} = 0$
- (B) $\frac{a}{x} + \frac{b}{y} = 1$ (C) $\frac{x}{a} + \frac{y}{b} = -1$
- (D) $\frac{x}{a} + \frac{y}{b} = 1$

- 16) The graph of $x + 2y \le 6$ is
 - (A) Open half plane
- (B) closed half plane
- (C) Full plane
- (D) No any solution

- 17) The fixed line of the conic is known as
 - (A) x-axis
- (B) y-axis
- (C) directrix
- (D) latus rectum
- 18) The equation $a(x^2 + y^2) + 2gx + 2fy + c = 0$ represents a circle with centre
 - (A) (-ag, -af)
- (B) $\left(-\frac{g}{a}, -\frac{f}{a}\right)$ (C) $\left(\frac{g}{a}, \frac{f}{a}\right)$
- (D) (ag, af)

- 19) Equation of latus rectum of the parabola $x^2 = -4ay$ is
 - (A) x = a
- (B) x = -a
- (C) y = a
- (D) y = -a

- 20) $(\underline{a} \underline{b}) \cdot (\underline{a} + \underline{b}) =$
 - (A) $|a|^2 - |b|^2$
- (B) $|\underline{a}|^2 + |\underline{b}|^2$ (C) $2(\underline{a} + \underline{b})$
- (D) 0

1225 -- 1224 -- 9000 **(3)**

1224 Warning:- Please, do not write anything on this question paper except your Roll No.

Mathematics (Subjective) Time Allowed: 2.30 hours (Group 2nd)

(Inter Part – II)

Paper (II)

Maximum Marks: 80

(Session 2020-22 to 2022-24) Section ----- I

2. Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$

Evaluate $\lim_{x \to -1} \left(\frac{x^3 + x^2}{x^2 - 1} \right)$ (ii) Define inverse of a function f. (i)

Show that $x = a \sec \theta$, $y = b \tan \theta$ represent the equation of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (iii)

(iv)

Evaluate $\lim_{n\to\infty} \left(1 - \frac{1}{n}\right)^n$ (v) Find f'(x), if $y = x^2 \ln \sqrt{x}$

Show that $\cos(x+h) = \cos x - h \sin x - \frac{h^2}{12} \cos x + \frac{h^3}{13} \sin x + \dots$ (vi)

Determine the interval in which f is decreasing, here $f(x) = \cos x$, $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ (vii)

(viii) If $x = y \sin y$, Find $\frac{dy}{dx}$ (ix) Differentiate $\sin^3 x$ w.r.t $\cos^2 x$

If $y = x^4 + 2x^2 + 2$, prove that $\frac{dy}{dx} = 4x\sqrt{y-1}$

Write the Quotient rule for derivative of two functions. (xii) Find $\frac{dy}{dx}$, if $x = at^2$ y = 2at(xi)

Answer briefly any Eight parts from the followings:-3.

(i)

(ii)

Find dy and δy of $y = \sqrt{x}$ x changes from 4 to 4.41 Evaluate $\int \frac{3 - \cos 2x}{1 + \cos 2x} dx$ $\cos 2x \neq -1$ (iii) Evaluate $\int \frac{1}{x \ln x} dx$ Evaluate $\int (\ln x)^2 dx$ (v) Evaluate $\int \frac{3x+1}{x^2-x+6} dx$ (vi) Evaluate $\int_0^{\frac{\pi}{3}} \cos^2 x \sin x dx$ (iv)

Find the area between x-axis and curve $y = \sin 2x$ from x = 0 to $x = \frac{\pi}{2}$ (vii)

Find 'h' such that A(-1, h), B(3, 2) and C(7, 3) are collinear (viii)

Find 'k' so that the lines joining A(7,3), B(k,-6) and line joining C(-4,5), D(-6,4) are (ix) perpendicular.

(x) Find point of intersection of lines 3x + y + 12 = 0, x + 2y - 1 = 0

Find equation of lines represented by $20x^2 + 17xy - 24y^2 = 0$ (xi)

(xii) Find equation of line through (-4, 7) and parallel to the line 2x - 7y + 4 = 0

> P.T.O 1226 -- 1224 -- 9000

-- (2) --

Answer briefly any Nine parts from the followings:-4.

 $9 \times 2 = 18$

- Graph the solution set of the linear inequality $3x + 7y \ge 21$ in xy plane. (i)
- Define feasible region and feasible solution. (ii)
- Find an equation of the circle with ends of diameter at (-3, 2) and (5, -6) (iii)
- Find centre and radius of the circle $4x^2 + 4y^2 8x + 12y 25 = 0$ (iv)
- Find equation of Normal to the circle $x^2 + y^2 = 25$ at $(5\cos\theta, 5\sin\theta)$ (v)
- Write equation of parabola with directrix x = -2 and focus (2, 2). (vi)
- Find foci and vertices of the ellipse $x^2 + 4y^2 = 16$ (vii)
- Find equation of Hyperbola with foci $(\pm 5,0)$ and vertex (3,0)(viii)
- Find sum of the vectors \overrightarrow{AB} and \overrightarrow{CD} given A(1,-1), B(2,0), C(-1,3) and D(-2,2). (ix)
- let $u = \underline{i} + 2\underline{j} \underline{k}$, $\underline{v} = 3\underline{i} 2\underline{j} + 2\underline{k}$, $\underline{w} = 5\underline{i} \underline{j} + 3\underline{k}$. Find $|3\underline{v} + \underline{w}|$. (x)
- Find v for which $\underline{v} \cdot \underline{i} = 0$, $\underline{v} \cdot \underline{i} = 0$, $\underline{v} \cdot \underline{k} = 0$. (xi)
- (xii) Prove that $a \times (b+c) + b \times (c+a) + c \times (a+b) = 0$.
- Find α so that $\alpha \underline{i} + j$, $\underline{i} + j + 3\underline{k}$ and $2\underline{i} + j 2\underline{k}$ are coplaner. (xiii)

Section ----- II

Note: Attempt any three questions.

 $(10 \times 3 = 30)$

5-(a) If
$$f(x) = \begin{cases} 3x & if & x \le -2 \\ x^2 - 1 & if & -2 < x < 2 \\ 3 & if & x \ge 2 \end{cases}$$

- (b) Differentiate $\frac{(\sqrt{x}+1)(x^{\frac{3}{2}}-1)}{x^{\frac{3}{2}}-x^{\frac{1}{2}}}$ w.r.t.(x)

 (a) Show that $\int \frac{1}{\sqrt{x^2-x^2}} dx \frac{x}{2}$ 6-(a) Show that $\int \frac{1}{\sqrt{a^2 + x^2}} dx = \ln(x + \sqrt{a^2 + x^2}) + c$ here a > 0.
- (b) If $x = \sin \theta$, $y = \sin m\theta$ show that $(1 x^2)y_2 xy_1 + m^2y = 0$ 7-(a) Evaluate the definite integral $\int_{\pi/2}^{\pi/2} \frac{\cos x}{\sin x (2 + \sin x)} dx$
 - (b) Minimize z = 2x + y subject to the constraints $x + y \ge 3$; $7x + 5y \le 35$ $x \ge 0$; $y \ge 0$
- Find the equation of the tangent drawn from (-7, -2) to $(x+1)^2 + (y-2)^2 = 26$ 8 - (a)
 - (b) Using vectors, prove that $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$
- 9 -(a) Find area of region bounded by the triangle whose sides are 7x-y-10=0, 10x+y-41=0, 3x+2y+3=0
 - (b) Find the centre, foci eccentricity, vertices of ellipse whose equation is pakcity.org $x^2 + 16x + 4y^2 - 16y + 76 = 0$

1226 -- 1224 -- 9000

Sahiwal Board-2024

* Mathematics

HSSC (12th)1stAnnual 2024

Roll No_

(To be filled by the candidate

Paper: II

Objective (i)

Paper Code

8

Marks: 20

Time: 30 Minutes

Note:- You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that

NU	question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark. SECTION—A									
Q.1	Questions	Α	В	С	D					
1.	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = $ pakcity.org	f'(x)	f'(0)	f'(x-a)	• f'(a)					
	The range of $f(x) = 2 + \sqrt{x+1}$ is:	[-1,∞[[0,∞[[2,∞[●	[-2,∞[
3.	If $f(x) = \tan x$ then $f'\left(\frac{\pi}{3}\right) =$	4 •	2	1	0					
4.	If $f(x) = x^3 + 2x + 9$ then $f'''(0)$ is:	0	2	3	6 •					
5.	Maclaurin series for $\frac{1}{1+x}$ is:	$1-x+x^2-x^3+$	$1-x-x^2-x^3-x^4$	$1+x+x^2+x^3+$	$-1-x-x^2-x^3-$					
6.	A function $f(x)$ is increasing in the interval (a,b) if $f(x_2) > f(x_1)$ whenever:	$x_2 > x_1$	$x_2 < x_1$	$x_2 = x_1$	$x_1 = 0, x_2 =$					
7.	$\int \frac{\sin 2x}{\sin x} dx =$	$\sin 2x + c$	$2\sin 2x + c$	$\frac{1}{2}\sin x + c$						
8.	Solution of differential equation $\frac{dy}{dx} = -y$ is:	$y=c e^{-x}$	$y = ce^x$	$y = e^{cx}$	$y = x e^{-x}$					
9.	$\int \frac{e^x}{e^x - 2} dx =$	$ln(e^x+2)+c$	$ln(e^x+3)+c$	$ln(e^x-2)+c$	$ln(e^x-3)+$					
10.	If $\int f(x) dx = \frac{1}{a} \sec^{-1} \frac{x}{a} + c$ then $f(x) =$	$\frac{1}{\sqrt{x^2-a^2}}$	$\sqrt{\frac{1}{x\sqrt{x^2-a^2}}}$	$\frac{1}{x\sqrt{x^2+a^2}}$	$\frac{1}{x\sqrt{a^2-x^2}}$					
			F							
	Questions	Go) JA	В	С	D					
11.	Equation of a line passing through $(-2,5)$ having slope 0 is:	y = -5	y = 5	x = -2	x=2					
12.	If the distance of the point $(5,x)$ from x axis is 3 then $x =$	FDUCA	TION5	3 •	-5					
13.	The slope of the line with inclination 60° is:	O manal s si supplimentation de la constantia de la const	$\frac{1}{\sqrt{3}}$	1	√3					
14.	(3,2) is not in the solution of inequality:	x+y>2	x-y>1	3x + 5y > 7	3x - 7y < 3					
15.	The vertex of the parabola $(x-1)^2 = 8(y+2)$ is:	(1,-2)	(0,1)	(2,0)	(0,0)					
16.	The end points of the major axis of the ellipse are called its:	Foci	Vertices •	Covertices	Directrix					
17.	Directrix of parabola $x^2 = 16y$ is:	x + 4 = 0	x-4=0	y - 4 = 0	y+4=0					
18.	For any two vectors \underline{a} and \underline{b} projection of \underline{a} on \underline{b} is:	<u>a.b</u> <u>a </u>	$\frac{\underline{a}.\underline{b}}{ \underline{b} }$	$\frac{\underline{a}.\underline{b}}{ \underline{a} \underline{b} }$	<u>a.b</u>					
19.	The unit vector of $2\underline{i} + \underline{j}$ is:	2 <u>i</u> – <u>j</u>	$\frac{2\underline{i}+\underline{j}}{5}$	$\frac{2\underline{i}+\underline{j}}{3}$	$\frac{2\underline{i} + \underline{j}}{\sqrt{5}}$					
	IIV 1									

90°

300°

30°

60°

 $=\frac{1}{2}$, then the angle between \underline{U} and \underline{V} is:

Paper: II

Subjective

Roll No Marks: 80 Time: 2:30 Hours

SECTION - B

Note: - Section B is compulsory.

Sahiwal Board-2024

ii. Prove the identity $\sec h^2 x = 1 - \tan h^2 x$.

 $(8 \times 2 = 16)$

Write short answers to any EIGHT parts. 2.

- Express the volume $\,V\,$ of a cube as a function of area $\,A\,$ of its base.
- iii. Determine whether $f(x) = x^{3} + 6$ is even or odd.
- v. Differentiate $\frac{2x-1}{\sqrt{x^2+1}}$ w.r.t' x'.
- Find $\frac{dy}{dx}$ by making suitable substitution if $y = (3x^2 2x + 7)^6$.
- Find $\frac{dy}{dx}$ if $y = ln(x + \sqrt{x^2 + 1})$.
- Find the extreme value of $f(x) = x^2 x 2$.

- iv. Evaluate $\lim_{x\to 0} \frac{\sin x^0}{x}$. Spakcity.org
- **vi.** Find $\frac{dy}{dx}$ if $y^2 + x^2 4x = 5$.
- viii. Differentiate $\sin x$ w.r.t $\cot x$.
 - **x.** Find y_2 if $y = \sqrt{x} + \frac{1}{\sqrt{x}}$.
- Divide 20 into two parts so that the sum of their squares will be minimum. xii.

 $(8 \times 2 = 16)$

 $(9 \times 2 = 18)$

- Write short answers to any EIGHT parts. 3.
 - i. Using differential find $\frac{dx}{dy}$ if xy lnx = c.
- iii. Evaluate $\int \frac{e^x}{e^x + 3} dx$.
- Evaluate $\int_{0}^{\sqrt{5}} x \sqrt{x^2 1} dx$.

- ii. Evaluate $\int (2x-3)^{\frac{1}{2}} dx$
- iv. Find $\int x \cos x dx$.
- vi. Find the area between the x axis and the curve $y = x^2 + 1$ from x = 1 to x = 2.
- Solve the differential equation ydx + xdy = 0. vii.
- Find the distance between the points A(-8,3); B(2,-1). Find the mid-point of the line-segment joining the given points also. viii.
 - Find the point three-fifth of the way along the line-segment from A(-5,8) to B(5,3) .
- Find the slope and inclination of the line joining the points (-2,4); (5,11).
- Determine the value of p such that the lines 2x-3y-1=0, 3x-y-5=0 and 3x+py+8=0 meet at a point.
- Find an equation of each of the lines represented by $20x^2 + 17xy 24y^2 = 0$. xii.

4. Write short answers to any NINE parts.

- Graph the solution set of inequality $5x-4y \le 20$.
- Show that the equation $2x^2 xy + 5x 2y + 2 = 0$ represents a pair of lines.
- If centre is (0,0), focus is (6,0) and vertex is (4,0), find the equation of hyperbola.
- Find the length of latus rectum of the ellipse $9x^2 + y^2 = 18$. Find the focus and vertex of parabola $y^2 = 8x$.
- Find the equation of tangent to the circle $y^2 + y^2 = 25$ at the point (4,3).
- Find the centre and radius of the circle $x^2 + y^2 + 12x 10y = 0$.
- If $\vec{u} = 2i 7j$, $\vec{v} = i 6j$ and $\vec{w} = -i + j$, find $2\vec{u} 3\vec{v} + 4\vec{w}$.
- Find a vector of length 5 in the direction opposite to $\vec{v} = \hat{i} 2\hat{j} + 3\hat{k}$.
- Find the projection of \vec{a} along \vec{b} and \vec{b} along \vec{a} when $\vec{a} = 3i + j k$ and $\vec{b} = -2i j + k$.
- Prove that $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = \vec{0}$. Dake it where
- xiii. A force $\vec{F} = 4\hat{i} 3\hat{k}$ passes through the point A(2, -2, 5). Find the moment of \vec{F} about the point B(1, -3, 1).

Note: Attempt any THREE questions. Each question carries (5+5=10) marks.

5. (a) Prove that $\lim_{x\to 0} \frac{a^x - 1}{x} = \log_e^a$.

- (b) Differentiate with respect to 'x' $\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}$
- **6. (a)** If $y = (\cos^{-1} x)^2$, prove that $(1-x^2)y_2 xy_1 2 = 0$.
- (b) Evaluate the indefinite integral $\int \sqrt{a^2 + x^2} \ dx$.
- 7. (a) Solve the differential equation $\left(y x \frac{dy}{dx}\right) = 2\left(y^2 + \frac{dy}{dx}\right)$.
 - (b) Maximize f(x,y) = 2x + 5y subject to the constraints $2y x \le 8$, $x y \le 4$, $x \ge 0$, $y \ge 0$.
- 8. (a) Find the equation of the tangent to the circle $x^2 + y^2 = 2$ parallel to the line x 2y + 1 = 0.
 - (b) Show that mid-point of hypotenuse a right triangle is equidistant from its vertices (use vectors).
- 9. (a) Prove that the latus rectum of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$.
 - (b) The points (4,-2),(-2,4) and (5,5) are vertices of a triangle. Find in-centre of the triangle.