Gujranwala Board-G-1-2024

Roll N	lo. of Candidate .	———	oara 0 1 202	
PHYS	SICS Inte	rmediate Part-I , Class	11 th (1 st A 324- IV)	Paper: I Group - I
Time:	20 Minutes	OBJECTIVE	Code: 6477	Marks: 17
	You have four choices for ea fill that circle in front of that circles will result in zero m	question number. Use marke		
1. 1-		on the floor of an elevator	which is moving downw	ard with 4.9 m/s ²
	acceleration, the reaction (A) 9.8 N	on of floor on the mass is (B) 0 N	(C) 4.9 N	(D)/14.7 N
2.	 Which pair of angles gi 		` '	. ,
	-	(B) (20°, 40°)		
3 -		h constant speed v,ω and		
	(A) 90° with each other	•	(B) 120° with each of the	r
4	(C) 60° with each other		(D) 30° with each/other	
4 -		ess entropy remains consta	ant	6
	(B) in reversible proces	s entropy increases	c	🍇 pakcity.org 餐
	(C) in reversible proces (D) in irreversible proces	s entropy remains constan	t •	
5 -	, ,	I fringes in Michelson's in	terferometer, the distance	travelled by moveable
	mirror will be minimum	in case oflight.		· ·
	(A) Red	(B) Green	(C) Blue	(D) Yellow
6 -	A body in SHM with an	nplitude xo goes from mea	4	
	(A) 30°	(B) 45°	(C) 60°	(D) 90°
7 -	$\hat{i} \cdot (\hat{j} \times \hat{k}) = \underline{\hspace{1cm}}$			•
	(A) 0		(C) \hat{i}	(D) j
8	Two masses 2 Kg and 3 momentum of the system	. ()	ach other with velocity 3	m/s and 2 m/s. The total
	(A) 12 Ns	m is (B) 0 Ns	(C) 13 Ns	(D) –12 Ns
9 -	, ,	trated form of 705	X SO	
10	(A) Momentum	(B) Inertia	(C) Energy	(D) Acceleration
10 -	A spectrometer is not us (A) study spectrum of li		(B) measure refractive in	ndex of material of prism
	(C) study polarization of	7/1/2	(D) measure wavelength	_
11 -	If frequency of stationar			
12-	(A) speedWhich is renewable sour	(B) wavelength	(C) tension in the string	(D) density of string
12.5	(A) Biomass		(C) Oil	(D) Uranium
13 -	Heat is transferred slowl	y to a gas in a cylinder, th	e piston is pushed up thro	ough 4.0 cm at constant
	pressure of 8000Nm^{-2} . In (A) 32 j	f cross-sectional area of the (B) 64 j	ne piston is 0.10m², work (C)16 j ●	done by the gas is (D) 96 j
14 -	, , ,	nt for a body to be in equi		(<i>D</i>) 50 j
			$\sum \tau = 0 \tag{D}$	$\sum \vec{F} = 0$ and $\sum \tau = 0$
15 -		inty in the radius of a sph		
	(A) 3%	(B) 6% ●	(C) 9%	(D) 4%
16 -	Two points in a wave $\frac{\lambda}{4}$	distance apart have phase	difference	
,0	(A) π	(B) $\pi/2$	(C) $\pi/3$	(D) 2π •
17 -	Bernoulli's equation rela (A) pressure, speed and I		(B) pressure, force and h	eight
	(C) force, speed and pres		(D) force, height and spe	_

Gujranwala Board-G-1-2024

PHYSICS

Intermediate Part-I, Class 11th (1stA 324)

Time: 2:40 Hours SUBJECTIVE Marks: 68

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

Paper: I Group - I

SECTION - I

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. What are significant figures? What is rule when first digit dropped is less than 5 while rounding off the data?
- ii. What is absolute uncertainty? What is its value?
- iii. Why do we find it useful to have two units for the amount of substance, the kilogram and the mole?
- iv. Give the drawbacks to use the period of a pendulum as a time standard?
- v. Can a vector have a component greater than the vector's magnitude? Explain.
- vi. If $\vec{A} + \vec{B} = \vec{O}$, what can you say about the components of the two vectors?
- vii. What is position vector? Explain briefly.
- viii. Discuss and draw the velocity time graph when car moves with constant acceleration?
- ix. Explain the circumstances in which velocity \vec{v} and acceleration \vec{a} are
 - (i) perpendicular to each other
- (ii) anti-parallel
- x. What will happen when a light body collides with a massive body at rest in an elastic collision?
- xi. A 70 kg man runs up a long flight of stairs in 4.0 s. The vertical height of the stairs is 10 m. Calculate his power output in watts.
- xii. Calculate the work done in kilo joules in lifting a mass of 10 kg (at a steady velocity) through a vertical height of 10 m.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. If a lift is falling freely under gravity, how weightlessness is produced. Use mathematical equations to support your answer.
- ii. How do you create a gravity free system?
- iii. What is meant by centripetal force and why it must be furnished to an object, if the object is to follow a circular path?
- iv. What is meant by moment of inertia with its physical significance? Use equations to support your answer.
- v. How Bernoulli's equation is reduced? When
 - a) height difference is negligible
- b) velocity is constant.
- vi. What do you understand by the term viscosity? Also give its unit.
- vii. Define damping process. Use a graph to support your answer.
- viii. If a mass spring system is hung vertically and set into oscillations, why does the motion eventually stop?
- ix. Explain the relation between total energy, potential energy and kinetic energy of a body oscillating with S.H.M
- x. How Doppler Effect is used to monitor blood flow? Use diagrammatic explanation to support your answer.
- xi. Explain why sound travels faster in warm air than in cold air?
- xii. How are beats useful in tuning musical instrument?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Under what conditions two or more sources of light behave as coherent sources?
- ii. What are the conditions for detectable interference?
- iii. 10000 lines per centimeter has been ruled on diffraction grating. Find its grating element.
- iv. Why would it be advantageous to use blue light with a compound microscope?
- v. Why is meant by "least distance of distinct vision"?

Gujranwala Board-G-1-2024

- 2 -

- vi. Find magnifying power of convex lens of 25 cm focal length acts as a magnifying glass.
- vii. Does entropy of a system increase or decrease due to friction?
- viii. Is it possible to construct a heat engine that will not expel heat into the atmosphere?
- ix. Derive Charles' law from Kinetic theory of gases

SECTION-II

- 5. (a) Does the inertia depend on the momentum of a body? Give its reason. Also state and explain **(5)** the law of conservation of linear momentum. (b) Show that the three vectors $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} - 3\hat{j} + \hat{k}$ and $4\hat{i} + \hat{j} - 5\hat{k}$ are mutually perpendicular. **(3)** 6. (a) Stationary waves are also called standing waves, why? Discuss stationary waves in air column (5) of an open organ pipe. (b) How large a force is required to accelerate an electron ($m = 9.10 \text{ M} \cdot 10^{-31} \text{kg}$) from rest to a speed (3) of $2 \times 10^7 \text{ms}^{-1}$ through a distance of 5cm? 7. (a) How does a space satellite acquire an artificial gravity **(5)** (b) A block weighing 4.0 Kg extends a spring by 0.16 in from its unstretched position. If the block (3)is removed and 0.50 kg body is hung from same spring, now what is its period of vibration?
- 8. (a) Explain four stroke petrol engine in detail. What is the efficiency of a diesel engine? (5)
 - (b) Water flows through a hose, whose internal diameter is 1cm at a speed of 1 ms⁻¹. What should be the diameter of the nozzle if the water is to emerge at 21ms⁻¹?
- 9. (a) What is meant by diffraction of light? Also discuss the diffraction of light through a narrow slit. (5)
 - (b) An astronomical telescope having magnifying power of 5 consists of two thin lenses 24 cm apart. Find the focal lengths of the lenses.

215-1st A 324-46000

Gujranwala Board-G-2-2024

	o. of Candidate: _			
PHYS	ICS	Intermediate Part-I, C	lass $11^{th} (1^{st}A 324-IV)$	Paper: I Group - II
Time: 2	20 Minutes	OBJECTIVE	Code: 6478	Marks: 17
fi	ll that circle in front	es for each objective type questi of that question number. Use m zero mark in that question.	on as A, B, C and D. The cho arker or pen to fill the circles.	ice which you think is correct Cutting or filling two or more
1. 1-	In angular motic	on, the centripetal force is		
	$(A) mr^2 \omega^2$	` '	(C) $mr^2\omega$	(D) $mr\omega^2$
2 -	If temperature of	f sink increases, the efficiency	y of Carnot Engine	
	(A) decreases		(B) increases	
	(C) remains the		(D) first increases then	decreases
3 -	_	photo-phone is made up of		
	(A) Germanium	· (B) Selenium	(C) Cadmium	(D) Silicon
4 -	The dimensions	of the relation $\sqrt{\frac{F \times L}{m}}$ are equ	al to the dimensions of	pakcity.org
	(A) Force	(B) Impulse	(C) Momentum	(D) Velocity •
5 -	Dot product of fo	orce and velocity is	j*	
	(A) Work	(B) Momentum	(C) Power	(D) Impulse
6 -	In reversible pro	cess the entropy of system		•
	(A) increases	(B) decreases	(C) remains constant	(D) becomes zero
7 -	Newton rings are	formed due to		
	(A) diffraction	(B) reflection	(C) refraction	(D) interference
8 -	The maximum d	rag force on falling sphere is	9.8 N, its weight is	
	(A) 9.8 N •	(B) 19.8 N	(E) 4.9 N	(D) 49 N
9 -	Distance covered	by a body in one vibration is	s 20 cm. The amplitude of v	vibration will be
	(A) 5 cm	(B) 10 cm	2°(C) 15 cm	(D) 20 cm
10 -	Torque is the rota	ational analogous of	-13	
	(A) Momentum	(B) Impulse	(C) Force	(D) Power
11 -	In which quadrar	nt, vector 3 \hat{i} lies?		
	(A) 1 st	CB) 2nd	(C) 3 rd	(D) 4 th
12 -		s chasing another plane, when		, ,
	(A) increases		(B) decreases	
	(C) remains cons	tant	(D) first increases then	decreases
13 -	2 revolutions are	equal to	pakcity.org	
	(A) $\frac{\pi}{2}$ rad	(B) π rad	(C) 2π rad	(D) 4π rad ●
14 -	Speed of sound is	s independent of		
	(A) density	(B) temperature	(C) elasticity	(D) pressure
15 -	The unit of work	in base units is		
	(A) kg ms ²	(B) kg $m^2 s^{-2}$	(C) kg $m^{-2}s^2$	(D) $kg m^2 s^2$
16 -	Star moving towa	ards the earth shows		
	(A) red shift	(B) blue shift	(C) yellow shift	(D) green shift
17 -	The distance cover	ered by free falling body in 2	seconds is	
	(A) 9.8 m	(B) 19.6 m ●	(C) 4.9 m	(D) 49 m 216-(IV)-1 st A 324-46000

Gujranwala Board-G-2-2024

PHYSICS Intermediate Part-I, Class 11th (1stA 324) Paper: I Group - II

Time: 2:40 Hours SUBJECTIVE Marks: 68

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. The period of pendulum is measured by a stop watch. What types of errors are possible in the time standard?
- ii. Does a dimensional analysis give any information on constant of proportionality that may appear in algebraic expressions? Explain.
- iii. Differentiate between precision and accuracy.
- iv. How many seconds are there in one year? Explain.
- v. Can a vector have a component greater than the vector's magnitude?
- vi. A force of 10 N makes an angle of 60° with x-axis. Find its x and y components.
- vii. Give two factors on which turning effect depends.
- viii. Explain the circumstances in which velocity \vec{v} and acceleration \vec{a} are perpendicular to one another.
- ix. A rubber ball and a lead ball of same size are moving with same velocity. Which ball has greater momentum and why?
- x. How will you differentiate between uniform and variable velocity?
- xi. An object has 1 J of potential energy. Explain.
- xii. What is escape velocity? Write the formula of escape velocity.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. A disc and a hoop start moving down from the top of an inclined plane at the same time. Which one will be moving faster on reaching the bottom?
- ii. Why centripetal force is required to keep a body moving on a circular track?
- iii. State the direction of the following vectors in simple situations angular momentum and angular velocity
- iv. What does (INTELSAT) stand for?
- v. Explain the term viscosity.
- vi. What is difference between laminar flow and turbulent flow?
- vii. Does frequency depend on amplitude for harmonic oscillator?
- viii. Differentiate between undamped and damped oscillations with the help of a graph between amplitude and time.
- ix. Name two characteristics of simple harmonic oscillator.
- x. As a result of a distant explosion, an observer senses a ground tremor and then hears the explosion. Explain the time difference.
- xi. How are beats useful in tuning musical instruments?
- xii. How bats navigate their food?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. An oil film spreading over a wet footpath shows colours. Explain.
- ii. How will you differentiate between interference and diffraction of light waves?
- iii. 20000 lines per centimeter has been ruled on a diffraction grating. Find its grating element.
- iv. How the power is lost in optical fibre through dispersion? Explain.
- v. Why would it be advantageous to use blue light with a compound microscope?
- vi. Find magnifying power of convex lens of 15 cm focal length acts as a magnifying glass.
- vii. Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why?
- viii. Why is the average velocity of the molecules in a gas zero but the average of the square of velocities is not zero?
- ix. State Second Law of Thermodynamics in terms of entropy.

(Turn Over)

Gujranwala Board-G-2-2024

- 2 -

SECTION - II

5. (a) What is an isolated system? State and explain law of conservation of linear momentum. (5)(b) Given that $\vec{A} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{B} = 3\hat{i} - 4\hat{k}$, find the projection of \vec{A} and \vec{B} (3)6. (a) Discuss the interconversion of potential and kinetic energy when frictional force is not **(5)** considered. (3) (b) The wavelength of the signals from a radio transmitter is 1500 m and the frequency is 200 KHz. What is wavelength for a transmitter operating at 1000 KHz and with what speed the radio waves travel? 7. (a) What is meant by real and apparent weight? Develop a relation between real and apparent (5) weight (in case of an elevator). (b) What should be length of a simple pendulum whose period is 1.0 second at a place where **(3)** $g = 9.8 \text{ ms}^{-2}$ 8. (a) Derive Bernoulli's Equation for an ideal fluid? (5)(b) 336 J of energy is required to melt 1 g of ice at 0°C. What is the change in entropy of 30 g (3)of water at 0°C as it is changed to ice at 0°C by a refrigerator? 9. (a) What is Michelson's interferometer? Explain its working and derive its equation. (5) (b) A glass light pipe in air will totally internally reflect a light ray if its angle of incidence is at (3) least 39°. What is the minimum angle for total internal reflection if pipe is in water

(Refractive index of water = 1.33)

216-1stA 324-46000

Lahore Board-G-1-2024 (To be filled in by the candidate) (Academic Sessions 2020 - 2022 to 2023 - 2025) Roll No Time Allowed: 20 Minutes 224-1st Annual-(INTER PART – I) PHYSICS Maximum Marks: 17 GROUP - I Q.PAPER – I (Objective Type) PAPER CODE = 6475Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question. Two S.H.M having displacements are $x_1 = a \sin \omega t$ and $x_2 = b \cos \omega t$. The path difference between them will be: (D) π (A) Zero A particle of 1 Kg moving with initial velocity $5 ms^{-1}$ is acting upon by a constant force 10N. 2 After 5 seconds its velocity becomes: (D) $10 \, ms^{-1}$ (C) $5 ms^{-1}$ (A) $50 \, ms^{-1}$ (**b**) $55 \, ms^{-1}$ Dolphins detect small differences in the shape, size and thickness of objects through: 3 (e) Echolocation (D) Both A and B (B) Radio waves The ratio of dimensions of torque to angular momentum is: 4 (D) L:T (B) M:TPotential energy associated to the molecules of an ideal gas is considered to be: 5 (B) Low (e) Zero A particle moves in a circle of radius r. In half the period of revolution, its displacement and 6 distance covered are: (C) $\sqrt{2r}, \pi r$ (B) $2r, 2\pi r$ (\mathbf{A}) $2r, \pi r$ (D) $r, \pi r$ The magnitude of $-\hat{i} \cdot (\hat{k} \times \hat{j})$ is equal to (B) $-2\hat{i}$ The percentage uncertainty in mass and radius of earth is 2% and 5% respectively. The total 8 percentage uncertainty in the volume of earth is: (6) 15% The frequency of heart of normal human being is: 9 (A) 1.2 Hz (B) 0.83 Hz (C) 72 Hz The magnifying power of a magnifying glass is 3. Its focal length will be: 10 (A) 15 cm (B) 20 cm (A) 15 cm (B) 20 cm (C) 8.3 cm (D) 12.5 cm A flywheel gains an angular speed of 540 rev / min in 9 second. Its angular acceleration is: 11 (C) $12 \, \pi \, \text{rad s}^{-2}$ (b) $2 \pi \text{ rad s}^{-2}$ (A) $9 \pi \text{ rad s}^{-2}$ (B) $6 \pi \text{ rad s}^{-2}$ The horizontal range of a projectile is: 12 (B) Double of height at 45° (A) Equal to height at 30° (D) Four times of height at 45° (C) One fourth of the height at 90° The efficiency of diesel engine is: 13 (A) 25% to 35% (**P**) 35% to 40 % (C) 45% to 50% (D) 20% to 25% A mass is lifted to a height in 10 seconds. Now if the same mass is lifted to the same height in 14 20 seconds then work done in two cases are in the ratio: (B) 2:1 (D) 4:1 Which of the vector can not be represented on graph: 15 (A) Unit vector (B) Position vector (C) Negative vector (D) Null vector Energy cannot flow away in the: 16 (A) Transverse waves (B) Stationary waves (C) Longitudinal waves (D) Sound waves The direction in which light energy is carried called a: 17 (A) Ray (B) Wave front (D) Spherical wave 41-224-I-(Objective Type) - 19500

Lahore Board-G-1-2024

(To be filled in by the candidate) (Academic Sessions 2020 – 2022 to 2023 – 2025)

HYSICS

224-1st Annual-(INTER PART – I)

FAPER – I (Essay Type)

GROUP – I

Maximum Marks: 68

SECTION-I

2. Write short answers to any EIGHT (8) questions:

(i) Write down dimensions of: (a) Pressure. (b) Density.

- (ii) Does a dimensional analysis give any information on constant of proportionality that may appear in an algebraic expression?
- (iii) Name two major types of errors.
- (iv) Write down factors of prefixes atto and tera.
- (v) Can magnitude of a vector have a negative value?
- (vi) If $\overline{A} \overline{B} = \overline{O}$, what can you say about the components of the two vectors?
- (vii) Can you add zero to a null vector?
- (viii) Motion with constant velocity is a special case of motion with constant acceleration. Is this statement true? Discuss.
- (ix) An object is thrown vertically upward. Discuss sign of acceleration due to gravity relative to velocity, while the object is in air.
- (x) How impulse is equal to change in momentum?
- (xi) An object has 1J of potential energy. Explain what does it mean?
- (xii) Prove that $P = \overline{F} \cdot \overline{v}$ where P, \overline{F} and \overline{v} are power, force and velocity.

3. Write short answers to any EIGHT (8) questions &

- (i) A wheel covers 200 m distance between two points. If its radius is 0.2 m, find the number of revolution completed by the wheel.
- (ii) Describe what should be the minimum velocity for a satellite, to orbit close to the earth around it.
- (iii) State the direction of the following vectors in simple situations, angular momentum and angular velocity.
- (iv) When mud flies off the tyre of a moving bicycle, in what direction does it fly? Explain.
- (v) A person is standing near a fast moving train. Is there any danger that he will fall towards it?
- (vi) Explain the working of a carburetor of a motorcar using Bernoulli's principle.
- (vii) Time period of a simple pendulum is 2.0 s and amplitude 20 cm, find its maximum speed.
- (viii) What are the conditions of constructive and destructive interference of two sound waves from coherent sources?
 - (ix) Can we realize an ideal simple pendulum?
 - (x) What is the total distance travelled by an object moving with SHM in a time equal, to its period, if its amplitude is A?
 - (xi) Explain the terms: (i) crest. (ii) antinode.
- (xii) Why does sound travel faster in solids than in gases?

(Turn Over)

16

16

Please visit for more data at: www.pakcity.org

4. Write short answers to any SIX (6) questions :

- (i) Which principle is helpful to determine the shape and location of new wavefront? Explain briefly.
- (ii) Explain whether the Young's experiment is an experiment for studying interference or diffraction effects of light.
- (iii) What are different methods to get polarized light?
- (iv) What is multimode step index fibre? Explain in short.
- (v) Draw the ray diagram of compound microscope.
- (vi) Describe in short the construction and working of collimator.
- (vii) What will be efficiency of an engine if it performs 100 J of work and rejects 400 J of heat energy to the cold reservoir?
- (viii) Why the efficiency of real heat engine is always less than one?
 - (ix) Give an example of a process in which no heat is transferred to or from the system but temperature of system changes.

SECTION - II

Note: Attempt any THREE questions.

- 5. (a) Find resultant of \overline{A} and \overline{B} using addition of vectors by rectangular components.
 - (b) A football is thrown upward at an angle of 30° with respect to horizontal. To throw a 40 m pass what must be the initial speed of the ball?
- 6. (a) How would you describe the analytical approach of formula of absolute P.E., also derive the formula with diagrammatic explanation.
 - (b) The frequency of the note emitted by a stretched string is 300 Hz. What will be the frequency of this note when the tension is increased by one third without changing the length of the wire?
- 7. (a) Define angular momentum and explain orbital and spin angular momentum.
 - (b) A block of mass 4.0 kg is dropped from height of 0.80 m on to a spring of spring constant k = 1960 Nm⁻¹. Find the maximum distance through which the spring will be compressed?
- 8. (a) Define pressure of gas. Prove that pressure exerted by the gas is directly proportional to the average translational kinetic energy of the gas molecules.
 - (b) How large must a heating duct be if air moving along it can replenish the air in a room of 300 m³ volume every 15 min.? Assume the air's density remains constant.
- 9. (a) Explain Young's Double slit experiment to study the phenomenon of interference of light.
 - (b) An astronomical telescope having magnifying power of 5 consist of two thin lenses 24 cm apart. Find the focal lengths of the lenses.

41-224-I-(Essay Type)

12

pakcity.org

5

5

3

3 5

3

5

3

5

3

Lahore Board-G-2-2024

۱۵.		be filled in by the candida 224-1 st Annual-(INTER		20 – 2022 to 2023 – 2025) Allowed: 20 Minutes
	R – I (Objective Type			num Marks: 17
		PAPER CODE =		
			n are given. The choice worder or Pen ink in the answer-	
		esult in zero mark in that q		book. Cutting of fiffing
1-1	A body completes five	e revolutions in a circula	ar path having radius 5 cr	n, the displacement of
	the body is:			
	(A) Zero	(B) 10 cm	(C) 0.157 rad	(D) 0.314 rad
2		•	N mobile phone location	globally:
	(A) 3	(B) 24	(C) 14	(D) 5
3	Longitudinal waves of		A D 1 · · · · ·	(D) D:00 .:
4	(A) Refraction The unit of thermody	(B) Reflection	(Polarization	(D) Diffraction
-	(A) Centigrade		(C) Joule	() Kelvin
5			(C) Joule	(Kelvili
	The dimensions of =	$\left(\frac{1}{v-u}\right)^{\frac{1}{\lambda}}$ are:		
	(A) $[T]^{-1}$	_ "	(C) $[MT^{-1}]$	(D) $[T^{-1}L]$
6	The speed of sound in		(C) [MI]	(D) [1 L]
	-			.
	(A) $332 ms^{-1}$	(B) $300 ms^{-1}$	(C) $291 ms^{-1}$	(9) 393 ms ⁻¹
7			N acting on a body in or	•
	(A) 80 N	(B) 10√34 N	(C) 50 N	(I) 20 N
8	When the bob of simp	ole pendulum is at its ext	reme position, it has:	
	(A) K.E	(B) P.E and K.E	(P.E	(D) P.E or K.E
	 ` ` ` 			
9	At constant temperatu			
9		are, the graph between v	and $\frac{1}{p}$ is	
	(A) Hyperbola	ure, the graph between v	and $\frac{1}{p}$ is . Parabola	(D) Ellipse
10	(A) Hyperbola All the food we eat in	re, the graph between v (Straight line one day has about the state of the state o	and $\frac{1}{p}$ is	(D) Ellipse
	(A) Hyperbola All the food we eat in petrol energy = 5 × 10	(Straight line one day has about the so of J):	and $\frac{1}{p}$ is . Parabola anne energy as (if one lit	(D) Ellipse
	(A) Hyperbola All the food we eat in petrol energy = 5×10^{7} J	re, the graph between v (Straight line one day has about the state of the state o	and $\frac{1}{p}$ is . Parabola anne energy as (if one lit	(D) Ellipse
10	(A) Hyperbola All the food we eat in petrol energy = 5 × 10 (A) 5 × 10 ⁷ J The diameter of the n	(B) 0.33 J	and $\frac{1}{p}$ is . Parabola anne energy as (if one lit of :	(D) Ellipse re ♠) 1.66 × 10 ⁷ J
10	(A) Hyperbola All the food we eat in petrol energy = 5×10^{4} (A) 5×10^{7} J The diameter of the number of 10^{20} m	(B) 1010 m	and $\frac{1}{p}$ is . Parabola anne energy as (if one lit	(D) Ellipse re (D) $1.66 \times 10^7 \text{ J}$ (D) $10^{40} m$
10	(A) Hyperbola All the food we eat in petrol energy = 5×10^{10} (A) 5×10^{10} J The diameter of the management	(B) 1010 m hour's hand of mechanic	and $\frac{1}{p}$ is . (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is	(D) Ellipse re (D) 1.66 × 10 ⁷ J (D) 10 ⁴⁰ m :
10	(A) Hyperbola All the food we eat in petrol energy = 5×10^{7} J The diameter of the n (a) $10^{20}m$ The angular speed of (b) $\frac{\pi}{3}$ rad/hour	(B) 2π rad/hour	and $\frac{1}{p}$ is . (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour	(D) Ellipse re (D) $1.66 \times 10^7 \text{ J}$ (D) $10^{40} m$: (D) $4\pi \text{ rad /hour}$
10	(A) Hyperbola All the food we eat in petrol energy = 5×10^{10} (A) 5×10^{10} The diameter of the management of the angular speed of $\frac{\pi}{3}$ rad/hour The time of flight of p	Straight line one day has about the straight line one day has about the straight line (B) 0.33 J nilky way is of the order (B) 1010 m hour's hand of mechanic	and $\frac{1}{p}$ is . (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour on it is projected at an ang	(D) Ellipse The state of the content of the conte
10 11 12	(A) Hyperbola All the food we eat in petrol energy = 5×10^{10} (A) 5×10^{10} The diameter of the management of the angular speed of $\frac{\pi}{3}$ rad/hour The time of flight of p	Straight line one day has about the straight line one day has about the straight line (B) 0.33 J nilky way is of the order (B) 1010 m hour's hand of mechanic	and $\frac{1}{p}$ is . (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour on it is projected at an ang	(D) Ellipse The state of the content of the conte
10	(A) Hyperbola All the food we eat in petrol energy = 5×10^{10} (A) 5×10^{10} The diameter of the management of the angular speed of $\frac{\pi}{3}$ rad/hour The time of flight of part (A) 45° A two meter high tam	(B) 10 ¹⁰ m hour's hand of mechanic (B) 2π rad/hour (C) 90° k is full of water. A hole	and $\frac{1}{p}$ is . (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour en it is projected at an ang	(D) Ellipse The state of the content of the conte
10 11 12	(A) Hyperbola All the food we eat in petrol energy = 5×10^{7} J The diameter of the management of the management of the management of the management of $\frac{\pi}{3}$ rad/hour The time of flight of paragement of $\frac{\pi}{3}$ A two meter high tangeth efflux of water (If g = $\frac{\pi}{3}$).	(B) 0.33 J nilky way is of the order (B) 10 m hour's hand of mechanic (B) 2π rad/hour rojectile is maximum where (B) 90° k is full of water. A hole 10 ms ⁻²):	and $\frac{1}{p}$ is (C) Parabola (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour on it is projected at an ang (C) 76° cappears at its middle. V	(D) Ellipse re (D) $1.66 \times 10^7 \text{ J}$ (D) $10^{40}m$: (D) $4\pi \text{ rad/hour}$ le of: (D) 0° What is the speed of
10 11 12 13 14	(A) Hyperbola All the food we eat in petrol energy = 5×10^{10} (A) 5×10^{10} The diameter of the management of the angular speed of $\frac{\pi}{3}$ rad/hour The time of flight of performing the following of water (If given the following of	(B) 0.33 J (B) 0.33 J (B) 0.33 J (B) 0.37 J (C) illy way is of the order (B) 10 m (C) hour hour hour when the same with t	and $\frac{1}{p}$ is (C) Parabola (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour on it is projected at an ang (C) 76° cappears at its middle. V	(D) Ellipse The state of the content of the conte
10 11 12	(A) Hyperbola All the food we eat in petrol energy = 5×10^{7} J The diameter of the management of the management of the management of the management of $\frac{\pi}{3}$ rad/hour The time of flight of part (A) 45° A two meter high tangement of the management	(B) 0.33 J milky way is of the order (B) 10 ¹⁰ m hour's hand of mechanic (B) 2π rad/hour rojectile is maximum where (B) 90° k is full of water. A hole 10 ms ⁻²): (B) 4.32 ms ⁻¹ mich is vector:	and $\frac{1}{p}$ is . (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour on it is projected at an ang (C) 76° cappears at its middle. V (C) $10.0 ms^{-1}$	(D) Ellipse re (D) $1.66 \times 10^7 \text{J}$ (D) $10^{40} m$: (D) $4\pi \text{rad/hour}$ le of: (D) 0° What is the speed of (D) $20.0 ms^{-1}$
10 11 12 13 14	(A) Hyperbola All the food we eat in petrol energy = 5×10^{7} J The diameter of the n (a) $10^{20}m$ The angular speed of (b) $\frac{\pi}{3}$ rad/hour The time of flight of p (A) 45° A two meter high tan efflux of water (If g = $\frac{\pi}{3}$) (b) $\frac{\pi}{3}$ Name the quantity when $\frac{\pi}{3}$ is the following showing showing the following showing	(B) 0.33 J nilky way is of the order (B) 10 ¹⁰ m hour's hand of mechanic (B) 2π rad/hour rojectile is maximum where (B) 90° k is full of water. A hole = 10 ms ⁻²): (B) 4.32 ms ⁻¹ nich is vector: (B) Power	and $\frac{1}{p}$ is. (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour on it is projected at an ang (C) 76° appears at its middle. V (C) $10.0 ms^{-1}$	(D) Ellipse re (D) $1.66 \times 10^7 \text{J}$ (D) $10^{40} m$: (D) $4\pi \text{rad/hour}$ le of: (D) 0° What is the speed of (D) $20.0 ms^{-1}$ (D) Charge
10 11 12 13 14	(A) Hyperbola All the food we eat in petrol energy = 5×10^{7} J The diameter of the magnitude of the angular speed of $\frac{\pi}{3}$ rad/hour The time of flight of petrology (A) 45° A two meter high tangeflux of water (If get efflux of water (If get efflux of water) Name the quantity when the quantity was passes the quantity waves passes	(B) 0.33 J nilky way is of the order (B) 10 ¹⁰ m hour's hand of mechanic (B) 2π rad/hour rojectile is maximum where (B) 90° k is full of water. A hole = 10 ms ⁻²): (B) 4.32 ms ⁻¹ nich is vector: (B) Power	and $\frac{1}{p}$ is. (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour on it is projected at an ang (C) 76° appears at its middle. V (C) $10.0 ms^{-1}$	(D) Ellipse re (D) $1.66 \times 10^7 \text{J}$ (D) $10^{40} m$: (D) $4\pi \text{rad/hour}$ le of: (D) 0° What is the speed of (D) $20.0 ms^{-1}$
10 11 12 13 14	(A) Hyperbola All the food we eat in petrol energy = 5×10^{7} J The diameter of the n (a) $10^{20}m$ The angular speed of (b) $\frac{\pi}{3}$ rad/hour The time of flight of p (c) 4.5° A two meter high tan efflux of water (If g = $\frac{\pi}{3}$) Name the quantity where $\frac{\pi}{3}$ is the following speed of $\frac{\pi}{3}$. The time of flight of p (b) $\frac{\pi}{3}$ rad/hour The time of flight of p (c) $\frac{\pi}{3}$ rad/hour The time of flight of p (d) $\frac{\pi}{3}$ rad/hour The time of flight of p (e) $\frac{\pi}{3}$ rad/hour	(B) 0.33 J nilky way is of the order (B) 10 ¹⁰ m hour's hand of mechanic (B) 2π rad/hour rojectile is maximum where (B) 90° k is full of water. A hole = 10 ms ⁻²): (B) 4.32 ms ⁻¹ nich is vector: (B) Power through the medium in order	and $\frac{1}{p}$ is. (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour on it is projected at an ang (C) 76° cappears at its middle. V (C) $10.0 ms^{-1}$ (E) Impulse one second with speed 2	(D) Ellipse The state of the speed of the
10 11 12 13 14	(A) Hyperbola All the food we eat in petrol energy = 5×10^7 J The diameter of the n (a) $10^{20}m$ The angular speed of (b) $\frac{\pi}{3}$ rad/hour The time of flight of p (c) 4.5° A two meter high tan efflux of water (If g = $\frac{\pi}{3}$) Name the quantity where $\frac{\pi}{3}$ is the following term of the number of flight of p (b) $\frac{\pi}{3}$ rad/hour The time of flight of p (c) $\frac{\pi}{3}$ rad/hour The time of flight of p (d) $\frac{\pi}{3}$ rad/hour The time of flight of p (e) $\frac{\pi}{3}$ rad/hour The time of flight of p (f) $\frac{\pi}{3}$ rad/hour The time of flight of p (g) $\frac{\pi}{3}$ rad/hour The time of flight of p (g) $\frac{\pi}{3}$ rad/hour	(B) 0.33 J milky way is of the order (B) 10 ¹⁰ m hour's hand of mechanic (B) 2π rad/hour rojectile is maximum where (B) 90° k is full of water. A hold = 10 ms ⁻²): (B) 4.32 ms ⁻¹ mich is vector: (B) Power through the medium in order (20 Hz	and $\frac{1}{p}$ is (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour on it is projected at an ang (C) 76° cappears at its middle. V (C) $10.0 ms^{-1}$ (D) Impulse one second with speed 2 (C) 50 Hz	(D) Ellipse re (D) $1.66 \times 10^7 \mathrm{J}$ (D) $10^{40} m$: (D) $4\pi \mathrm{rad} /\mathrm{hour}$ le of: (D) 0° What is the speed of (D) $20.0 ms^{-1}$ (D) Charge $0 ms^{-1}$, the frequency of (D) $2 \mathrm{Hz}$
10 11 12 13 14 15 16	(A) Hyperbola All the food we eat in petrol energy = 5×10^7 J The diameter of the n (a) $10^{20}m$ The angular speed of (b) $\frac{\pi}{3}$ rad/hour The time of flight of p (c) 4.45° A two meter high tan efflux of water (If g = $\frac{\pi}{3}$) Name the quantity where $\frac{\pi}{3}$ is the contraction of $\frac{\pi}{3}$. The time of flight of p (c) $\frac{\pi}{3}$ rad/hour The time of flight of p (d) $\frac{\pi}{3}$ rad/hour The time of flight of p (e) $\frac{\pi}{3}$ rad/hour The time of flight of p (f) $\frac{\pi}{3}$ rad/hour The time of flight of p (g) $\frac{\pi}{3}$ rad/hour	(B) 0.33 J ilky way is of the order (B) 100 m hour's hand of mechanic (B) 2π rad/hour rojectile is maximum whe (B) 4.32 ms ⁻¹ iich is vector: (B) Power through the medium in order (C) 20 Hz a simple microscope wh	and $\frac{1}{p}$ is . (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour en it is projected at an ang (C) 76° cappears at its middle. V (C) $10.0 ms^{-1}$ (D) Impulse one second with speed 2 (C) 50 Hz en the final image is form	(D) Ellipse re (D) $1.66 \times 10^7 \mathrm{J}$ (D) $10^{40} m$: (D) $4\pi \mathrm{rad} /\mathrm{hour}$ le of: (D) 0° What is the speed of (D) $20.0 ms^{-1}$ (D) Charge $0 ms^{-1}$, the frequency of (D) $2 \mathrm{Hz}$ med at infinity:
10 11 12 13 14 15 16	(A) Hyperbola All the food we eat in petrol energy = 5×10^7 J The diameter of the n (a) $10^{20}m$ The angular speed of (b) $\frac{\pi}{3}$ rad/hour The time of flight of p (c) 4.5° A two meter high tan efflux of water (If g = $\frac{\pi}{3}$) Name the quantity where $\frac{\pi}{3}$ is the following term of the number of flight of p (b) $\frac{\pi}{3}$ rad/hour The time of flight of p (c) $\frac{\pi}{3}$ rad/hour The time of flight of p (d) $\frac{\pi}{3}$ rad/hour The time of flight of p (e) $\frac{\pi}{3}$ rad/hour The time of flight of p (f) $\frac{\pi}{3}$ rad/hour The time of flight of p (g) $\frac{\pi}{3}$ rad/hour The time of flight of p (g) $\frac{\pi}{3}$ rad/hour	Ire, the graph between v (a) Straight line I one day has about the straight line I of John line I of Market line I of Market line I of Water. A hold I of Water. A hold I of Water. A hold I of Water line I	and $\frac{1}{p}$ is (C) Parabola and energy as (if one lit (C) 10×10^7 J of: (C) $10^3 m$ cal watch at 2 o'clock is (C) $\frac{\pi}{6}$ rad/hour on it is projected at an ang (C) 76° cappears at its middle. V (C) $10.0 ms^{-1}$ (D) Impulse one second with speed 2 (C) 50 Hz	(D) Ellipse re (D) $1.66 \times 10^7 \mathrm{J}$ (D) $10^{40} m$: (D) $4\pi \mathrm{rad} /\mathrm{hour}$ le of: (D) 0° What is the speed of (D) $20.0 ms^{-1}$ (D) Charge $0 ms^{-1}$, the frequency of (D) $2 \mathrm{Hz}$ med at infinity: (D) $\frac{f_o}{f_e}$

-- pakcity.org 🎇

Lahore Board-G-2-2024

No (To be filled in by the candidate) (Academic Sessions 2020 – 2022 to 2023 – 2025)

PHYSICS 224-1st Annual-(INTER PART – I) Time Allowed: 2.40 hours

PAPER – I (Essay Type) GROUP – II Maximum Marks: 68

SECTION - I

2. Write short answers to any EIGHT (8) questions :

16

🖁 pakcity.or

- (i) What are two major types of errors, explain them with examples?
- (ii) Give any two rules for significant figures.
- (iii) Find the dimensions of gravitational constant G in the formula $F = G \frac{m_1 m_2}{r^2}$
- (iv) Find the uncertainty in a timing experiment of 30 vibrations completed in 54.6 sec. and the timing device has the least count 0.1 sec.
- (v) Under what circumstances would a vector have components that are equal in magnitude?
- (vi) How would you prove equilibrium of coplanar forces?
- (vii) Analyse the net increase in the value of vector product when angle between two vectors are changed from 0° to 60°.
- (viii) Why do we wear seat belts? Use an equation to support your answer.
 - (ix) Mention the points in the path of a projectile for minimum and maximum speed.
 - (x) An object is thrown vertically upward, discuss the sign of acceleration due to gravity, relative to velocity, while the object is in air.
- (xi) How pollution can be reduced? Use mass transportation and energy methods to support your answer.
- (xii) A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved?

3. Write short answers to any EIGHT (8) questions;

16

- (i) Why mud flies off the tyre of a moving bicycle, in what direction does it fly?
- (ii) What are the artificial satellites?
- (iii) Show that orbital angular momentum $\mathcal{L}_0 = mvr$
- (iv) Differentiate between tangential and angular velocity, how both are related to each other?
- (v) What do you understand about the term viscosity?
- (vi) How do you describe the behaviour of an ideal fluid flow?
- (vii) On what factors does frequency of a simple pendulum depends?
- (viii) If a mass-spring system vibrates, during vibration if potential energy increases what do you conclude about total energy?
 - (ix) Locate the position of pointer 'P' along with vibrating point 'N' at different instant of time period.

- (x) Why does sound travel faster in solids than in gases?
- (xi) Describe the phenomenon of sound speed regardless of temperature in air.
- (xii) If stationary waves are set up in an organ pipe with both open ends, how does frequency varies with length of pipe?

(Turn Over)

Lahore Board-G-2-2024

(2)

4.	Wr	ite short answers to any SIX (6) questions : A pakcity.org	12					
	(i)	Give two applications of Bragg's equation.						
	(ii)	Under what conditions two or more sources of light behave as coherent sources?						
	(iii)	Can visible light produce interference fringes? Explain.						
	(iv)	Use Snell's law to calculate critical angle for glass air boundary. Make a diagram to support your answer.						
	(v)	Make the ray diagrams of compound microscope and astronomical telescope.						
	(vi)	Define resolving power and give its at least two formulae.						
	(vii)	Give the interpretation of temperature by using pressure of gas equation.						
((viii)	How do you describe the all processes of strokes for petrol engine?						
	(ix)	Give an example of a natural process that involves an increase in entropy.						
		SECTION – II						
No	ote :	Attempt any THREE questions.						
5.	(a)	Define projectile motion. Derive relation for: (i) Time of flight (ii) Range (iii) Maximum height	5					
	(b)	Find the angle between two forces of equal magnitude when the magnitude of their resultant is also equal to the magnitude of either of these forces.	3					
6.	(a)	Discuss stationary waves in an air column. Also discuss different modes of vibrations in an open organ pipe.	5					
	(b)	How large a force is required to accelerate an electron ($m = 9.11 \times 10^{-31} kg$) from						
		rest to speed of $2 \times 10^7 ms^{-1}$ through a distance of 5 cm?	3					
7.	(a)	What is artificial gravity? Derive an expression for frequency of space-ship to provide the artificial gravity.	5					
	(b)	A simple pendulum is 50.0 cm long. What will be its frequency of vibration at						
		a place where $g = 9.8 ms^{-2}$?	3					
8.	(a)	How does the efficiency of a carnot engine is calculated?	5					
	(b)	What gauge pressure is required in the city mains for a stream from a fire hose connected to the mains to reach a vertical height of 15.0 m?	3					
9.	(a)	What is meant by diffraction of light? Also discuss the diffraction of light through a narrow slit?	5					
	(b)	A simple astronomical telescope in normal adjustment has an objective of focal length 100 cm and an eye piece of focal length 5.0 cm. (i) Where is the final image formed? (ii) Calculate the angular magnification.	3					
		131-224-II-(Essay Type)						

			- 4 (4 Et .)		9	
	r Code	20.	24 (1 st -A)	>	Dall Mar	
	ber: 2477	INTERMEDIATE	CPART-I (II CI	ass)	Roll No:	
	SICS PAPER-I E ALLOWED: 20 M	GROUP-I	OBJECTIV	F N	AXIMUM MARKS	S• 17
O.No		oices for each objective type qu				
Q.I'I	bubble in front of	that question number, on bub	ble sheet. Use marker	or pen to fill	the bubbles. Cutting or	filling two or
S.#		result in zero mark in that que	estion.	В	<u> </u>	D
3.#		ESTIONS	$\frac{A}{(F_1-F_2)^2}$	$F_1 + F_2$	$(F_1 + F_2)^2$	
1	The resultant of two		$(P_1 - P_2)$	$\Gamma_1 + \Gamma_2$	(P_1+P_2)	$\sqrt{F_1^2 + F_2^2}$
	making an angle of	90° with each other is:				•
2	The magnitude of j	$\hat{k}\cdot(\hat{k}\times\hat{i})$ is equal to:	1	$2\hat{j}$	0	$-2\hat{j}$
3	The velocity of a bo constant rate. The a		Zero	Negativ	re Constant	Increases
4	The velocity time goody is shown. It is that:		Force is positive	Force is negative		Force is constant
5	Gravity performs ze accelerates:	ero work when body	Vertically upward	Vertical downwa	412 4 000 10 CH 10	In a vertical loop
6	The acceleration of freely is:	an object falling	9.8ms ⁻²	$0ms^{-2}$	49,8ms ⁻²	5ms ⁻²
7	The rotational K.E. cradius 'r' is given b		$\frac{1}{2}n\omega^2$	$\frac{1}{2}mr^2\omega$	$\frac{1}{2}mr^2$	$\frac{1}{4}mr^2\omega^2$
8	The viscosity of wa		$0.019 \text{Nm}^{-2} \text{s}$	10000	3s 1Nm2s	0.801Nm ⁻² s
9	The time period of a whose length is 980		2π sec	27/07	$\frac{20\pi \sec}{}$	$\frac{2}{\pi}$ sec
10	-	wave is independent of.	Pressure	Mediun	Source of sound	Temperature
11	A longitudinal sinus wavelength of 1cm of 2sec, its wave	with a time period	50ms 1	0.005ms	$0.5ms^{-1}$	2 <i>ms</i> ⁻¹
12		ven cannot be polarized?	Light waves	Radio waves		Sound waves
13	The minimum numbers to form an	ber of rays required image are:	2	Models Models Ins	4	5
14	When heat is removentropy is:	ved from the system,	Remain same	Positive /.Org	e Negative	Zero
15	For mono atomic g gamma "γ" for gas	as $C_V = \frac{3}{2}R$, therefore s is:	3 5	$\frac{2}{5}$	2	5/3
16	How many colours printing to produce colours?	•	3	4	5	6
17	The dimensions of equal to the dimens	the relation mc^2 are ions of:	Force	Momento	um Heat	Velocity
	L	184 A	L	l.,		

17(Obj)(☆☆☆☆)-2024(1st-A)-30000 (MULTAN)

PHYS		
TIME	ALLOWED: 2.40 Hours SUBJECTIVE MAXIMUM MARKS: 68	
NOTE	: Write same question number and its parts number on answer book, as given in the question paper.	
	SECTION-I Multan Board-G-1-2024	
	tempt any eight parts. $8 \times 2 = 1$	6
(i)	How do you check the correctness of an equation?	
(ii)	How would a numerical data should be rounded off up to last significant figure?	~
(iii)	What do you understand about precise and accurate measurement?	
(iv)	An old saying is that "A chain is only as strong as its weakest link" what analogous statement can you mak	.e
	regarding experimental data used in computation?	
(v)	Two vectors have unequal magnitude. Can their sum be zero? Explain. What is the minimum value of tension in the string?	
(vi)		ක
	Picture pakcity.org	88 85
	9	₽)
(vii)	How do you subtract two vectors?	
(viii)	An object is thrown vertically upward. Discuss the sign of acceleration due to gravity relative to velocity,	
	while the object is in air.	
(ix)	How a rocket is propelled in space?	
(x)	When a moving car stops quickly, in what direction passengers fall and why?	
(xi)	What is the method of fermentation?	
(xii)	What sort of energy is in (a) compressed spring (b) moving car (c) water in a high dam?	
	tempt any eight parts. $8 \times 2 = 3$	16
(i)	If a body of mass 10kg is allowed to fall freely what will be its weight?	
(ii)	Show that orbital angular momentum, $L_o = mvr$.	
(iii)	What is meant by moment of inertia? Explain its significance.	
(iv)	Why does a diver change his body position before and after diving in the pool?	
(v)	Explain the term viscosity.	
(vi)	Why fog droplets appear to be suspended in air?	
(vii)	What is second pendulum also write its length, time period and frequency?	
(viii)	Can we realize an ideal simple pendulum?	
(ix) (x)	Describe some common phenomena in which resonance plays an important role? A wave has speed 400 m/sec. Find wavelength of a wave if frequency (\$\sqrt{2}\sqrt{1}\sqrt{1}\sqrt{2}\sqrt{1}\sqrt{2}\sqrt{1}\sqrt{2}\sqrt{2}\sqrt{1}\sqrt{2}\sqrt{2}\sqrt{1}\sqrt{2}\sqrt	
(xi)	Explain why sound travels faster in warm air than in cold air?	
(xii)	What features do longitudinal waves have in common with transverse waves?	
	tempt any six parts. $6 \times 2 =$	12
	How is the distance between interference fringes affected by the separation between the slits of	
\ \	Young's experiment? Can fringes disappear?	
(ii)	How interference produced in their film?	
(iii)	Could you obtain Newton's rings with transmitted light? If yes, would be pattern be different from that	
	obtained with reflected light?	
(iv)	What is Optical fibre? Write its types	
(v)	What is the function of turn table in the spectrometer?	
(vi)	If a person was looking through a telescope at the full moon, how would the appearance of the moon be	
(viii)	changed by covering ball of the objective lens?	
(vii)	State second law of thermodynamics in terms of entropy. Can the mechanical energy be converted into heat energy? If so give an example.	
(ix)	A thermos flask containing milk as a system is shaken rapidly. Does the temperature of the milk rise?	
(1/2)	SECTION-II	
NOTE		24
5.(a)	Explain what is meant by projectile motion? Describe the expression for (i) Height of the projectile	5
	(ii) Time of flight	
(b)	Find the projection of vector $\vec{A} = 2\hat{i} - 8\hat{j} + \hat{k}$ in the direction of vector $\vec{B} = 3\hat{i} - 4\hat{j} - 12\hat{k}$	3
6.(a)	How would you portray step by step guide for interconversion of PE and KE?	5
(b)	Find the temperature at which the velocity of sound in air is two times its velocity at 10° C.	3
7.(a)	Define real and apparent weight and discuss when apparent weight increases, decreases and becomes	5
1.(0)	zero during vertical motion.	J
(b)	An 8.0kg body executes S.H.M with amplitude 30cm. The restoring force is 60N. When the	3
	displacement is 30cm. Find (i) period (ii) speed when the displacement is 12cm	
8.(a)	Bernoulli's equation represents the conservation of energy in fluid dynamics. Discuss it.	5
(b)	Show that the ratio of the root mean square speeds of molecules of two different gases at a certain	3
0.1	temperature is equal to the square root of the inverse ratio of their masses.	
9.(a)	Describe the experiment performed by Michelson to find the speed of light. Also discuss the speed of	5
(b)	light reduced in other materials than vacuum. Light of wavelength 450nm is incident on a diffraction grating, on which 5000 lines per centimeter have	3
(b)	been ruled. How many orders of spectra can be observed on either side of the direct beam?	3
·	The state of the s	

Paper Code 2024 (1st-A) INTERMEDIATE PART-I (11th Class) Number: 2478 Roll No: **PHYSICS GROUP-II** Multan Board-G-2-2024 **PAPER-I TIME ALLOWED: 20 Minutes OBJECTIVE MAXIMUM MARKS: 17** You have four choices for each objective type question as A, B, C and D. The choice which you think is Q.No.1 correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. S.# **QUESTIONS** A A fixed mass of an ideal gas in a cylinder Heat is K.E. of the P.E of the No work is is compressed isothermally. Which is true dissipated gas increases gas increases done on the statement? from the gas system Number of significant zeroes in 3.50070 2 3 No significant zero 3 If we add the numbers 2.7543, 4.10, 1.273, 8.1273 8.2 8.13 8.127 the rounded off answer will be: 4 $A\sin\theta$ $A\cos\theta$ $A \tan \theta$ A If vector \vec{A} makes an angle θ with Y-axis, then its Y-component will be: 5 The magnitude of $\vec{A} = \cos\theta \hat{i} + \sin\theta \hat{j}$ is: $\sqrt{\cos\theta} + \sin\theta$ $\sqrt{1+\cos^2\theta}$ A body moves in a circle of radius r. The 6 Zero $2\pi r$ displacement covered in one rotation is: 7 A stone is dropped from the top of a tower. It takes 2s to reach the ground. 19 m 19.6 m 40 m $9.8 \, \mathrm{m}$ The height of the tower is: 8 Two masses M and 4M are moving with 1:16 same K.E. The ratio of their linear 4:1 $\sqrt{2}:1$ momenta is: 9 Which is a correct relation? $\vec{v} = \vec{r} \times \vec{w}$ $\vec{w} = \vec{v} \times \vec{r}$ $\vec{v} = \vec{w} \cdot \vec{r}$ $\vec{v} = \vec{w} \times \vec{r}$ A body of mass m is moving in a vertical 10 T = mT = mcircle of radius r, tied with a string. $(v^2 - gr)$ $(v^2 + gr)$ The tension at the lowest point is: 11 133.33 123.33 N/m^2 122.22 143.33 1 torr =12 What will be the displacement of a particle in SHM when its velocity is half $\sqrt{2}x_{o}$ the maximum velocity (amplitude $-x_0$): 13 A physical system under going forced Torsional Simple Driven Damped vibrations in known as: harmonic harmonic harmonic oscillator oscillator oscillator oscillator 14 The frequency of sound emitted from a source in water is 600 Hz. If speed of 300 Hz 750 Hz 600 Hz 120 Hz sound in water and air is 1500 m/s and 300 m/s respectively, then frequency of pakcity.o sound heard above the water surface is: 15 Which monochromatic light will produce maximum orders of spectra using a Blue a Red Green Yellow diffraction grating? 16 Multimode step index fibre is useful for Polarization Diffraction Interference Dispersion short distance to carry white light due to: effects effects effects effects 17 In PV graph of isothermal and adiabatic process, the adiabatic curve has Greater Smaller Equal Negative work under the curve, than isothermal work curve,:

NOTE	Write same question number and its parts number on answer book, as given in the question paper	er.
MOIE	SECTION-I Multan Board-G-2-2024	
2. Att	empt any eight parts.	= 16
(i)	Differentiate between random error and systematic error.	
(ii)	What is principle of homogeneity?	
(iii)	Name several repetitive phenomenon occurring in nature which could serve as reasonable time standards?	
(iv)	Give the drawbacks to use the period of a pendulum as a time standard?	
(v)	Why the cross product is not commutative? Explain briefly.	
(vi)	The vector sum of three vectors gives a zero resultant. What can be the orientation of the vectors? If one of the rectangular components of a vector is not zero, can its magnitude be zero? Explain.	
(vii)	Can the velocity of an object reverse direction when acceleration is constant? If so give an example.	
(ix)	Calculate the force due to water when it flows out from a pipe at $3kgs^{-1}$ and its velocity changes	
	from 5ms ⁻¹ to zero on striking the wall?	
(x)	An object is thrown vertically upward. Discuss the sign of acceleration due to gravity, relative to velocity,	
	while the object is in air?	
(xi)	Derive a relation between power and velocity.	
(xii)	A person holds a bag of groceries while standing still, talking to a friend. A car is standing still while its engine is	
3 Att	running. From stand point of work, how are these two situations similar? empt any eight parts. 8 × 2	= 16
(i)		
	Show that orbital angular momentum $L_o = mvr$.	
(ii)	What is meant by moment of inertia? Explain its significance.	
(iii)	Prove that 1 radian = 57.3° .	
(iv)	Write down applications of communication satellites.	10
(v)	What are the factors upon which drag force acting upon a small sphere of radius "r" moving through a liquid, dep	end?
(vi)	A chimney works best when it is tall. Why?	
(vii)	Does frequency depends on amplitude for harmonic oscillators?	
(viii)	The equation for SHM of an object is given by $X = 0.25\cos\left(\frac{\pi}{8}\right)t$. What will be displacement after 2 seconds?	
(ix)	What is Hook's law? Write its mathematical form.	
(x)	Explain why sound travels faster in warm air than in cold air.	
(xi)	How will you differentiate between longitudinal and transverse wave?	
(xii)	What is period of 300 cycles per second of sound waves?	
		2 = 12
(i)	Why interference is necessary to produce diffraction pattern? Answer this question with the analytical approach.	
(ii)	Explain the term "Optical rotation". Could you obtain Newton's rings with transmitted light? If yes, would the pattern be different from that	
(111)	obtained with reflected light?	
(iv)	Explain how a convex lens is used as a magnifier?	
(v)	Explain scattering and absorption as a loss of power?	
(vi)	If a person was looking through a telescope at the full moon, how would the appearance of the moon be changed by	1
(distance of the second	covering half of the object lens?	.m?
(vii)	What happens to the temperature of room, when an air conditioner is left running on a table in the middle of the root is it possible to convert internal energy into mechanical energy? Explain with an example.	MII (
(ix)	Calculate the work done in the given chargeam:	
()	P 1	
1		
	$\stackrel{2}{\vee} \stackrel{2}{\rightarrow} \stackrel{2}{(\mathbb{N}^{3})}$	
	SECTION-II	
NOTE		= 24
5.(a)	What do you know about collision? How would two balls collides elastically in different cases?	5
(b)	The magnitude of dot and cross product of two vectors are $6\sqrt{3}$ and "6" respectively.	3
	Find the angle between vectors.	
6.(a)	Define absolute potential energy. Derive its mathematical expression $U = \frac{-GMm}{T}$	5
	r	_
(b)	An organ pipe has a length of 50cm. Find the frequency of its fundamental note when it is closed at one end.	3
	(Speed of sound = $350 ms^{-1}$).	
7.(a)	How orbital radius of Geostationary orbits are calculated mathematically. Also calculate its value and its height	5
(b)	from the earth surface.	3
(0)	A spring, whose spring constant is $80.0 Nm^{-1}$ vertically supports a mass of 1.0 kg in the rest position. Find the distance by which the mass must be pulled down, so that on being released, it may pass the mean position with	,
	a velocity of $1.0 ms^{-1}$.	
8.(a)	State and prove the Bernoulli's equation in dynamic fluid; that relates pressure to fluid speed and height.	5.
(b)	336J of energy is required to melt 1g of ice at $0^{\circ}C$. What is the change in entropy of 30g of water at $0^{\circ}C$	3
` ′	as it is changed to ice at $0^{\circ}C$ by a refrigerator.	
9.(a)	What is compound microscope? Describe its construction and working. Also calculate its magnifying power.	5
(b)	A light is incident normally on a grating which has 2500 lines per centimeter. Compute the wavelength of a	3
	spectral line for which the deviation in second order is 15.0°.	

አ አ	Roll No
--------	---------

5 cm

(A)

HSSC-(P-I)-A/2024 (For All Sessions)

Paper Code	6	4	7	5
_				

Rawalpindi Board-G-1-2024

Physics (Objective)

(Group-I)

Time: 20 Minutes Marks: 17 Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided. When temperature of air increases then the speed of sound will: (A) (D) Be Zero Decrease Increase (C) Remain same The distance between first and third crest in transverse wave is: 2λ 4λ (D) 8λ (A) (B) 32 (C) Wave front and light rays are always: 3. At 120° Antiparallel (D) Parallel Perpendicular (C) The advantage of graded index fibre over the step index fibre is due to no: (A) Multiple reflection Refraction (B) Dispersion (C) (D) Scattering In the gas equation Pv = RT, where v represents volume of: 1 g of gas (C) 1 liter of gas 1 mole of gas (D) Any mass of gas If $T_1 > T_2$ then $\frac{Q}{T_2} - \frac{Q}{T_1}$ is always: (A) (B) Infinity (C) Negative (D) Positive The dimension of $\sqrt{\frac{f \times l}{m}}$ is $[LT^{-3}]$ (A) (B) $[LT^{-2}]$ (C) (D) $[LT^{-1}]$ The least count of a balance A is10kg, of B is 1 kg, of C is 0.1 kg and of D is 0.01kg, which is most precise: (A) A (B) (D) D $\hat{i} \times (\hat{j} + \hat{k})$ is equal to: k-î (A) 1 (B) (D) $\vec{A} = 5\hat{i} + 7\hat{j} - 3\hat{k}$ and $\vec{B} = 2\hat{i} + 2\hat{j}$ are perpendicular vectors, the value of 'a' is: (D) (C) -8A body is moving with uniform velocity its acceleration will be: (A) Variable (B) Zero (C) Uniform (D) **Positive** 12. Which of the following can be determined by finding the slope of the tangent of the velocity time graph at a point is: Acceleration (B) Momentum Displacement (D) Average velocity (C) 13. The work done in taking a body from the floor to the table top depends on: The path taken (B) Height of the table (C) Speed of the particle Time taken for work (D) 14. " $mr\omega^2$ " is an expression for: (A) Gravitational force (B) Centripetal force (C) (D) Newton's force Apparent force The rate of change of angular momentum is: 15. (A) **Force** (B) **Torque** (C) Pressure (D) Density 16. The terminal velocity of an object in a fluid of greater viscosity is: (A) Large (B) Small (C) Maximum (D) Zero 17. A body performing SHM, the distance covered by body in complete vibration is 20 cm. its amplitude will be:

833-11-A

(C)

20 cm

(D)

40 cm

10 cm

Rawalpindi Board-G-1-2024 HSSC-(P-I)-A-2024 Marks: 68 Roll No (For Ali Sessions) Group-l Time: 2:40 hours Physics (Subjective) **SECTION-I** (8x2=16)Write short answers of any eight parts from the following: 2. pakcity.org Does all physical measurements are accurate or precise, yes or not, explain. i. How do you calculate final uncertainty in a timing experiment? ii. Find the dimension of coefficient of viscosity η in the relation $F = 6\pi \eta r v$. iii. Name several repetitive phenomenon occurring in nature which could serve as reasonable time standards. iv. How do you multiply a vector by a scalar number? vi. Can the magnitude of a vector have a negative value? ٧. Can a body rotate about its center of gravity under the action of its weight? vii. Explain the circumstances in which the velocity and acceleration of a car are (i) Parallel (ii) Anti-parallel. viii. x. / What is meant by a ballistic missile, how it works? Define impulse and how it is related to linear momentum? ix. An object has 1J of potential energy. Explain what does it mean? How much power does it have? xi. A girl drops a cup from certain height, which breaks into pieces. Why it happens & what energy changes are involved? χii. (8x2=16)Write short answers of any eight parts from the following:-3. What is meant by angular momentum? Explain the law of conservation of angular momentum. i. When mud flies off the tyre of a moving bicycle, in what direction does it fly? Explain. ii. Prove that $2 radian = 114.6^{\circ}$ Differentiate between tangential velocity and angular velocity. iii. A person is standing near a fast moving train. Is there any danger that he will fall towards it? ٧. Does frequency depend on amplitude for harmonic oscillators? What are systolic and diastolic pressures? vii. ٧i. What is meant by phase angle? Does it define angle between maximum displacement and the driving force? viii. Show that when a pendulum moves from mean position to half of amplitude, time taken by it is, t = T/12. iχ. A wave is produced along a stretched string but some of its particles permanently show zero displacement . What type of wave is it? X. Why does sound travels faster in solids than in gases? Xİ. Find the temperature of air, if the velocity of sound is 340 $ms7^{1}$ at the temperature. XII. (6x2=12)Write short answers of any six parts from the following: 4. Under what conditions two or more sources of light behave as coherent sources? i. How would you manage to get more orders of spectra using a diffraction grating? What is graphical representation of diffraction pattern of monochromatic light produced due to to a single slit? iii. What do you understand by linear magnification and angular magnifications? i۷. How power is lost in optical fiber through dispersion? Explain. Name the parts of a spectrometer? ٧. Does entropy of a system increases or decreases due to friction? vii. Is it possible to construct a heat engine that will not expel heat into the atmosphere? viii. Draw a PV-diagram in case of isothermal process and adiabatic process. ix. (8x3=24)Attempt any three questions. Each question carries equal marks: Note Drive the expression for the final velocities of two hard smooth balls after their elastic collision in one dimension. (5)5. (a) Find the angle between the two vectors. $\vec{A} = 5\hat{i} + \hat{j}$ and $\vec{B} = 2\hat{i} + 4\hat{j}$ (3)(b) 6. (a) Which field is produced by the earth? Prove that the work done in this field is independent of the path followed (5) and work done in a closed path be zero. A stationary wave is established in a string which is 120cm long and fixed at both ends. The string vibrates in (3)four segments, at a frequency of 120 Hz. Determine its wavelength and fundamental frequency. (5)7. (a) What is resonance phenomenon? Explain it with examples. A gramophone record turntable accelerates from rest to an angular velocity of 45.0 rev / min in 1.60 seconds. (3)What is the average angular acceleration. How does the pressure of a gas in a container is directly proportional to average translational kinetic energy. (5)8. (a)

(3)

(5)

(3)

An airplane wing is designed so that when the speed of the air across the top of the wing is $450ms^{-1}$, the speed of air below the wing is $410ms^{-1}$. What is the pressure difference between the top & bottom of the wings? (Density of

An astronomical telescope having magnifying power of 5 consist of two thin lenses 24cm apart. Find focal lengths of lenses.

air = $1.29kgm^{-3}$)

Discuss Michelson's interferometer in detail.

9, (a)

(b)

***	Roll No

HSSC-(P-I)-A/2024

Paper Code

(D)

(D)

6

Physics (Objective)

(For All Sessions)

(Group-II)

Time: 20 Minutes

6

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

The location of submarines can be detected by:

Rawalpindi Board-G-2-2024

Doppler effect

Compton's effect

Photoelectric effect (C)

Temperature effect

The speed of sound is greater in:

Oxygen (A)

Air

(C)

Water

(D) Copper

The property of bending of light around obstacles is:

(A) Reflection

Refraction (B)

(C) Diffraction

Polarization (D)

Magnifying power of telescope is:

(A)

(B)

(C)

fefo

 $W = -\Delta U$ equation holds for:

Isothermal (A)

Adiabatic (B)

(C)

Isochoric

 T_2

Isobaric (D)

The efficiency of carnot engine depends on:

Working substance

(B)

(C)

(D)

The number of significant figures in 0.00232 are:

(B)

(B)

5

Distance

Tí

(C,

Light year is the unit of:

(A)

Light

(B)

Time

(D)

(D)

Velocity

T1 & T2

3

The relation $\bar{A} + (-\bar{A})$ results the:

Null vector

(B) Parallel vector (C)

(C)

Unit vector

Position vector (D)

Unit vector for a vector $\vec{A} = 4\hat{i} +$

(Á)

(B)

The horizontal range of projectile at 3000 with horizontal is same as that at an angle of:

(A)

45°

(B)

60°

(C)

90°

120°

The mass of fuel consumed by a typical rocket to overcome earth's gravity is: 12.

 $10 \, Kgs^{-1}$

 $100 \, Kgs^{-1}$ (B)

10000 Kgs⁻¹

 $1000 \, Kgs^{-1}$ (D)

The work is said to be negative if: 13.

(A)

 $\theta = 0^{\circ}$

(B)

 $\theta = 90^{\circ}$

(D)

(D)

(D)

 $\theta < 90^{\circ}$

The relation for moment of inertia of sphere is: 14.

(A)

 $\frac{2}{5}mr^2$

(B)

(C)

 $\frac{1}{2}mr^2$

(D)

 $2mr^2$

If I $rad = 57.3^{\circ}$ then $\frac{1}{2}$ rad is: 15.

57.3°

(B)

28.65°

(C)

180°

(D)

360°

The pressure will be low when the speed of fluid is: 16.

(A)

High

(B)

(C)

Zero

(D)

Constant

The acceleration of a body executing SHM depends upon its:

(A) Time period

Amplitude (B)

(C) 835-11-A Frequency

Displacement (D)

	R	awalpindi Bo	ard-G-2-2024	
Roll	No	HSSC-(P-I)-A- (For All Sessi	2024 ons)	Marks : 68
Ph	ysics (Subjective)	Group-ll	Time:	2:40 hours
2.	Write short answers of any eight parts fr		- akcity.org €	(8x2=16)
i.	Write the dimension of (i) Pressure (ii) Density. ii. W	hat are the dimension and unit of $\sqrt{\frac{F \times l}{m}}$?	
iii. v. vi. vii. ix. x.	What are supplementary units? Define only of Two vectors have unequal magnitudes. Under what circumstances would a vector $\vec{A} = 3\hat{i} - 5\hat{j}$, $\vec{B} = 7\hat{k}$ find $(\vec{A} \times 3\hat{i} + 3\hat{i} $	Can their sum be zentor have components \vec{B}) viii. y time graph is numerition. Derive expression	that are equal in magnitude? What is ballistic missile? Define its trajectory. cally equal to the distance covered by the object	
xii. 3. i. ii.		lifting a mass of 10 kg om the following: $m_0 = mvr$.	g (at a steady velocity) through a vertical height of with linear equations of motion?	of 10m. (8x2=16)
iii.	Prove that, $\theta = \frac{s}{r}$ radian.		n centripetal force perform any work? Explain.	
v. vii. viii. x. xi.	Why in S.H.M the acceleration is zero we Calculate the formula of the time period As a result of a distant explosion an observe	oscillator remains construction the velocity is great of a mass attached to remove a ground tremothe temperature of the		nce.
4.	Write short answers of any six parts from			(6x2=12)
i. ii. iii.	Can visible light produce interference fr How would you manage to get more or When mirror M ₁ of Michelson interferon calculate the wavelength of light used.	inges? Explain. ders of spectra using a leter is moved a distar	ce 0,5 mm, 200 fringes are observed, then	
iv.	Explain the difference between angular			
v. vi. vii. viii. ix.	How the power is lost in optical fibre thr What is meant by length of the telescop Why does the pressure of a gas in a ca A thermos flask containing milk as a sys Does the efficiency of Carnot engine de	e? Explain type increase when i stem is shaken rapidly pends on the nature of	t is driven through some distance? Does the temperature of milk rise?	
Note	Attenut only three greations. Feel and	SECTION-II	Faria	(00-04)
5. (a)	Attempt any three questions. Each que Define vector product and also discus			(8x3=24) (5)
(b)	Two blocks of masses 2.0 kg and 0.50 kg stored in the spring is 10J. Find the velocity	are attached at the two e ies of the block if the spr	ends of a compressed spring. The elastic potential ene ing delivers its energy to blocks when released.	rgy is (3)
6. (a)	How would you derive a relation for the	•	•	(5)
(b)		_	t of the stairs is 4.5 m. calculate his power output in watts	* *
7. (a) (b)	Prove that energy is conserved in sim A 1000 kg car travelling with a speed centripetal force.		a curve of radius 100m. Find the necessary	(5) (3)
8. (a)	State first law of thermodynamics and	explain (i) Isothermal	process (ii) Adiabatic process.	(5)
(b)	Water flows through a hose, whose in the nozzle if the water is to emerge at	ternal diameter is 1 cn 21 m/s?	n at a speed of 1m/s. What should be the diamet	ter of (3)
9. (a)	Explain the construction and working	of an astronomical tele	scope. Also derive a relation for its magnifying p	ower. (5)

(3)

(b) A light is incident normally on a grating which has 2500 lines per centimeter. Compute the wavelength of the spectral line for which the deviation in second order is 15.0° 836-11-A

1129 - 1124 -- 25000 (1) P.T.O

13) If a gas is maintained at 8000 N/m² in a container with piston having area 0.10 m². If the gas expands and

(D) 80 J

(D) 5.7

piston is pushed up through a distance of 10 cm then the work done by the gas is

(B) 400 J

(B) $\frac{5}{7}$

14) For diatomic gas $C_{\nu} = \frac{5R}{2}$, therefore " γ " for this gas is

(C) 7.5

1129 - 1124 -- 25000 (1)

Sargodha Board-G-2-2024

	Warning:- Ple	ease write your	Roll No. in the	e space p	rovided an	d sign. Roll	No
.ater	Part – I)	(Session 2	2020-22 to 2023	3-25)	Sig. of S	Student	
Physic	s (Objective)		(Group	II)		Paper (I)	
Time A	Allowed:- 20 mi	inutes	PAPER CO	DDE 2 4	178	Maximum	Marks:- 17
that circ result in Answer	le in front of that of zero mark in that	question number. question. Write Pa ples accordingly, of	Use marker or per APER CODE, who	n to fill the sich is print	circles. Cutti ted on this qu	ng or filling t estion paper, o	you think is correct; fill wo or more circles will on the both sides of the Use of Ink Remover or Q. 1
		tep index fibre,	the diameter of	the core	İs		Q. 1
	(A) $20\mu m$	(B) 3		(C) 4		(D)	50μm 🛑
2)	What remains o	onstant in adiab	patic process				on v • • special of the special of
	(A) Pressure	'(B) V	olume	(C) T	emperature	(D)	Entropy
	Triple point of		0		_		
	(A) 273.16 °C	()	73.16 °F	(C) 2°	73.16 K 🔵	(D)	373.16 K
4)	Significant figu (A) 2	res in 0.00567 a		(C) 'A		(D)	-
5)	One light year i	(B) 3		(C) 4		(D)	5
3)	(A) 9×10^{12} m	(B) 9	\times 10 ¹³ m	(C) 9	$0 \times 10^{14} \mathrm{m}$	(D)	9 × 10 ¹⁵ m ●
6)	If the magnitud	e of $\vec{A} \cdot \vec{B} = \frac{1}{2} A$	B then the angl	e betweei	\vec{A} and \vec{B}	is	
	(A) 30°	(B) 45	5°	(C) 6	0° 🛑	(D)	90°
	The dimensions	•	,				
	$(A) \left[M^{-1}LT \right]$	L	$ML^{-1}T$	-	M^2LT^{-2}		$\left[ML^2T^{-2}\right]$
	(A) Hyperbola	noves with const (B) Pa maximum whe	arabola	(C) C	urve(S)		Straight line
	(A) 1 Sec	(B) $\frac{1}{10}$	Sec	P(C)	$\frac{\widehat{1}}{00}$ Sec	(D)	$\frac{1}{1000}$ Sec
10)	The value of es	cape velocity is	maximum for	3)	00		1000
,	(A) Earth	(B) M	loon v	(C) J ₁	ipitér 🌘	(D)	Mercury
	A body of 1kg (A) 9.8 N	moving up with		parents)	eight is 9.6 N	(D)	0.98 N
12)	The moment of	inertia of a ring	is equal to				
	$(A) \frac{1}{2}mr^2 \bullet$	(B) m		(C) $\frac{2}{5}$	$-mr^2$	(D)	$\frac{1}{4}mr^2$
13)	One Torr is equ	al to					4
-	(A) 1.333 Nm^2		3.33 Nm ²	(C) 1:	33.3 Nm ²	(D)	1333 Nm ²
14)	By increasing n	nass of the object	et four times att				
	(A) Twice	(B) T	nrice		our times		Six times
15)	The speed of so	und in air at 30		ately equ	al to	(D)	Six umes
	(A) 332 m/s	(B) 33		•	40 m/s	(D)	350 m/s ●
16)	The distance co	vered by wave i	n 1 second is				
*.	(A) Wavelength	1 (B) W	ave number	(C) W	ave speed	(D)	Frequency
17)	Longitudinal wa	aves do not exhi	bit		•		, ,
	(A) Polarization	$\mathbf{n} \bullet \mathbf{(B)} \mathbf{D}$	iffraction	100 20	eflection	(D)	Refraction
_@	akcity ora	3. 1131	- 1124 -	- 150	00 (4		

Sargodha Board-G-2-2024

1124 Warning:- Please, do not write anything on this question paper except your Roll No. (Session 2020-22 to 2023-25) Paper (I) Group (II) Physics (Subjective) (Inter Part - I) Maximum Marks: 68 Section -----I Time Allowed: 2.40 hours $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-2. What are the three main frontiers of Physics. (i) Write two steps which are involved in the measurement of a base quantity. (ii) Show that the famous "Einstein equation" $E = mc^2$ is dimensionally consistent. (iii) Give the drawbacks to use the period of a pendulum as a time standard. (iv) How would you explain "arbitrary direction" for a null vector obtained from east and west directed two equal in magnitude vectors. (v) The vector sum of three equal in magnitudes vectors gives a zero resultant. What can be the orientation of the vectors. (vi) If one of the rectangular components of a vector is not zero, can its magnitude be zero? Explain (vii) How do you find out the height of a tower by using one of the equation of motion. Write all steps you take for measurement. (viii) Derive a formula for range of the projectile. (ix) Why two projectiles fired with different initial horizontal velocities take same time to reach ground? (x) What do you understand by the term "escape velocity". Give the value of escape velocity for Earth. (xi) Calculate the work done in kilo joules in lifting a mass of 10 kg through a vertical height of 10 m. (xii) Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ 3. A person is standing near a fast moving train. Is there any danger that he will fall towards it. (i) Differentiate between systolic and diastolic pressure. Are these values varies with age. (ii) What do you mean by term weightlessness in satellite. (iii) What is moment of inertia? Explain its significance. (iv) A disc and a hoop starts moving down from top of an inclined plane at the same time which will (v) have great speed on reaching bottom. Why an object, orbiting the earth, is said to be freely falling, use your explanation to describe why (vi) objects appear weightless under certain circumstances. What are the values of velocity of a vibrating mass-spring system at its mean and extreme point. (vii) What should be the length of a simple pendulum whose time period is 1.0 sec. What does effect on (viii) length if time period is doubled. Describe phenomenon of tunning a radio. (x) How beats are useful in tuning musical instrument. (ix) Is it possible for two identical waves travelling in same direction, will give rise to stationary waves (xi) In an organ pipe, closed at one end, how does harmonic varies with length of air coulomn. (xii) Answer briefly any Six parts from the followings:-4. Differentiate between spherical and plane wave front (ii) Can visible light produce interference fringes? (i) How would you manage to get more orders of spectra using a diffraction grating? (iii) How a piece of paper is used to see a print clearly? (iv) Why would it be advantageous to use blue light with a compound microscope? (v) How light signal is transmitted through the optical fibre? (vi) Why does the pressure of a gas in a car tyre increase when it is driven through some distance? (vii) Why specific heat at constant pressure is greater than specific heat at constant volume? (viii) How can efficiency of Carnot Engine be increased? (ix) Section ----- II Note: Attempt any three questions. Define elastic collision. Show that for elastic collision, relative speed of approach is equal to 5. relative speed of separation. Find the projection of vector $\vec{A} = 2\hat{i} - 8\hat{j} + \hat{k}$ in the direction of the vector $\vec{B} = 3\hat{i} - 4\hat{j} - 12\hat{k}$ Define escape velocity. Prove that $v_{esc} = \sqrt{2gR}$ and also find out its value. 6. Find the temperature at which the velocity of sound in air is two times its velocity at 10 °C. What is meant by geostationary orbit? Derive formula for its radius. 7. (a)

A simple pendulum is 50.0 cm long. What will be its frequency of vibration at a place where, g = 9.8 ms⁻². (b)

What is Carnot engine. Explain its working and calculate its efficiency. (a) 8.

Certain globular protein particle has a density of 1246 kgm⁻³. It falls through pure water $(\eta = 8.0 \times 10^{-4} kgm^{-1}s^{-1})$ with a terminal speed of 3.0 cmh⁻¹. Find the radius of the particle.

Explain the diffraction of X-rays by crystals. 9. (a)

A glass light pipe in air will totally internally reflect a light ray if its angle of incidence is at least 39°. What is the minimum angle for total internal reflection if pipe is in water? (Refractive Index of water = 1.33)

Faisalabad Board-G-1-2024

Roll No.:	
Objective	
Paper Code	

6471

Intermediate Part First

PHYSICS (Objective) GROUP-I

Time: 20 Minutes

Marks: 17

pakcity.org

You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill the relevant circle in front of that question number on computerized answer sheet. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero marks in that question. Attempt as many questions as given in objective type question paper and leave other circles blank.

S.#	Questions	A	В	C	D
1	Which is not a base unit in SI units?	Ampere	Joule •	Kilogram	Kelvin
2	If error in measurement of radius of circle is 2%, then permissible error in its area will be:	1%	2%	3%	4%
3	If $A_x = A_y$, then angle between \vec{A} and x-axis is:	30°	45° •	60°	90°
4	In which quadrant vector $-2\hat{i} - 3\hat{j}$ lies?	1st	2nd	3rd •	4th
5	Impulse has same unit as that of:	Mass	Energy	Force	Linear momentum
6	The range of projectile is same for:	10°, 70°	20°, 50°	25°, 65° •	30°, 70°
7	Which one is non-renewable source of energy?	Tides	Biomass	Waves	Oil •
8	Rotational K.E. of disc is given by:	2 mv ²	$\frac{1}{4}$ mv ²	\sqrt{gh}	$\sqrt{\frac{4}{3}gh}$
9	If a body of mass 10kg is falling freely, its apparent weight will be:	Zero	10N	98N	980N
10	The dimension of pgh is similar as that of:	Power	Torque	Pressure •	Force
11	The wavelength of wave produced by microwave oven is:	бст	12cm •	24cm	50cm
12	Speed of sound in air at S.T.P. is:	280 m/s	330 m/s	332 m/s	350 m/s
13	Half wavelength corresponds to:	00	90°	180° •	`360°
14	Which cannot be polarized?	Sound waves	X-rays	Light waves	Radio waves
15	The first person who attempted to measure the speed of light was:	Newton	Galileo 🔵	Huygen	Michelson
16	Boltzman constant "K" has the same unit as:	Pressure	Energy	Temperature	Entropy
17	If temperature of the sink decreases, then efficiency of Carnot engine:	Increases •	Decreases	Remains the same	First increases then decreases

Faisalabad Board-G-1-2024

Intermediate Part First

PHYSICS (Subjective) GROUP - I

Time: 02:40 Hours

Marks: 68

Roll No. _____

01,03,01

03

SECTION - I Write short answers to any EIGHT parts. 16 Why do we find it useful to have two units for the amount of substance, the kilogram and the mole? Does a dimensional analysis give any information on constant of proportionality that may appear in an algebraic expression? Explain. (iii) Write the dimensions of (a) pressure (b) density. (iv) If percentage uncertainty in radius of sphere is 0.4%, then what will be total uncertainty in its volume? Can a body rotate about its center of gravity under the action of its weight? (v) (vi) Name three conditions that could make, $\overline{A_1} \times \overline{A_2} = \overline{0}$ (vii) Draw the diagram of two cases in which components of a vector are equal in magnitude. (viii) Explain the circumstances in which the velocity \vec{v} and acceleration \vec{a} of a car are (a) \vec{v} is zero but \vec{a} is not zero. (b) a is zero but v is not zero. (ix) At what point or points in its path does a projectile have its minimum speed, its maximum speed? Which quantities are assumed to be constant in projectile motion? (x) (xi) What sort of energy is in (a) compressed spring (b) water in a high dam? (xii) A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved? 3. Write short answers to any EIGHT parts. 16 Explain how many minimum number of geostationary satellites are required for global coverage of TV transmission. Satellites orbiting at different altitudes have different time periods. Explain why? (iii) Why is it difficult for a car to turn round a corner at high speed than at lower speed? (iv) A 1000kg car moves with a speed of 40ms⁻¹ round a curve of radius 100m. Find the necessary centripetal force. (v) Explain how the swing is produced in a fast moving cricket ball? (vi) What are systolic and diastolic pressures? Also give values. (vii) Under what conditions, does the addition of two simple harmonic motions produce a resultant, which is also simple harmonic? (viii) What will be the frequency of a simple pendulum if its length is 1m at place where g = 9.8ms⁻²? (ix) Explain briefly the example of electrical resonance. (x) How beats are useful in tuning musical instruments? (xi) Differentiate between red shift and blue shift. (xii) How the frequency of a string of a musical instrument can be changed? 4. Write short answers to any SIX parts. 12 Can visible light produce interference fringes? Explain. Why the polaroid sunglasses are better than ordinary sunglasses? Differentiate between a ray and a wave front. Why would it be advantageous to use blue light with a compound microscope? If a person was looking through a telescope at the full moon, how would the appearance of the moon be changed by covering half of the objective lens? What are the necessary conditions for total internal reflection? (vii) Why specific heat at constant pressure is greater than specific heat at constant volume? pakcity.org (viii) Why does pressure of a gas in a car tyre increase when it is driven through some distance? (ix) Explain adiabatic process with two examples. SECTION – II Attempt any THREE questions. Each question carries 08 marks. 5. (a) Define cross product of two vectors. Give examples. Also write the characteristics of cross product. 05 (b) A football is thrown upward with an angle of 30° with respect to horizontal. To throw a 40m pass. what must be initial speed of the ball? 03 6. (a) What is gravitational field? Show that work done in the earth gravitational filed is independent of the path followed. 05 (b) An organ pipe has a length of 50cm. Find the frequency of its fundamental note and the next harmonic when it is open at both ends. 03 7. (a) What is resonance phenomenon? Explain it with examples. 05 (b) A gramophone records turntable accelerates from rest to an angular velocity of 45.0 rev min-1 in 1.60s. What is its average angular acceleration? 03 8. (a) What is Carnot cycle? Calculate the efficiency of a Carnot engine during one Carnot cycle. 05 (b) A water hose with an internal diameter of 20mm at the outlet discharges 30kg of water in 60 sec. Calculate the water speed at the outlet. Assume the density of water is 1000kgm⁻³ and its flow is steady. 9. (a) What do you know about diffraction grating? Also derive a relation which involves that image of

each wavelength for a certain value of n is diffracted in a different direction.

Find the focal lengths of the lenses.

(b) An astronomical telescope having magnifying power of 5 consists of two thin lenses 24cm apart.

Faisalabad Board-G-2-2024

Roll No.	:
Object	ctive

Intermediate Part First

Paper Code

PHYSICS (Objective) GROUP – II Time: 20 Minutes Marks: 17

6472

You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill the relevant circle in front of that question number on computerized answer sheet. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero marks in that question. Attempt as many questions as given in objective type question paper and leave other circles blank.

S.#		A	В	C	D
1	A light year is the distance light travels in one year. How many meters are there in one light year?	9.5×10 ⁻¹⁵ m	9.5×10 ¹⁵ km	9.5×10 ¹⁵ cm	9.5×10 ¹⁵ m
2	Significant figures in 8.70×10 ⁴ kg are:	5	4 •	3	2
3	First condition of equilibrium implies that:	$\Sigma F = 0$	$\sum F_x = 0$	$\sum F_y = 0$	$\sum F_{x} = \sum F_{y}$
4	Magnitudes of cross product and dot product of two vectors are equal. The angle between the vectors is:	0°	45°	180°	60°
5	Which formula is true?	$m = \frac{a}{F}$	$F = \frac{m}{a}$	$a = \frac{F}{m}$	$a = \frac{m}{F}$
6	SI unit of impulse is equivalent to that of:	Force (Velocity	Momentum	Acceleration
7	Which is non-conservative force?	Electrical force	Gravitational force	Frictional force	Magnetic force
8	Which quantity is dimension less?	Centripetal force	Angular velocity	Angular displacement	Angular acceleration
9	Centripetal force performs:	Minimum work	Maximum work	No work	Negative work
10	SI units of viscosity are:	kg ⁻¹ m s ⁻¹	kg ⁻¹ m ⁻¹ s	kg m ⁻¹ s ⁻¹	kgms ⁻¹
11	The wave form of SHM is:	A square wave	Sine wave	Cosine wave	Tangent wave
12	Half wave length corresponds to:	0°.	90°	180°	360°
13	With increase of temperature sound speed:	Remains constant	Increases	Becomes zero	Decreases
14	Fringe spacing increases if we use:	Green light	Red light	Yellow light	Blue light
15	Least distance of distinct vision for normal eye is:	15 cm	125 cm	25 cm •	25 m
16	Which remains constant in an adiabatic process:	Volume	Entropy	Pressure	Temperature
17	$C_p - C_v = :$	Plank's constant	Molar gas constant	General gas constant	Boltzmann constant

Faisalabad Board-G-2-2024

Intermediate Part First

GROUP - II PHYSICS (Subjective)

Roll No.

03

05

03

05

03

05

03

Time: 02:40 Hours Marks: 68 SECTION - I 16 rite short answers to any EIGHT parts. Write the dimensions of pressure and density. Name several repetitive phenomenon occurring in nature which could serve as reasonable time standard. ii) (iii) How many meters are there in one light year? Explain. (iv) What are the characteristics of ideal standard? (v) The vector sum of three vectors gives a zero resultant. What can be orientation of the vectors? (vi) Can a body rotate about its center of gravity under the action of its weight? (vii) If $\vec{A} = 3\hat{i} - 5\hat{j}$, $\vec{B} = 7\hat{k}$, find $(\vec{A} \times \vec{B})$ (viii) Define impulse and show that how it is related to linear momentum? (ix) Explain the circumstances in which the velocity \vec{v} and acceleration \vec{a} of a car are perpendicular to one another. What is the effect on the speed of a fighter plane chasing another when it opens the fire? (x) (xi) When a rocket re-enters the atmosphere, its nose cone becomes very hot. Where does this heat energy come from? (xii) Prove that $P = \vec{F} \cdot \vec{v}$ 16 3. Write short answers to any EIGHT parts. What is the venturi relation? Which quantity is measured using this relation? (i) How does swing is produced in a tennis ball? (ii) Two cylinders of equal mass but with different diameters, which has greater rotational inertia? What do you know about GPS and its use? (iv) What is an orbital velocity? What does effect of mass of satellite on value of orbital velocity? (v) How do you find direction of angular momentum and angular velocity in simple situation? (vi) (vii) Why does the oscillation of a vibrating body eventually stop? (viii) If a pendulum vibrates with frequency 'f'. What does effect on its angular frequency time period is doubled? (ix) What does information is determined by phase of a vibrating body? Describe the term crest, trough, node and antinode. (x) (xi) How does the speed of distant stars and galaxies are calculated? (xii) In the phenomenon of stationary waves, if string vibrates in more and more loops, what would you conclude about its frequency and wavelength? 12 4. Write short answers to any SIX parts. What conditions must be met to observe the interference of light? Why the polaroid sunglasses are better than ordinary sunglasses? (ii) (iii) Justify that a path difference $\frac{\lambda}{4}$ is neither associated with constructive interference nor destructive interference of light. (iv) How the power is lost in optical fiber through dispersion? Explain. How the light propagates with in a flexible glass fiber? (v) (vi) Describe briefly how light is refracted in continuous refraction? (vii) Can the mechanical energy be converted completely into heat energy? If so, give an example. (viii) Calculate the change in internal energy when 42J heat energy is transferred to the system during the expansion and 32J work is done on the piston. Does entropy of a system increase or decrease due to friction? Explain. Attempt any THREE questions. Each question carries 08 marks. SECTION – II 5. (a) What is meant by cross product and explain its four characteristics? 05 (b) A 100g golf ball is moving to the right with a velocity of 20ms-1. It makes a head on collision with an 8 kg steel ball, initially at rest. Compute velocities of the balls after collision. 03 6. (a) Show that frequencies of stationary waves in a stretched string are quantized. 05 (b) A car of mass 800kg travelling at 54kmh⁻¹ is brought to rest in 60 meters. Find the average retarding

(b) A 100g body hung on a spring elongates the spring by 4.0cm. When a certain object is hung on the

spring and set vibrating, its period is 0.568s. What is the mass of the object pulling the spring?

(b) What gauge pressure is required in the city mains for a stream from a fire house connected to the

9. (a) What is meant by diffraction of light? Also discuss the diffraction of light through a narrow slit. (b) Calculate the critical angle and angle of entry for an optical fiber having core of refractive index

8. (a) Derive the relations for pressure and temperature in term of average K.E. of the molecules.

force on the car.

7. (a) Define centripetal acceleration and derive its relation.

mains to reach a vertical height of 15.0m?

1.50 and cladding of refractive index 1.48.

Bahawalpur Board-G-1-2024

Physics	(A)	L.K.No. 1529	Paper Code No. 6471
Paper I	(Objective Type)	Inter (Ist – A	- Exam - 2024)
Time :	20 Minutes	Inter (Part – I)	(Group Ist)
Marks :	17	Session (2022 – 24) & (2023 – 25)	

Note: Four choices A, B, C, D to each question are given. Which choice is correct fill that circle in front of that Question No. on the Objective Bubble Sheet. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

	Land the state of
Q.No.1	The main frontiers of fundamental Science are :
(1)	(A) 1 (B) 2 (3 (D) 4 pakcity.org
(2)	The sum of three numbers 2 . 7543 , 4 . 10 and 1 . 273 upto correct decimal place is :
	(A) 8 . 12 (8 . 13 (C) 8 . 127 (D) 8 . 1273
(3)	The vector $\overline{A} = \frac{1}{\sqrt{2}}\hat{\mathbf{i}} + \frac{1}{\sqrt{2}}\hat{\mathbf{j}}$ is a :
	(A) Null Vector (C) Vector of magnitude $\sqrt{2}$ (D) Vector of magnitude $\frac{1}{\sqrt{2}}$
(4)	If $ \overline{A} \cdot \overline{B} = \overline{A} \times \overline{B} $ then angle between vectors \overline{A} and \overline{B} is:
	(A) 0 ($\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π
(5)	The Momentum and Kinetic Energy of a body having the same value at the speed of:
	(A) 8 ms ⁻¹ (B) 1 ms ⁻¹ (C) 4 ms ⁻¹ (2 ms ⁻¹
(6)	Motion of Projectile is :
	(A) One Dimensional (C) Three Dimensional (D) Four Dimensional
(7)	Tidal Energy is due to Gravitational Pull of: (A) Moon (B) Sun (C) Earth (D) Mars
(8)	The relation for Moment of Inertia of the thin ring is :
	(A) mr^2 (B) $\frac{1}{2}mr^2$ (C) $\frac{2}{5}mr^2$ (D) $\frac{2}{3}mr^2$
(9)	The Unit of Rotational K.E is: (A) rad s ⁻¹ (B) Js (J (D) Kgm ²
(10)	Stoke 's Law hold for bodies when they have :
	(Spherical Shape (B) Curved Shape (C) Rectangular Shape (D) Triangle Shape
(11)	Time Period of Simple Pendulum only depends on :
	(A) Mass (Length (C) Amplitude (D) Displacement
(12)	If the path difference between two waves is $\frac{\lambda}{2}$ then interference will be:
-	(Constructive (B) Destructive (C) Beats (D) Both A and B
(13)	The maximum value of beat frequency is : (a) 10 Hz (B) 100 Hz (C) 20 Hz (D) 30 Hz
(14)	The effective path difference between two x-ray beams reflected from a crystal plane is :
	(A) $d \sin \theta$ (B) $\frac{d}{2} \sin \theta$ (C) $\frac{2 \sin \theta}{d}$
(15)	Using the relation for Magnification Power M = $1 + \frac{d}{f}$ if f = 5 cm and d = 25 cm then M will be :
	(A) 4 (B) 5 (a) 6 (D) 7
(16)	When Ice melts, entropy: (Increases (B) Decreases (C) Constant (D) Zero
	For the least (D) Zero
(17)	For the Isothermal Process , the first Law of Thermodynamics can be written as :

Roll No.	1529 -	Inter (Part - I)	Session (2022 -24) & (2023 - 25)
Physics (Subjective)	Inter (lst - A- Exam - 2024)		Time 2:40 Hours Marks: 68

Note: It is compulsory to attempt any (8 – 8) Parts each from Q.No. 2, Q.No.3 and attempt any (6) Parts from Q.No.4. Attempt any (3) Questions from Part – II. Write the Same Question Number and its Part Number as given in the Question Paper

Bahawalpur Board-G-1-2024

		Banawaipur Board-G-1-2024
		where necessary. Part - 1 22 x 2 = 44
2.No.2	(1)	The length and width of a rectangular plate are 15.3cm and 12.80cm respectively. Find the area of the plate upto correct significant figures.
	(11)	Give the drawbacks to use the period of a pendulum as a time standard.
	(111)	Name several repetitive phenomenon occurring in nature which could serve as reasonable time standards.
	(Iv)	Why do we find it useful to have two units for the amount of substance , the Kilogram and the Mole?
	(v)	If Force of magnitude 20N makes an angle of 30° with x – axis then find its y – component?
	(vi)	Can you add zero to a Null vector?
	(vii)	Two vectors have unequal magnitudes . Can their sum be zero? Explain.
	(viii)	Define impulse and show how it is related to Linear Momentum?
	(ix)	At what point or points in its path does a projectile have its minimum speed, its
	()	maximum speed?
	(x)	Does the man can jump high on the surface of moon as compare to earth? Explain.
	(xl)	An object has 1 J of Potential Energy . Explain what does it mean?
	(xii)	What is meant by work done by a constant force?
Q.No.3	(1)	Show that Orbital Angular Momentum L _o = mvr
	(11)	When mud files off the tyre of a moving bicycle, in what direction does it fly? Explain.
	(111)	What is meant by Moment of Inertia? Explain its significance.
	(Iv)	What are directions of Angular Momentum and Angular Velocity?
	(v)	Explain the term Viscosity.
	(vi)	Explain how swing is produced in a fast moving Cricket Ball?
	(vii)	Can we realize an Ideal Simple Pendulum?
	(viii)	Explain Damping with an example.
	(lx)	For SHM, explain the equations : (a) $y = A \sin(\omega t + \varphi)$ (b) $a = -\omega^2 x$
	(x)	Explain how sound travel faster in warm air than in cold air ?
	(xi)	Explain the terms Crest , Trough , Node and Antinode.
	(xii)	Which Phenomenon is used to detect the motion of an aeroplane in a radia?
Q.No.4	(1)	Why the Polaroid sun glasses are better than ordinary sun glasses?
	(111)	Why x-rays cannot be diffracted by diffraction grating? It is impossible to get phase Coherent beam of light from two separate sources of
	(Iv)	light . Why? A magnifying glass gives a five times enlarged image at a distance of 25 cm from the lens . Find the Focal Length of the Lens .
	(v)	Why multimode graded index fiber is better for long distances than multimode step index Fiber?
	(vI)	What are the conditions necessary for the total internal reflection to take place?
	(vii)	Under what condition the efficiency of a Carnot Engine will be 100% 2
	(vIII)	is it possible to Construct a Heat Engine that will not expel heat into the atmosphere ? Explain.
	(lx)	When 50 J of heat enter into a system and 20 J of work is done by the system. What will be the change in internal energy of the system?

(Part - 11)

3 x 8 = 24

Q.No.5	(a)	What is Elastic Collision ? In case of Elastic Collision of two bodies in one dimension , write their velocities after Collision.	(5)
	(b)	Find the Projection of vector $\vec{A} = 2\hat{1} - 8\hat{j} + \hat{k}$ in the direction of the vector $\vec{B} = 3\hat{1} - 4\hat{j} - 12\hat{k}$.	(3)
Q.No.6	(a)	What assumptions are made by Laplace to calculate speed of sound in air?	(5)
	(b)	A man pushes a lawn mower with a 40 N Force directed at an angle of 20° downward from the horizontal. Find the work done by the man as he cuts a strip of grass 20 m long.	(3)
Q.No.7	(a)	How would you analyse Moment of Inertia with mass distribution and orientation? Also derive its formula for a rigid body.	(5)
	(p)	What should be the length of a simple pendulum whose period is 1 . 0 second at a place where $g = 9 \cdot 8 \text{ ms}^{-2}$? What is the Frequency of such a Pendulum?	(3)
Q.No.8	(a)	What is Carnot Engine ? Explain its working and calculate its efficiency.	(5)
	(b)	Water flows through a hose, whose Internal diameter is 1 cm at a speed of 1 ms ⁻¹ . What should be the diameter of the nozzle if the water is to emerge at 21 ms ⁻¹ .	(3)
Q.No.9	(a)	What is Simple Microscope ? Derive relation for its Magnifying Power.	(5)
	(b)	In a double slit experiment, the second order maximum occurs at θ = 0 . 25°. The Wavelength is 650nm . Determine the slit separation.	1.19501075

Bahawalpur Board-G-2-2024

Physics	(C)	L.K.No.1530	Paper Code No. 6476
Paper I	(Objective Type)	Inter (lst - A - Exam	- 2024)
Time :	20 Minutes	Inter (Part – I)	Group 2 nd
Marks :	17	Session (2022 – 24) & (2023 – 25)	

Note: Four choices A, B, C, D to each question are given. Which choice is correct fill that circle in front of that Question No. on the Objective Bubble Sheet. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

Q.No.1	A Paratrooper having :
(1)	(C) Acceleration (D) Zero Velocity pakcity.org
(2)	Kgm ² s ⁻² is the unit of: (A) Work (B) Force (C) Moment of Force (D) Both A and C
(3)	The sum of 2.7342,2.3,1.432 and 5.32 upto the correct decimal place is:
	(A) 11.78 (C) 11.786 (D) 11.7862
(4)	The angle between two vectors $2\hat{i} - 3\hat{j}$ and $3\hat{k}$ is : (A) 30° (B) 90° (C) 60° (D) 0°
(5)	Tidal Energy is due to Gravitational Pull of: (Moon (B) Sun (C) Earth (D) Mars
(6)	Acceleration of 1.5 ms ⁻² expressed in Km Hour ⁻² is :
	(A) 324 Km Hour ⁻² (D) 4 Km Hour ⁻² (C) 5400 Km Hour ⁻² (D) 4 Km Hour ⁻²
(7)	Distance covered by a freely falling body in 2 sec will be: (A) A.9m (B) 29.2 m (C) 19.6m (B) 44.1m
(8)	A man in an elevator descending with deacceleration will conclude that his apparent weight has :
	(A) Increased (C) Remain Constant (D) Reduced to Zero
(9)	When the bob of Simple Pendulum is at its dynamic equilibrium position , it has :
	(A) K.E (B) P.E and K.E (C) P.E (D) Both A and B
(10)	A two meter high tank containing water is hit by two bullets of same caliber at 1.5 m and 1 m above the
	ground, the speed of efflux is maximum for : (a) 1 m (b) 1.5 m (c) 0.5 m (D) 0.3 m
(11)	100° is equal to: (B) 1.7 rad (B) 16.5 rad (C) 1.82 rad (D) 1.75 rad
(12)	The distance from first antinode to 7 th node is equal to : (A) $\frac{10\lambda}{2}$ (B) 3λ (C) 7λ
(13)	The infrared light emitted from LED has a Wavelength :
	(E) 1.3 μm (B) 1.23 μm (C) 1.38 μm (D) 1 μm
(14)	The spacing between two adjacent dark fringes is :
	(A) $\frac{\lambda L}{2d}$ (C) $\frac{n\lambda}{d}$ (C) $\frac{n\lambda}{d}$
(15)	The Wavelength of the fundamental mode of vibration of a closed end pipe is :
	(A) 2 l (B) l (C) l/2 (D) 4 l
(16)	When the temperature difference between source and sink is Constant, then the efficiency will be:
	(A) Smaller (Remain Same (C) Greater (D) Zero
(17)	The Entropy of sand in a desert at night time will be :
	(D) Increases (B) Zero (C) Constant (D) Decreases

Roll No.
Physics
(Subjective)

 Inter (Part – I) Time 2:40 Hours Marks: 68

Group 2nd

Session
(2022 -24) & (2023 - 25)

Note: It is compulsory to attempt any (8 – 8) Parts each from Q.No. 2, Q.No.3 and attempt any (6) Parts from Q.No.4. Attempt any (3) Questions from Part – II. Write the Same Question Number and its Part Number as given in the Question Paper.

Bahawalpur Board-G-2-2024

Make Diagram where necessary.		where necessary.	(Part I)		22 x 2 = 44		
Q.No.2	(1)	Two sides of a rectangle		cm . Find the area of the plate	· .		
	(11)	What is a Light Year?					
	(111)	Write the dimensions of	f: (i) Pressure (ii) Den	sity.			
	(iv)	Time Period of a Simple	Pendulum is measured b	y a Stop Watch. What type of e	rrors are		
	1	possible in the Time Peri	fboi				
	(v)	If $\vec{A} - \vec{B} = \vec{0}$, what can	you say about the compo	nents of the two vectors?			
	(vI)	Can you add zero to a Ni					
	(vII)	Name three different co	nditions that could make	$\overline{A_1} \cdot \overline{A_2} = 0$			
	(viii)			lable Velocity? Define Accelera	ation.		
	(lx)	How Force and Moment	the second secon				
	(x)	Calculate Time of Flight	in case of a Projectile.				
	(xl)	How Power and Velocity	are related to each other	ir?			
	(xII)	What energy changes ar	e involved when a cup b	reaks into pieces?			
Q.No.3	(1)			he Law of Conservation of Angu	ular Momentum		
	(ii)			ionary Satellite are required for			
		Coverage of T.V. Transmission.					
	(111)	Differentiate between Tangential Velocity and Angular Velocity.					
	(iv)	Prove that v = rω					
	(v)	Explain the difference b	etween Laminar Flow and	d Turbulent Flow.			
	(vi)	Define Viscosity and Dra	g Force.				
	(vII)	What is meant by Phase	Angle? Does it define an	gle between maximum displace	ment and the		
		driving Force?		26			
	(vill)	Find the Time Period of	Simple Pendulum , if the	value of g Increases by 2 time	es.		
	(lx)	What do you mean by D	lamping ?	0			
	(x)	How are Beats Useful in	Tuning musical instrume	nts ?			
	(xi)	Explain the terms Crest	, Trough , Node and Anti	node.			
	(xii)	What is the effect of ten	nperature on Speed of Sc	ound ? Explain .			
Q.No.4	(1)	How would you manage	to get more orders of Sp	ectra using a diffraction grating	17		
	(11)	Write two uses of Miche	elson's Interferometer.				
	(111)	10,000 lines Per Centim	eter has been ruled on a	diffraction grating. Find its Grat	ing Element.		
	(lv)	How the light signal is to	ansmitted through the C	ptical Fibre?			
	(v)	What are the uses of Sp		STAN			
	(vI)	()		ocal Length acts as a magnifying			
	(vii)	Why does the pressure	of a gas in a car tyre incre	ases when it is driven through:	same distance?		
	(viii)	Give an example of natu	ral process that involves	an Increase in Entropy.	-		
	(lx)	Derive Boyle's Law from	n Kinetic Theory of Gases				

pakcity.org

(Part - II)

3 x 8 = 24

Q.No.5	(a)	When a ball is thrown with some initial velocity \mathbf{V}_i making an angle θ with the horizon. Discuss its Motion. Also derive relation for Height, Time of Flight and Range.	(5)
	(b)	What is the Unit Vector in the direction of Vector $\vec{A} = 4\hat{i} + 3\hat{j}$?	(3)
Q.No.6	(a)	Define Conservative Field and prove that work done is independent of the path followed by the body in Gravitational Field.	(5)
	(b)	The frequency of the note emitted by a stretched string is 300 Hz. What will be the frequency of this note when the length of the wave is reduced by one-third without changing the tension?	(3)
Q.No.7	(a)	What Is Simple Pendulum? Show that the motion of Pendulum is S.H.M. Also find relation for its Time Period and Frequency.	(5)
- restu tion	(b)	What is the least speed at which an Aeroplane can execute a vertical loop of 1.0 Km radius so that there will be no tendency for the pilot to fall down at the highest point?	(3)
Q.No.8	(a)	State and Prove equation of Continuity $A_1v_1 = A_2v_2$.	(5)
	(b)	A Heat Engine performs 100 J of work and at the same time rejects 400 J of heat energy to the cold reservoirs. What is the efficiency of the Engine?	(3)
Q.No.9	(a)	Describe in detail the construction and working of Michelson's Interferometer.	(5)
	(b)	A glass light pipe in air will totally internally reflect a light ray if its angle of incidence is at least 39°. What is the minimum angle for total internal reflection if pipe is in water. (Refractive Index of water = 1.33).	(3)

DG Khan Board-G-1-2024

PAPER CODE - 6475 TIME: 20 MINUTES PHYSICS 11th CLASS - 1st Annual 2024 **MARKS: 17 GROUP: FIRST OBJECTIVE** You have four choices for each objective type question as A , B , C and D . The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero marks in that question. **QUESTION NO. 1** The minimum velocity necessary to put a satellite into orbit is : (C) 7.4 Kms⁻¹ (D) 8.7 Kms⁻¹ (a) 7.9 Kms⁻¹ Stoke's law holds for bodies having: (B) Rectangular shape Spherical shape (D) All shapes (A) Oblong shape Product of time period and frequency is: (D) 2 Repakcity.org (B) π (1 (A) Zero The value of 'r' for monoatomic gas is: (C) 1.29 (B) 1.40 Laplace's formula for speed of sound is: (C) $\sqrt{P/p}$ (D) $\gamma P/p$ $(\bullet) \sqrt{\gamma P/p}$ (B) $\sqrt{E/p}$ The blue colour of sky is due to: (B) Diffraction Scattering (D) Polarization (A) Reflection Magnifying power of astronomical Telescope is : 7 (P) fo/fe (C) fefo (A) f_e/f_o Heat is form of: (C) Torque () Energy (A) Power (B) Momentum 9 Pascal is the unit of : (C) Tension (Pressure (A) Force 10 | SI unit of intensity of light is (Candela (B) Joule (C) Mole (A) Watt 11 1 giga is equal to: (B) 10¹² $() 10^9$ (D) 10¹⁸ $(A) 10^3$ 12 The magnitude of $\hat{i} \cdot (\hat{j} \times \hat{k})$ is: (D) i (B) 0 13 If A_x and A_y are both negative, the resultant vector will lie in ------ quadrant. (D) Fourth (B) Second (6) Third 14 A body having uniform acceleration of 10 ms⁻² has a velocity of 100 ms⁻¹. In what time its velocity will be doubled? (A) 7 S (D) 16 S (B) 14 S (**10** S The mass of an object is quantitative measure of its: (D) Velocity (A) Momentum (Inertia (C) Energy Work is negative when angle between \vec{F} and \vec{d} is : $(A) 0^{\circ}$ (B) 90° (**)** 180° 17 One revolution is equal to: (A) $\frac{\pi}{2}$ rad (B) π rad (6) 2π rad (PAPER CODE - 6475) 15 (Obi) - 1st Annual 2024

SEQUENCE - 3

DG Khan Board-G-1-2024 11th CLASS -- 1st Annual 2024

PHYSICS

TIME: 2 HRS 40 MINUTES

GROUP: FIRST

SUBJECTIVE PART

MARKS: 68

SECTION-I

QUESTION NO. 2 Write short answers to any Eight (8) of the following

16

- Does a dimensional analysis give any information on constant of proportionality that may apear in an algebraic expression? Explain. Give the drawbacks to use the period of a pendulum as a time standard. ii
- Find the uncertainty in the average value of these measurements 1.20, 1.22, 1.23, 1.19 iii
- Find the distance between Moon and Earth where the travel time of light from Moon to Earth is 1 min 20 sec. iv
- If one of the rectangular components of a vector is not zero. Can its magnitude be zero? Explain.
- vi Can a body rotate about its center of gravity under the action of its weight?
- If $F_1 = 3$ cm and $F_2 = 6$ cm. Let $\overline{F_1}$ is at angle 30° while $\overline{F_2}$ is lying at an angle of 120° w.r to X-axis vii respectively, then find their dot Product.
- What is the difference between uniform and variable velocity. Give S.I unit of acceleration. viii
- Why does a cricket player retrace his hands backward while catching? ix
- At what point or points in its path does a projectile have its minimum speed, its maximum speed? X
- When a rocket re enters the atmosphere, its nose cone becomes very hot. Where does this heat energy χi come from?
- Calculate the work done in Kilo joules in lifting a mass of 10 Kg through a vertical height of 10 m. xii

QUESTION NO. 3 Write short answers to any Eight (8) of the following

16

- What are natural satellites and artificial satellites?
- Define angular displacement and write its unit. ii
- A disc and a hoop start moving down from the top of an inclined plane at the same time. Which one will be iii moving faster on reaching the bottom?
- Show that $S = r\theta$ iv
- Explain the difference between laminar flow and turbulent flow. V
- Explain what do you understand by the term viscosity? vi
- Can we realize an ideal simple pendulum? vii
- What is meant by phase angle? Does it define angle between maximum displacement and the driving force? viii
- What is the total distance travelled by an object moving SHM in a time equal to its period, if its amplitude is A? ix
- Explain the terms node and anti-node. x
- Why does sound travel faster in solid than in gases? хi
- What are stationary waves? Explain. xii

QUESTION NO. 4 Write short answers to any Six (6) of the following

12

- How would you distinguish between un-polarized and plane-polarized lights?
- Can visible light produce interference fringes? Explain. ii
- Explain for which colour of light, the fringe spacing in double slit experiment will be maximum. iii
- Why would it be advantageous to use blue light with a compound microscope? iv
- How the power is lost in optical fibre through dispersion? Explain.
- In a compound microscope magnification of objective and eyepiece are 5 and 50 respectively. What is the total vi magnification of microscope?
- Why does the pressure of a gas in a car tyre increase when it is driven through some distance? vii
- What happens to the temperature of the room, when an air conditioner is left running on a table in the viii middle of the room?
- How process of Human metabolism can be explained, by the first law of thermodynamics. ix

SECTION-II

lata: At	ttempt any Three questions from this section 8 x 3 :	= 24
Q.5.(A)	What is vector product of two vectors? Why it is called cross product? Give its examples and	5
(B)	write down its characteristics.	3
	1000 Kg. The truck and the car move together after the impact. Calculate their common velocity. What is gravitational field? Show that gravitational field is a conservative field.	5
Q.6.(A) (B)	An organ Pipe has a length of 50 cm. Find the frequency of its fundamental note and the next harmonic when it is open at both ends. (Speed of sound = 350 ms ⁻¹)	-
Q.7.(A)	What is moment of inertia. Discuss the moment of inertia of a rigid body.	5
(B)		
Q.8.(A)	State and explain Bernoulli's equation.	5
(B)	A mechanical engineer develops an engine. Working between 327 °C and 27 °C and claims to have an efficiency of 52 %. Does he claim correctly ? Explain.	3
Q.9.(A)	How does the magnification of an object is determined by using compound microscope?	5
(B)	Sodium light λ = 589 nm is incident normally on grating having 3000 lines per centimeter. What is the highest order of the spectrum obtained with this grating?	3
	15 (Sub) — 1 st Annual 2024 開脚剛剛聯聯開閉	BARN

PAPER CODE - 6472 TIME: 20 MINUTES **PHYSICS** 11th CLASS - 1st Annual 2024 **MARKS: 17 GROUP: SECOND OBJECTIVE** - pakcity.org You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero marks in that question. **QUESTION NO. 1** Unit used for the factor $\sqrt{\frac{l}{q}}$ may be : (D) Radian Second (C) Kilogram (A) Meter 2 Solid angle is: (A) One dimensional (B) Two dimensional (C) Three dimensional (D) Four dimensional If the magnitude of \overline{A} . $\overline{B} = \frac{1}{2}AB$ then an angle between \overline{A} and \overline{B} is (A) 30° (**6**0° $\hat{i} \cdot (\hat{k} \times \hat{i})$ is equal to : (C) î (B) 1 Impulse has the same unit as that of: 5 (C) Mass (a) Momentum (B) Energy (A) Force When an object moves with constant acceleration, the velocity - time graph is (Straight line (D) Semi circle (B) Hyperbola (A) Parabola 1 Kilowatt is the unit of: (B) Work (A) Power The value of 'g' at the center of earth is: (A) infinite (B) 2 g (C) 3 g The expression for the angular momentum is: (D) $\overline{L} = \overline{r} \times \overline{p}$ (D) $\overline{L} = \overline{p} \times \overline{r}$. (B) $\bar{L} = \bar{p} \bar{r}$ The diastolic pressure of a normal healthy person in torr is: (B) 75-80 (C) 90 - 95 (D) 95 - 100 If time period of a simple pendulum is double, its length will be 11 (C) Three times (D) Two times (Four times (A) Eight times The value of 'r' for diatomic gas is: 12 (C) 1.29 (D) 1.73 () 1.4(B) 1.67 Open end of an organ pipe act as: (D) Trough (C) Crest (Antinode (A) Node The wavelength of X - rays is of the order of: (**)** 10⁻¹⁰ m (B) 10⁻¹⁰ cm (D) 10⁻¹⁰ dm (A) 10⁻¹⁰ mm Optical fibre is covered for the protection with: (D) Aluminum 🄏 pakcity.org (A) Glass (Plastic jacket (C) Copper The value of triple point of water is: (B) 273.16 F (e) 273.16 K (D) 273.16 K⁻¹ (A) 273.16 °C When hot and cold water are mixed, the entropy: 17 (Increases (C) Remains constant (D) Zero (A) Decreases 119 (Obj) – 1st Annual 2024 SEQUENCE – 1 (PAPER CODE - 6472)

DG Khan Board-G-2-2024

11th CLASS - 1st Appual 2024 DG Khan Board-G-2-2024

			.,	-0-	FX1111	uu.	
PHYSICS	回路河			HIHIII			TIME: 2 HRS 40 MINUTES
GROUP: SECOND		SUB	Commission of Spinish Spinish		and the contract of	-	 MARKS: 68

CECTION I

	pakcity.org	11
UE	STION NO. 2 Write short answers to any Eight (8) of the following	16
i	The length of a floor tile is 0.233 m while its breadth is 0.178 m. Find its area in significant figures.	
ii	What is the difference between random error and systematic error?	
iii	Why do we find it useful to have two units for the amount of substance, the Kilogram and the mole?	
iv	Write the dimensions of (i) Pressure (ii) Density	
v	If force \vec{F} of magnitude 10 N makes an angle of 30° with y – axis then find its x – component.	
vi	What does $\frac{\vec{A} \times \vec{B}}{AB \sin \theta}$ represent?	
vii	Can a vector have a component greater than the vector 's magnitude	
/iii		
	its average velocity ?	
ix	What is velocity time graph?	
x	Define impulse and show how it is related to linear momentum.	
vi	A 60 kg man runs up a long flight of stairs in 40 sec. The vertical height of the stairs is 4.5 m. Calculate his	

(a) Compressed spring (b) A moving car What sort of energy is in the following QUESTION NO. 3 Write short answers to any Eight (8) of the following

power output in watts .

16

Describe what should be the minimum velocity, for a satellite to orbit close to the Earth around it. Show that orbital angular momentum Lo = mvr ii Show that how many minimum number of geostationary satellites are required for global coverage iii of T.V transmission. Orbital speed of a satellite is 7.9 Kms⁻¹. Calculate its period. What are dimensions of AV, where 'A' is area and 'V' is velocity. iv A person is standing near a fast moving train. Is there any danger that he will fall towards it ? vi Why can we not realize an ideal simple pendulum? vii Explain a relation between total energy, potential energy and kinetic energy of a body oscillating with SHM. viii Does frequency depend on amplitude for harmonic oscillator ? ix Why does sound travel faster in solids than in gases? × How stationary waves are produced? хi

	(1)
xii	How do bats navigate food ?
QUE	STION NO. 4 Write short answers to any Six (6) of the following 12
i	An oil film spreading over a wet footpath shows colours Explain how does it happen? What is the difference between "Spherical wave front " and "plane wavefront"?
iii	What are the conditions to observe the interference of light waves? If a person was looking through a telescope at the full moon, how would the appearance of the moon be
v vi	changed by covering half of the objective lens. What will be the speed of light in water? (refractive index of water is 1.33) One can buy a cheap microscope for use of children. The images seen in such a microscope have coloured
vii	edges. Why is this so? Why the entropy of the system increases due to friction? Why does the pressure of a gas in a car tyre increase when it is driven through some distance?
viii ix	The oceans and our atmosphere contain large amount of heat energy but we cannot convert this energy into useful work. Why?
	CECTION II

SECTION-II

Note: A	ITELLINE GILLA LILLON ALL TOURS AND ALL TOUR	x 3 = 24
Q.5.(A)	Explain the addition of vector by rectangular components. Also write the main steps for addition.	5
(B)	A truck weighing 2500 Kg and moving with a velocity of 21 ms ⁻¹ collides with a stationary car weighing 1000 Kg. The truck and the car move together after the impact. Calculate their common velocity.	3
Q.6.(A)	What are stationary waves? How they generate in an air column?	5
(B)	A car of mass 800 kg at 54 km h ⁻¹ is brought to rest in 60 m. Find the average retarding force on the car. What has happened to its original kinetic energy?	3
Q.7.(A)	How would you Differentiate real weight with apparent weight on the basis of frame of reference, also elaborate the reading of the scale as apparent weight in case of movement of lift.	2+1+1+1
(B)	A block of mass 4.0 Kg is dropped from a height of 0.80 m on to a spring of spring constant K = 1960 N/m, find the maximum distance through which the spring will be compressed?	3
Q.8.(A)	What is terminal velocity? Show that terminal velocity of fog droplet is directly proportional to the square of its radius.	5
(B)	A heat engine performs 100 J of work and at the same time rejects 400 J of heat energy to the cold reservoirs. What is the efficiency of the engine?	3
Q.9.(A)	Explain the diffraction of $X - rays$ by crystal and derive Bragg's law. What are the uses of diffraction of $X - rays$?	5
(B)	An astronomical telescope having magnifying power of 5 consists of two thin lenses 24 cm apart. Find the focal lengths of these lenses.	3

SAHIWAL BOARD

Physics	
Session	

(Inter Part - I, Group - I, Paper Code: 6475) Objective

Time: 20 Minutes Marks: 17

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number with marker or pen. Cutting of filling

1.	7	result in zero mark in that		
	(a) Polarization	(b) Magnification		/J\ D.Otion
2.		ter surface shows colour	(c) Transmission	(d) Reflection
	(a) Diffraction	(b) Interference	(c) Polarization	(d) Reflection
3.	Velocity of sound it		(C) Folarization	(a) Kellection
	(a) 332ms ⁻¹	(b) 224 ms ⁻¹	(c) 76 ms ⁻¹	(d) Zero ms ⁻¹
4.	If the pressure of g	is is doubled, then speed		(a) z.cro ma
	(a) Doubled	(b) Not changed	(c) Half	(d) Increased 4 times
5.	The wave form of S		(-)	(d) more
	(a) Square wave	(b) Saw tooth wave	(c) Sine wave	(d) Random wave
6.	The maximum drag	force on falling sphere i		
×.	(a) IN	(b) 9.8N	(c) 19.8N	(d) 980N
7.	A rev min' is equal			*
	(a) $\pi/30 \ rad \ s^{-1}$	(b) $\pi / 6 \ rad \ s^{-1}$	(c) $\frac{\pi}{15}$ rad s^{-1}	(d) $\pi/20 \ rad \ s^{-1}$
3.	Which is correct re	lation?	*	P SER
	(a) $v = w \times r$	(b) $v = w.r$	(c) W = Wx r	(d) $v = r \times w$
		amount of energy direc	The Course	(4)
	(a) Wind	(h) Sun		(d) Water
0.	The slope of velocit	y-time graph gives!	(c) Moon	(d) water
	(a) Speed	(b) Torque	(c) Displacement	(d) Acceleration
1.	, e, e, e, e,	ed by a body in time 't' s		(u) Acceleration
4		KIN .		The state of the state of
	(a) at^2	(b) v ² t	(c) $\frac{a^2t}{2}$	(d) $\frac{at^2}{2}$
	W.		Annata Hawaria	2
2.	Which is vector qua (a) Length	(b) Volume	(c) Work	(d) Valacity
3.	Distriction of the second second			(d) Velocity
٥,		ing same effect as all the	the many of the second	er volumi 20 - Senting of the True - True
ui Uit	(a) Equal vector	(b) Resultant vector	(c) Position vector	(d) Unit Vector
4.		tainty in radius of a spl	here is 2%, then total t	incertainty in the volu
	is: (a) 6%	(b) 2%	(c) 4%	(d) 8%
5.	7.5	number of significant d		(C) 2.44
*	(a) Four	(b) Two	(c) Three	(d) Seven
ř.	A C III. II.	1884 - MAN - 191	(c) Timee	(u) seven
i.	Entropy of an irrev	CERTIFICATION CONTROL OF THE	5.	1
	(a) Increases	(b) Decreases	(c) Remains same	(d) None of these
L.	If 32 Joule work is	done by absorbing hea	t of 42 Joule, change i	n internal energy is:
	(a) $\Delta U = 74J$	(b) $\Delta U = 10J$	(c) $\Delta U = \frac{21}{9}J$	(d) $\Delta U = \frac{8}{21}J$

Roll No. Sahiwal Board-G-1-2024

(To be filled in by the candidate)

Physics

Paper: I Group: Ist

H.S.S.C (11th)1st-Annual-2024

Objective - (i)
Paper Code 6 4

Inne: 20 Minutes

Marks: 17

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

TIII (he circles. Cutting or filling up two or more	circles will res CTION – A	- V	🖁 pakcity.org 🐉	
Q.1		A	B	6	D
1.	In 8.70×10 ⁴ kg has number of significant digits:		Two	Three	Seven
2.	If percentage uncertainty in radius of a sphere is 2% then total uncertainty in the volume is:		2%	4%	8%
3.	A single vector having same effect as all	Equal vector	Resultant	Position .	Unit vector
	the original vectors taken together is:		vector	vector	
4.	Which is vector quantity?	Length	Volume	Work	Velocity
5.	The distance covered by a body in time 't' starting from rest is:	at ²	v ² t	$\frac{a^2t}{2}$	$\frac{at^2}{2}$
6.	The slope of velocity-time graph gives:	Speed	Torque	Displacement	Acceleration
7.	Earth receives large amount of energy directly from:	Wind	Sun	Moon	Water
8.	A rev min ⁻¹ is equal to:	π/30 rad s-1	π/6 rad s ⁻¹	$\frac{\pi}{15}$ rad s^{-1}	$\pi/20 \ rad \ s^{-1}$
9.	Which is correct relation?	$\vec{v} = \vec{w} \times \vec{r}$	$\vec{v} = \vec{w} \cdot \vec{r}$	$\vec{w} = v \times \vec{r}$	$\vec{v} = \vec{r} \times \vec{w}$
10.	The maximum drag force on falling sphere is 9.8 N, its weight is:	1 N	9.8 N	19.8 N	980 N
11.	The wave from of SHM is:	Square wave	Saw tooth wave	Sine wave	Random wav
12.	If the pressure of gas is doubled, then speed of sond is:	Doubled	Not changed	Half	Increased 4
13	Velocity of sound in free space is:	332ms-1	1 224ms-1	76ms-1	Zero ms-1
14.		Diffraction	Interference	Polarization	Dispersion
15.	The ratio of size of image to the size of obejct is called:	Polarization	Magnification	Fransmission	Reflection
16.	Entropy of an irreversible process:	Increases	Decreases	Remains same	None of these
17.	absorbing heat of 42 joule, change in internal energy is:		ΔU=10J	$AU = \frac{21}{8}J$	$\Delta U = \frac{8}{21}.$

Sahiwal Board-G-1-2024

pakcity.org

2. Write short answers to any EIGHT parts.

The period of simple pendulum is measured by a stop watch. What type of errors are possible in the î. time period?

Write down the dimensions of n. b) density a) pressure

111. What is the light year and write down its units?

IV. Write down any two rules for rounding off the significant figures.

٧. Can you add zero to a null vector?

The vector sum of three vectors gives a zero resultant. What can be the orientation of the vectors? Vi.

vii. What is the moment of a force about the point lying on the axis of rotation?

An object is thrown vertically upward. Discuss the sign of acceleration due to gravity, relative to VIII. velocity, while the object is in air.

ix. What is meant by instantaneous acceleration? Write down its formula.

Show that $F = \frac{\Delta P}{}$ X.

xi. How energy can be obtained from sea tides? Explain

When a rocket re-enters the atmosphere, its nose cone becomes very hot. Where does this heat XII. energy come from?

3. Write short answer to any EIGHT parts.

i, During circular motion with constant speed, body's velocity is northward. After time \(\Delta \) its velocity is westward. What will be the direction of centripetal force? Explain with vector diagram.

ii. Explain the difference between tangential velocity and angular velocity.

m. What is meant by moment of inertia? Explain its significance.

Show that orbital angular momentum Lo-myr IV.

Why fog droplets appear to be suspended in air? ٧.

Vi. What is the difference between laminar flow and turbulent flow?

VII. Find the angular velocity of a point on the earth's equator as a result of earth's rotation.

VIII. A simple pendulum has time period 2s with amplitude 0.10m. Find its maximum acceleration.

ix. Name two characteristics of simple harmonic motion.

X. Does frequency depend on amplitude for harmonic oscillators?

xi. State law of reflection for transverse waves.

What features do longitudinal waves have in common with transverse waves? XII.

4. Write short answer to any SIX parts.

How would you manage to get more orders of spectra using a diffraction grating?

What do sugar and tartaric acid show when they are in solution and why? ii.

How did Michelson measure the length of a standard metre? 111.

What will be the angular magnification of telescope having an objective of focal length of 20cm and iv. an eye piece of 4.0cm, both convex lenses.

Describe the function of repeaters and photodiode in signal transmission? V.

A magnifying glass gives a live-times enlarged image at a distance of 25 cm from the lens. Find VI. focal length using ray diagram.

Why do we keep pressure or volume constant to study the effect of heating gases? vii.

A thermo flask containing milk as a system is shaken rapidly. Does the temperature of milk rise? viii.

Why the internal energy is similar to gravitational potential energy? Explain ix.

SECTION - II Attempt any THREE questions. Each question carries 08 Marks.

5. (a) Discuss vector addition of a number of coplanar vectors by rectangular components.

A bomber dropped a bomb at a height of 490m when its velocity along horizontal was 300kmh. How long was it in air?

6. (a) Derive an expression of Laplace's correction for speed of sound in air. Is this correction close to experimental value?

A car of mass 800kg travelling at 54kmh⁻¹ is brought to rest in 60 metres. Find the average retarding (b) force on the car.

7.(a) Define and explain centripetal force and derive the relation for it.

A block of mass 4.0kg is dropped from a height of 0.80m onto a spring of spring constant K=1960 (b) Nm⁻¹. Find the maximum distance through which the spring will be compressed.

8.(a) Define and explain the velocity at which the water droplets attain the dynamic equilibrium in air.

Calculate the entropy change when 1.0kg ice at 0° C melts into water at 0° C. Latent heat of fusion (b) of ice $L_f = 3.36 \times 10^3 \text{J kg}^{-1}$.

9. (a) In fibre optic communication system, explain signal transmission and conversion to sound.

A light is incident normally on a grating which has 2500 lines per centimetre. Compute the wavelength of a spectral line for which the deviation in second order is 15.0°.

Sahiwal Board-G-2-2024

Roll No.

(To be filled in by the candidate)

Physics Paper: I

Group: II

H.S.S.C (11th)1st-Annual-2024

Time: 20 Minutes

Marks: 17

Objective-(iv) Mai Paper Code 6 4 7 8

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in you answer book. Use marker or pen to sit the circles. Cutting or filling up two or more circles will result no mark.

fill th	ne circles. Cutting or filling up two or more circle	the same of the sa	mark.	pakcity.org		
		<u>ON – A</u>		bakerty.org		
Q.1	Questions	A	B	C	U Vicatio	
1.	Which one is constant for a satellite in	1500 150 103 DIGWINES NO. 1500 -	Velocity	Angular	Kinetic	
	orbit:	energy		momentum	energy	
2.	The ratio of moment of inertia of a solid	1_	1	$\frac{2}{5}$	2	
	cylinder and thin ring is:	2	4	5	1	
3.	A fog droplet of radius "r" falls in air with		$4v_{i}$	2v,	ν_{l}	
	terminal velocity ve if the radius of the droplet	1				
	become "2r". Then terminal velocity is:		_			
4.	If the suspended mass of pendulum is		Becomes	Remains	1.414 times	
	doubled then its time period:	double	half	unchanged	increased	
5.	The distance between two consecutive	$\frac{\lambda}{2}$	$\frac{\lambda}{\lambda}$	2λ	4λ	
	nodes or antinodes is:	2	4			
6.	When a wave is travelling in a denser	0	π	π	2π	
	medium incident on a rare medium, the		$\frac{\pi}{2}$			
	reflected wave undergoes a phase change of:					
7.	The transverse nature of light is	Interference	Polarization	Diffraction	Beats	
	confirmed by the phenomenon of:		(13)			
8.	Final image formed in compund			Real and	Real and	
	microsope is:	erect	inverted •	inverted	erect	
9.	The mean square velocity of the gas	\bigcirc 3T	KT	2KT	3KT	
	molecule is given by:	$\sqrt{2K}$	V m	\sqrt{m}	m	
10.	If a heat engine has 65% efficiency, then $\frac{T_2}{T_1}$ =	0.5	0.45	0.35	0.25	
11.	1 watt hour =	3.6 J	3.6 MJ	3.6×10 ⁸ J	3.6×10 ³ J	
12.	If the mass of the body is increased to four		1 5/4			
	times while the force is kept constant, then	One Half	Doubled	One Fourth	Four Times	
	acceleration in body will become:					
13.	The range of projectile at 60° is the same as that angle:	pa30°it	rg 45°	90°	120°	
14.	Vectors A and B of magnitudes 4 N and 3 N make an angle of 30° and 60° with x-axis respectively. The scalar product of the two vectors:		7 N	10 N	6 N	
15	Two forces act together on an obect. The	180°	90°	450°	00	
10.	magnitude of their resultant force is	1				
	minimum when they act at:	_				
16.	Which the given quantity has different	Work	Energy	Pressure	Torque	
- • •	dimensisons?					
17.	Time for 20 vibrations of a simple pendulum					
	is 40.25 sec measured by a stop watch of	±2.01	±0.05	±0.003	±0.005	
	accuracy up to 0.1 sec. The absolute					
	uncertaintry in the time period is:					

Sahiwal Board-G-2-2024

- Write short answers to any EIGHT parts.
 Why do we find it useful to have two units for the amount of substance, the kilogram and the mole? 2.
- Name several repetitive phenomena occurring in nature which could serve as reasonable time standards ing in nature wilder random and systematic error? il standards nit.
- h) torque IV. Write down dimensions of a) work
- If A + B = 0, what can you say about the components of the two vectors? ¥ .
- Can a body rotate about its centre of gravity under the action of its weight? 11
- 111 What is the position vector? Explain.
- Explain the circumstances in which the velocity v and acceleration u of a car are VIII
 - b) a is zero but v is not zero. a) v is zero but a is not zero.
- At what point or points in its path does a projectile have its minimum speed, its maximum speed. IX. If we draw a graph between velocity and time, how can you find the distance and acceleration from
- X.
- A boy uses a catapult to throw a stone which accidentally smashes a greenhouse window. List the MI. What is salter's duck? Explain. NII. possible energy changes.
- 3. Write short answer to any EIGHT parts.
- What is meant by moment of inertia? Explain its significance.
- How many radians are there in 2 degree? H. Show that orbital angular momentum, Lo=mvr
- What is the difference between real and apparent weights? iv.
- Explain, how the swing is produced in a fast moving cricket ball? ٧.
- What are three conditions which fluid must satisfy to study its motion? VI.
- VII. Can we realize an ideal simple pendulum?
- Show that in SHM the acceleration is zero when the velocity is greatest and the velocity is zero when viii. the acceleration is greatest.
- ix. If spring is cut into two equal halves, what will be spring constant of each part?
- What features do longitudinal waves have in common with transverse waves?
- Xi. As a result of a distant explosion, an observer senses a ground tremor and then hears the explosion? What is period of 300 cycles per second of sound waves? Explain the time difference.
- 4. Write short answer to any SIX parts.
- i. Can visible light produce interference fringes? Explain.
- 11. Why a fringe is shifted when mirror is shifted through $\lambda/2$ in Michelson interferometer.
- 111 Why longitudinal waves do not show polarization?
- IV. Why is it preferred to use the lens of small focal length for high angular magnification?
- ٧. One can buy a cheap microscope for the use of children. The image seen in such a microscope have coloured edges. Why is this so? vi. What do you understand by axial ray? How does it travel?
- VII. Can Boyle's law be derived by Kinetic Molecular theory? If so, explain.
- VIII. Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why?
- ix. Why is it not possible to utilize the hear contents of oceans and atmosphere?

SECTION - II

Attempt any THREE questions. Each question carries (8) Marks.

- 5.(a) What is meant by rectangular components? Explain addition of two vectors by rectangular components.
- Prove that for angles of projection, which exceed or fall short of 45° by equal amounts, the ranges (b)
- (a) If a body of mass 'm' is dropped from height 'h' as shown, discuss the interconversion of energies 6. during its motion.

- An organ pipe has a length of 50 cm. Find the frequency of its fundamental note and the next (b) harmonic when it is closed at one end.
- (a) What is meant by centripetal force? Derive relations for centripetal force and centripetal 7. acceleration.
- A block of mass 4.0 kg is dropped from a height of 0.80 m onto a spring of spring constant K-1960 (b) Nm⁻¹, find the maximum distance through which the spring will be compressed
- (a) Define molar heat capacity and prove that Cp-Cy-R 8.
- How large must a heating duct be if air moving 3.0 ms along it can replenish the air in a room of (b) 300 m; volume every 15 min? Assume the air's density remains constant.
- (a) How would you derive the equation of magnification of compound microscope accompanied by 9. ray diagrammatic explanation? Also, give two points to resolve the details of an image
 - (b) X-rays of wavelength 0.150 nm are observed to undergo a first order reflection at a Bragg angle of 13.3° from a quartz crystal. What is the interplanar spacing of the reflecting planes in the crystal?