Roll No

(To be filled in by the candidate)

MATHEMATICS

(Academic Sessions 2020 - 2022 to 2023 - 2025)

Q.PAPER - I (Objective Type)

224-1st Annual-(INTER PART – I)

Time Allowed: 30 Minutes

GROUP-I Maximum Marks: 20

PAPER CODE = 6195

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

	two or more circles will resul	t in zero mark in that quest		cook. Cutting or mining
1-1	Rank of the matrix $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$	is:		
	(A) 0	(B) 1 •	(C) 2	(D) 3
2	The fraction $\frac{x+1}{x^2+2}$ is	:		
	(A) Improper fraction	(B) Proper fraction	(C) Identity	(D) Mixed
3	The multiplicative invers	se of (1,0) is:		
	(A) (1,0)	(B) (0,1)	(C) $(-1,0)$	(D) (0,-1)
4	The roots of $2x^2 - 7x + 3$	=0, are:	(1/2)	
	(A) Equal	(B) Complex	(C) Irrational	(D) Rational
5	The value of $(-i)^9$ is:	W.C.		
	(A) -1	(B) 1 (b)	(C) i	(D) −i •
6	If A is a square matrix of	f order 3 and $ A =2$,	then $ 2A = :$	
	(A) 16 •	(B) 8	(C) 6	(D) 2
7	The number of elements	of the power set of A =	$= \{a, \{b, c\}\}$ are	:
	(A) 2	(B) 4 CATO	(C) 6	(D) 8
8	If $A \subseteq B$, then:	Accorda Newton's Vision Strangle Say Mellon	32/	
	$(A) A \cup B = A$	(B) $A \cap B = B$	(C) $B \cup A = A$	(D) $A \cup B = B$
9	If ω is a cube root of un	nity, then value of $(1+a)$	$(\omega - \omega^2)^3$ is:	
	(A) 8ω	(B) $8\omega^2$	(C) −8 ●	(D) 8
10	The converse of $\sim p \rightarrow 0$	q is:		
	(A) $p \rightarrow q$	(B) $p \rightarrow \sim q$	(C) $\sim q \rightarrow p$	(D) $q \rightarrow \sim p$
11	$\cos 2\theta =$:			
	(A) $1-\sin^2\theta$	(B) $1-2\sin\theta$	$(C) \bullet 1 - 2\sin^2\theta$	(D) $2\sin^2\theta - 1$
12	The G.M. between $\frac{1}{a}$ a	nd $\frac{1}{b}$ is :		
	(A) $\pm \sqrt{ab}$	(B) $\pm \frac{1}{ab}$	(C) $\pm \sqrt{\frac{1}{ab}}$	(D) ab

Vab

			(2)		@ P-	
1-13	If $\cos x = -\frac{\sqrt{3}}{2}$, then the	refere	nce angle is:			:
	(A) $\frac{\pi}{3}$	(B)	$\frac{\pi}{6}$	(C)	$-\frac{\pi}{3}$	(D) $-\frac{\pi}{6}$
14	If $\sin \theta < 0$ and $\cot \theta > 0$, ther	θ lies in quadran	t :		
	(A) IV	(B)	III •	(C)	II	(D) I
15	The value of $\sin^{-1}(\cos\frac{\pi}{6})$	-) is e	equal to:			
	(A) $\frac{\pi}{3}$	(B)	$\frac{\pi}{6}$	(C)	π	(D) $\frac{3\pi}{2}$
16	The relation between A ,	G, H	is:	1000	·	
	(A) $G^2 = AH \bullet$	(B)	$H^2 = AG$	(C)	$A^2 = HG$	(D) $A > G < H$
17	The number of terms in	the ex	cpansion of $(a+x)$	$)^n$ is	:	
	(A) n-1	(B)		(C)	n + 2	(D) n + 1
18	$\sqrt{\frac{s(o-c)}{ab}} = :$	Jan				
	(A) $\cos \frac{\alpha}{2}$	(B)	sin 2 Angel And On Method Land Method Parts of P	(C)	$\cos\frac{\gamma}{2}$	(D) $\sin \frac{\gamma}{2}$
19	A die is thrown, what is	the pr		dots:		
	$(A) \frac{1}{6} \bullet$	(B)	pakcity.org	(C)	$\frac{1}{2}$	(D) $\frac{2}{3}$
20	The period of $\cos \frac{x}{6}$ is	:				

Please visit for more Download PDF at: www.pakcity.org 24-224-I-(Objective Type)- 11875 (6195)

(C) 6π

(D) 12π

(B) 3π

(A) 2π

Koll No (To be filled in by the candidate) (Academic Sessions 2020 - 2022 to 2023 - 2025) **MATHEMATICS**

224-1st Annual-(INTER PART - I)

Time Allowed: 2.30 hours Maximum Marks: 80

PAPER – I (Essay Type)

GROUP-I SECTION-I

2. Write short answers to any EIGHT (8) questions :

16

- (i) Write the symmetric property and transitive property of equality of the real numbers.
- (ii) Show that $z\bar{z} = |z|^2 \ \forall z \in C$
- (iii) Find out real and imaginary parts of $(\sqrt{3}+i)^3$
- (iv) Find the modulus of $1-i\sqrt{3}$
- (v) Construct truth table for $(p \land \sim p) \rightarrow q$
- (vi) If a, b are elements of a group G, then show that $(ab)^{-1} = b^{-1}a^{-1}$
- (vii) If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b.
- (viii) If A and B are square matrices of the same order, then explain why in general $(A - B)^2 \neq A^2 - 2AB + B^2$.
- (ix) Define skew-hermitain matrix.
- (x) Evaluate $\omega^{28} + \omega^{29} + 1$
- (xi) When $x^4 + 2x^3 + kx^2 + 3$ is divided by x 2, the remainder is 1. Find the value of k.
- (xii) If α, β are the roots of $x^2 px p = 0$, prove that $(1+\alpha)(1+\beta) = 1-c$

3. Write short answers to any EIGHT (8) questions :

16

- (i) Define partial fractions. (ii) If $\frac{7x+25}{(x+3)(x+4)} = x+3 + \frac{B}{x+4}$, then find B.
- (iii) Find the number of terms in A.P if $a_1 = 3$; d = 7 and $a_n = 59$
- (iv) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P., show that common ratio is $\pm \sqrt{\frac{a}{c}}$
- (v) Find the sum of $\frac{9}{4} + \frac{3}{2} + 1 + \frac{2}{3} + \frac{-\infty}{\text{bakcity.org}}$
- (vi) If 5 is H.M. between 2 and b, then find b.
- (vii) Write $\frac{(n+1)(n)(n-1)}{3 \ 2 \ 1}$ in factorial form.
- (viii) Prove that ${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1}$
- (ix) Determine probability of getting 2 heads in two successive tosses of balanced coin.
- (x) Show that $8.10^n 2$ is divisible by 6 for n = 1 and n = 2
- (xi) Find the 6th term in the expansion of $\left(x^2 \frac{3}{2r}\right)^{10}$
- (xii) Using binomial theorem, find value of $\sqrt[3]{65}$ correct to three places of decimal.

4. Write short answers to any NINE (9) questions :

- (i) Verify $\tan 2\theta = \frac{2 \tan \theta}{1 \tan^2 \theta}$ for $\theta = 45^\circ$
- (ii) Prove the identity $\frac{1+\cos\theta}{1-\cos\theta} = (\cos ec\theta + \cot\theta)^2$
- (iii) If α , β and γ are the angles of triangle ABC then prove that $\tan(\alpha + \beta) \tan \gamma = 0$
- (iv) Express as product $\cos 6\theta + \cos 3\theta$
- (v) Prove that $1 + \tan \alpha \tan 2\alpha = \sec 2\alpha$
- (vi) Prove that period of cosine is 2π
- (vii) Find the period of $\cos ec 10x$
- (viii) Draw the graph of the function $y = \cos x$, $xt \left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$
- (ix) Write formula for $\cos \frac{\alpha}{2}$ and $\cos \frac{\gamma}{2}$
- (x) Measure of two sides of a triangle are in the ratio 3:2 and angle including these sides is 57°. Find the remaining two angles.
- (xi) Define circum centre.
- (xii) Without using calculator / table, show that $2\cos^{-1}\frac{4}{5} = \sin\frac{24}{5}$ (xiii) Solve the trigonometric equation $\cos ec^2\theta = \frac{4}{3}$ SECTION II : Attempt any THREE questions.

- 5. (a) Show that $\begin{vmatrix} a+\lambda & b & c \\ a & b+\lambda & c \\ a & b & c+\lambda \end{vmatrix} = \lambda^2 (a+b+c+\lambda)$ 5
- (b) If the roots of the equation $x^2 px + q = 0$ differ by unity, prove that $p^2 = 4q + 1$ 5
- 6. (a) Resolve $\frac{1}{(x-3)^2(x+1)}$ into partial fractions 5
 - (b) Find n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the A.M. between a and b 5
- 7. (a) Two dice are thrown. E_1 is the event that the sum of their dots is an odd numbers and E_2 is the event that 1 is the dot on the top of the first die. Show that $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$ 5
 - (b) If $y = \frac{1}{3} + \frac{1.3}{2!} \left(\frac{1}{3}\right)^2 + \frac{1.3.5}{3!} \left(\frac{1}{3}\right)^3 + ---$ prove that $y^2 + 2y 2 = 0$ 5
- 8. (a) Reduce $\sin^4 \theta$ to an expression involving only function of multiple of θ , raised to the first power.
 - (b) Prove that $\Delta = r^2 \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$ 5
- (a) Find the values of all the trigonometric functions of the angle -675° . 5
 - (b) Prove that $\sin^{-1}\frac{5}{12} + \sin^{-1}\frac{7}{25} = \cos^{-1}\frac{253}{325}$ 5

5

Roll No			(To be filled in by the	
	HEMATICS (A) ER – I (Objective Type)	cademic Sessions 2020		5) e Allowed:30 Minute
Q.I AI	LK-1 (Objective Type)	GROUP – II		simum Marks: 20
		PAPER CODE =		
Note:	Four possible answers A, B fill that circle in front of the			
	two or more circles will res			or book. Cutting or mining
1-1	If A is a matrix of ord	ler 2×3 , then order o	f A'A is:	
	(A) 3 × 3	(B) 2 × 3	(C) 3 × 2	(D) 2 × 2
2	The equation $x(x-1)$:	$= x^2 - x$ is :		
	(A) Conditional	(B) Identity	(C) Exponential	(D) Radical
3	The multiplicative inve	erse of -i is:		
	(A) (1,-1)	(B) $(0, -1)$	(C) (0,1)	(D) (1,0)
4	If ω is a cube root of	unity, then $(1+\omega+\omega^2)$) ⁸ = :	
	(A) 0 •	(B) 256	(C) 256	(D) $256\omega^2$
5	Which of the following	sets has closure prope	erty w.r.t. addition:	
	(A) { 1 }	(B) { 0 }	(c) {0,1}	(D) { 1, -1 }
6	If $ A = 9$, then $ A^t $	is:		
			(0)	(D) 0
	(A) 81	(B) 1 0 0	(C) =9	(D) 9 •
7	The converse of p	q is/:	30//	
	$(A) \sim p \rightarrow \sim q$	(B) $\sim q \rightarrow p$	(C) $q \rightarrow p$	(D) $p \rightarrow \sim q$
8	If $A = \{\}$, then the pow	er set of A is:		
	(A) φ	(B) {0}	(C) { }	(D) $\{\phi\}$
9	rc al+r o al	pakcity.or		
9	If $4^{1+x} = 2$, then $x = :$	parcity.or	9	_
	(A) 0	(B) -2	(C) $-\frac{1}{2}$	(D) $\frac{1}{2}$
10	If $A \cap B = A$, then:			Company of the Compan
10	**		(0)	(D) D 4 4
		(B) A ⊆ B •	(C) $A \cup B = A$	(D) $B \cup A = A$
11	$\sin\left(270^\circ + \theta\right) = :$			
	(A) $\sin \theta$	(B) $\cos \theta$	(C) − cos θ	(D) $-\sin\theta$
12	Which cannot be the ter	rm of a G P :		
	(A) 1	(B) -1	(C) 0	(D) i

1-13	If $\sin x = -\frac{\sqrt{3}}{2}$, then the	e reference	angle is:	
	$(A) -\frac{\pi}{6}$	(B) $\frac{\pi}{6}$	(C) $-\frac{\pi}{3}$	(D) $\frac{\pi}{3}$
14	Which angle is quadrar	ital angle	•	
	(A) 45°	(B) 60°	(C) 120°	(D) 270°
15	With usual notation, $\frac{a}{2}$	$\frac{bc}{R}$ = :		
	(A) r	(B) r ₁	(C) A	(D) r_2
16	H.M. between 3 and	7 is :		
	(A) 5	(B) $\sqrt{2}$	$\overline{1}$ (C) $\pm \sqrt{21}$	(D) $\frac{21}{5}$
17	The number of terms in	the expan	usion of $(a+x)^n$ is:	
	(A) n-1	(B) n	(C) n+2	(D) n + 1 ●
18	The period of $\cos 2x$ is			
	(A) π •	(B) 2π	DUCATION (C) 4π	(D) $\frac{\pi}{2}$
19	If $r = n$, then ${}^{n}C_{r} = :$		Accessed a Neithford's triangle Lass Motion Fiscal	
	(A) 0	(B) 1	pakcity.org (C) n	(D) n!
20	$\sin^{-1}(0) + \cos^{-1}(0) = :$			
	(A) 0	(B) $\frac{\pi}{2}$	$ (C) \frac{\pi}{3} $	(D) $\frac{\pi}{4}$

Please visit for more Download PDF at: www.pakcity.org 25-224-II-(Objective Type)- 11750 (6196)

pakcity.or (To be filled in by the candidate)

MATHEMATICS

(Academic Sessions 2020 - 2022 to 2023 - 2025) 224-1st Annual-(INTER PART - I)

PAPER – I (Essay Type)

GROUP - II

Time Allowed: 2.30 hours Maximum Marks: 80

SECTION-I

2. Write short answers to any EIGHT (8) questions :

16

- (i) Show that $z^2 \overline{z}^2$ is a real number.
- (ii) Find the modulus of $1-i\sqrt{3}$
- (iii) Simplify by justifying each step $\frac{\frac{1}{4} + \frac{1}{5}}{\frac{1}{1} \frac{1}{1}}$
- (iv) Check the closure property w.r.t. addition and multiplication for the set $\{0, -1\}$
- (v) Determine whether the statement $p \land \sim p$ is tautology or not.
- (vi) Define semi-group.

(vii) If
$$A = \begin{bmatrix} 1 \\ 1+i \\ i \end{bmatrix}$$
, find $A(\overline{A})^{t}$

(viii) Define reduced echelon form of a matrix, with example,

(ix) If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$
, verify that $(A^{-1})^t = (A^t)^t$
(x) Discuss nature of roots of $9x^2 - 12x + 4 = 0$

- (xi) Solve the equations $x^2 + y^2 = 5$, $2x^2 + 3y^2 = 6$
- (xii) Find the condition that one root of $x^2 + px + q = 0$ is square of other.

3. Write short answers to any EIGHT (8) questions :

16

- (i) Define proper rational fraction.
- (ii) For the identity $\frac{1}{(x-1)(2x-1)(3x-1)} = \frac{A}{x-1} + \frac{B}{2x-1} + \frac{C}{3x-1}$ calculate the value of A.
- (iii) Find the next two terms of 1, 3, 7, 15, 31, ----
- (iv) How many terms are there in the A.P. in which $a_1 = 11$, $a_n = 68$, d = 3
- (v) Find three A.Ms between $\sqrt{2}$ and $3\sqrt{2}$. (vi) Find the 12th term of 1 +i, 2i, -2 + 2i, ----
- (vii) Show that ${}^{16}C_{11} + {}^{16}C_{10} = {}^{17}C_{11}$
- (viii) Evaluate ${}^{12}C_3$
- (ix) What is sample space and events?
- (x) State principle of mathematical induction.
- (xi) Calculate (9.98)⁴ by means of binomial theorem.
- (xii) Prove that $n! > 2^n 1$ for n = 4,5

4. Write short answers to any NINE (9) questions :

18

- (i) What is length of an arc intercepted on a circle of radius 14 cm by the arms of a central angle 45°?
- (ii) Convert 54° 45' into radians.

(Turn Over)

5

5

5

5

5

5

- **4.** (iii) If α, β, γ are angles of triangle ABC then prove that $\cos\left(\frac{\alpha+\beta}{2}\right) = \sin\frac{\gamma}{2}$
 - (iv). Find the value of $\cos \frac{\pi}{12}$
 - (v) Express $\sin(x+30^\circ) + \sin(x-30^\circ)$ as a product.
 - (vi) Define periodic function and period of trigonometric function.
 - (vii) Find period of $\cos \frac{x}{6}$
 - (viii) Draw the graph of $y = \sin x$ from 0 to π .
 - (ix) State law of sines.
 - (x) If sides of triangle are 16, 20, 23, find its greatest angle.
 - (xi) Show that $r_1 = s \tan \frac{\alpha}{2}$
 - (xii) Find value of $\cos \left(\sin^{-1} \frac{1}{\sqrt{2}} \right)$
- (xiii) Show that $\tan \left(\sin^{-1} x\right) = \frac{x}{\sqrt{1-x^2}}$ SECTION – II

 Attempt any THREE questions.

 5. (a) Solve the system of equations by Cramer's rule: 2x + 2y + z = 3 3x - 2y - 2z = 1

$$2x + 2y + z = 3$$

$$5x + y - 3z = 2$$

- (b) If α, β roots of $x^2 3\alpha + 5 = 0$ form the equation whose roots are $\frac{1 \alpha}{1 + \alpha}$ and $\frac{1 \beta}{1 + \beta}$
- 6. (a) Resolve $\frac{x^4}{1-x^4}$ into partial fractions 5
 - (b) The sum of an infinite geo-metric series is 9 and the sum of the squares of its terms is $\frac{81}{5}$. Find the series.
- 7. (a) Find the values of n and r when ${}^{n-1}C_{r-1}$; ${}^{n}C_{r}$: ${}^{n+1}C_{r+1} = 3:6:11$ 5
 - (b) If x is so small that its cube and higher powers can be neglected,

then show that :
$$\sqrt{\frac{1-x}{1+x}} \approx 1-x+\frac{x^2}{2}$$

- 8. (a) Reduce $\cos^4 \theta$ to an expression involving only function of multiples of θ , raised to the first power.
 - (b) Prove that $r_3 = 4R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \sin \frac{\gamma}{2}$ 5
- 9. (a) Show that the area of a sector of a circular region of radius r is $\frac{1}{2}r^2\theta$, where θ is the circular measure of the central angle of the sector.
 - (b) Prove that $\sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$

Roll No.

MATHEMATICS Time: 30 Minutes

Intermediate Part-I, Class 11th (1stA 324-IV) PAPER: I **OBJECTIVE**

GROUP - I Marks: 20

Code: 6197

Note:

You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.

- A square matrix A is symmetric if A^{t} = 1-1-
 - (A) A

- (B) A

- $(D) \overline{A}$
- If $\sin \theta > 0$ and $\sec \theta > 0$, then terminal arm of θ lies in quadrant 2-

(C) III

(D) IV

- 3-Conditional equation 3x - 1 = 0 is true only if
 - (A) x = 3
- (B) x = -3
- (C) $x = \frac{1}{2}$
- (D) $x = -\frac{1}{2}$

- 4-Reference angle always lies in quadrant

(C) III

(D) IV

- $\operatorname{Cos}\left(\operatorname{Sin}^{-1}\frac{1}{\sqrt{2}}\right) =$ 5-
 - (A) $\frac{1}{\sqrt{2}}$
- (B) 1

- (D) $\frac{\pi}{4}$

- 6-The value of the determinant |0
 - (A) 0

(C) 8

(D) 24

- 7- $Sin(\pi - \theta) =$
 - $(A) \sin\theta$
- (B) -Sin θ
- (D) $-\cos\theta$

- 8-If "n" is even, then middle term of $(a + b)^n$ is
 - (A) $\left(\frac{n}{2}-1\right)^{th}$ term
- (B) $\left(\frac{n}{2}+1\right)^{m}$ term
- (D) $\left(\frac{n}{2}-2\right)^{tn}$ term
- When $3x^4 + 4x^3 + x 5$ is divided by x + 1, then remainder is 9-(B) -6
 - (A) 7

(D) 7

- 10-Converse of the conditional $p \rightarrow q$ is KCity.Ord
 - $(A) q \rightarrow p$
- $(B) \sim q \rightarrow \sim p$
- $(C) \sim p \rightarrow \sim q$
- (D) $p \rightarrow \sim q$

- 11-Multiplicative inverse of -3i is
 - (A) 3i

- (B) $\frac{1}{3}i$
- (C) $-\frac{1}{2}i$
- (D)-3i

- $A' \cap B' =$ 12-
 - (A) A' B'
- (B) A'∪B'
- $(C) (A \cap B)'$
- (D) $(A \cup B)'$
- In a quadratic equation $ax^2 + bx + c = 0$, if $b^2 4ac > 0$, then roots are 13-
 - (A) real
- (B) equal
- (C) rational
- (D) irrational

- 20th term of 1, 3, 5, ... is 14-
 - (A)38

- (B) 39
- (C)40

(D) 41

 $\sqrt{3}$ is 15-

(A) rational number

(B) irrational number (C) even number

(D) odd number

16 $r_2 =$

(A) $\frac{\Delta}{S}$

(B) $\frac{\Delta}{S-a}$

(C) $\frac{\Delta}{S-h}$

(D) $\frac{\Delta}{S-c}$

Factorial form of (n + 2) (n + 1)(n) is 17-

 $(A)\frac{(n+2)!}{(n+1)!}$

(B) $\frac{(n+1)!}{(n-2)!}$

(C) $\frac{(n+2)!}{n!}$

(D) $\frac{(n+2)!}{(n-1)!}$

Tan θ is a periodic function of period 18-

 $(A) \pi$

(B) $\frac{\pi}{2}$

(C) $\frac{3\pi}{2}$

(D) 2π

Let $A=\{1,2,3\}$, then the number of its subsets is 19-

(C)7

(D) 8

If a = 2i, b = 4i, then G =20-

 $(A)\pm 2\sqrt{2} i$

(B) $\pm 2i$

(D) $\pm \sqrt{6} i$

213-(IV)-1stA 324-32000

MATHEMATICS

Intermediate Part-I, Class 11th (1st A 324)

PAPER: I

GROUP - I Marks: 80

Time: 2:30 hours

Note: Section-I is compulsory. Attempt any three (3) questions from Section-II.

SECTION-I

Write short answers to any EIGHT questions: 2.

 $(2 \times 8 = 16)$

- i- Define binary operation.
- Show that the set $\{1, -1\}$ possess closure property with respect to multiplication.
- Simplify the following $(-1)^{\frac{-21}{2}}$
- iv- Graph the number -5 6i on complex plane.
- v- Write the union and intersection of two sets A and B in set builder notation.
- vi- Write down the difference between induction and deduction.

vii- Find the value of x and y if
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$$

- viii- If A and B are non-singular matrices then show that $(AB)^{-1} = B^{-1}A^{-1}$
 - ix- Write down two properties of determinant.
 - x- Solve the equation : $x^{1/2} x^{1/4} 6 = 0$
- Show that : $x^3 + y^3 + z^3 = (x + y + z)(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z)$
- Show that (x-2) is a factor of $x^4 13x^2 + 36$

Write short answers to any EIGHT questions: 3.

 $(2 \times 8 = 16)$

- i- What is the difference between proper rational fraction and improper rational fraction?
- Find value of A and B if $\frac{x^2+1}{(x+1)(x-1)}$ $+\frac{B}{x-1}$
- Which term of the A.P 5, 2, $1, \dots$ is -85? Find the sum of infinite G.P. $2, \sqrt{2}, 1, \dots$
- v- Sum the series: 3 + 5 7 + 9 + 11 13 + 15 + 17 19 to 3n terms.
- vi- If $\frac{1}{K}$, $\frac{1}{2K+1}$ and $\frac{1}{4K-1}$ are in harmonic sequence, find K.
- vii- How many permutations of the letters of the word PANAMA can be made, if P is to the first letter in each arrangement?
- viii- Find the number of the diagonals of a 6-sided figure.
 - ix- Two dice are thrown twice. What is probability that sum of dots shown in throw is 7?
 - x- Prove that the statement is true: $n! > n^2$ for n = 4, 5
- xi- Use Binomial theorem, find the value of (.98)^{1/2} up to three decimal places.
- Find the term involving a^4 in the expansion of $\left(\frac{2}{v}-a\right)^9$

Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

- i- Define Radian.
- ii- $\sin\theta = \frac{12}{13}$, terminal arm of the angle is in quadrant I. Find the values of Sec θ , Cos θ
- iii- Prove that $\cos\left(\frac{\pi}{2} \beta\right) = \sin\beta$

(Turn Over)

iv- Prove that
$$\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} - \sin 11^{\circ}} = \tan 56^{\circ}$$

- v- Express the product Sin 12° Sin 46° as sum or difference.
- vi- Prove that period of tangent is π
- vii- Find the period of 3Sinx
- viii- Draw the graph $y = -\sin x$, $x \in [-2\pi, 2\pi]$
 - ix- Find the value of θ if $\cos\theta = 0.9316$
 - x- Solve the right angle triangle in which $\gamma = 90^{\circ}$, $\alpha = 37^{\circ}20'$, a = 243
 - xi- Solve the triangle ABC, if $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$, $b = \sqrt{6}$
- xii- Find the value of Cos⁻¹(1/2)
- xiii- Solve the equation : $\sin^2 x + \cos x = 1$

SECTION-II

5- (a) Show that
$$\begin{vmatrix} a+\lambda & b & c \\ a & b+\lambda & c \\ a & b & c+\lambda \end{vmatrix} = \lambda^2(a+b+c+\lambda)$$

(b) If α and β are the roots of $x^2 - 3x + 5 = 0$, form the equation whose roots are:

$$\frac{1-\alpha}{1+\alpha}$$
 and $\frac{1-\beta}{1+\beta}$

6- (a) Resolve $\frac{x^2}{(x^2+4)(x+2)}$ into partial fractions.

(b) Find
$$a_n$$
 of a G.P if $a_4 = \frac{8}{27}$ and $a_7 = \frac{64}{729}$

- 7- (a) Prove that : ${}^{n-1}C_r + {}^{n-1}C_{r-1} = {}^nC_r$
 - (b) Show that : $\frac{n^3 + 2n}{3}$ represents an integer $\forall n \in \mathbb{N}$
- 8- (a) Prove that $\frac{\sin\theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$
 - (b) With usual notations, prove that $a^2 = b^2 + c^2 2bcCos\alpha$
- 9- (a) If $\tan \theta = -\frac{1}{3}$, and terminal arm of angle θ is in quadrant II. Find the values of remaining trignometric functions.

(b) Prove that
$$\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} + \tan^{-1} \frac{8}{19} = \frac{\pi}{4}$$

213-1st A 324-32000

5

5

5

5

5

5

5

5

MATHEMATICS Time: 30 Minutes

Intermediate Part-I, Class 11th (1stA 324-IV) PAPER: I **OBJECTIVE**

GROUP: II Marks: 20

Code: 6198

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.

- 1- 1a, b and c are in A.P, then
 - (A) 2a = b c
- (B) 2b = a + c
- (C) 2b = a c
- (D) 2a = b + c

- 2-Number of terms in expansion of $(1 + x)^{n-1}$ is
- (B) n + 1
- (C) n
- (D) n 1
- 3-H is Harmonic mean between a and b then H =

- 4- $Cos(tan^{-1}0) =$ (A) 0
- (D) ∞
- In $\frac{p(x)}{q(x)}$, degree of p(x) is less than degree of q(x), then fraction is 5-
 - (A) proper
- (B) improper
- (C) combined
- (D) partial

- 6-Set having no proper subset
 - (A) {}
- (B) { 1 }
- $(C) \{1,2\}$
- $(D) \{1,2,3\}$

- Recurring decimal is a 7number.
 - (A) prime
- (B) rational
- (C) irrational
- (D) integer

- Sum of roots of equation $x^2 5x + 6 = 0$
 - (A) 6

8-

- (D) -5

- ${}^{n}C_{8}={}^{n}C_{12}$, then value of n is 9-
- (B) 12
- (C) 16
- (D) 20

- 10-Proposition is called biconditional
- $(C) p \wedge q$
- (D) pvq

- 11-

- 12-Number of radians in semi-circle
 - (A) $\frac{\pi}{2}$
- (B) π

- 13-
 - (A) cubic
- (B) radical
- (C) reciprocal
- (D) exponential

- 14-Period of tanx is
 - (A) $\frac{\pi}{2}$
- $(B) 3\pi$
- (D) π

- $(-1)^{-\frac{21}{2}} = \dots$ 15-
- (B) -1
- (C) i

(D)-i

- is singular, then x =16-
 - (A) -3
- (C) 1
- (D) -1

- 17-Sum of opposite angles of cyclic quadrilateral is
 - (A) 90
- (B) 120
- (C) 180
- (D) 270

- 18-The matrix [1 2 3] is matrix.
 - (A) square
- (B) unit
- (C) null
- (D) row

- 19-Co-ratio of Cosine is
 - (A) sine
- (B) cosine
- (C) tangent
- (D) secant
- 20-If $A = \{1, 2, 3\}$ and $B = \{4, 5\}$, which is not element of $A \times B$ (A)(1,4)
 - (B)(2,4)
- (C)(3,4)
- (D)(4,3)

11th Class Mathematics Subjective Paper Group 2 Gujranwala Board 2024 "EMATICS Intermediate Part-I, Class 11th (1stA 324) PAPER: I GROUP: II Time: 2:30 hours SUBJECTIVE Marks: 80 Note: Section-I is compulsory. Attempt any three (3) questions from Section-II. **SECTION-I** Write short answers to any EIGHT questions: $(2 \times 8 = 16)$ i- Write trichotomy and transitive properties of inequalities of real numbers. Simplify $(2, 6) \div (3, 7)$ iii- Find the modulus of 3 + 4iiv- Express the complex number $1 + i\sqrt{3}$ in polar form v- Write inverse , converse and contrapositive of the conditional $\sim p \rightarrow \sim q$ vi- Define groupoid. vii- If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$, show that $A^4 = I_2$ viii- Without expansion verify that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$ ix- If A and B are non-singular matrices, then show that $(AB)^{-1} = B^{-1}A^{-1}$ x- Find the three cube roots of -27xi- Use the factor theorem to determine if x - 1 is a factor of $x^2 + 4x - 5$ xii- If α, β are the roots of $3x^2 - 2x + 4 = 0$, find the value of α^2 .

Write short answers to any EIGHT questions:

i- Resolve into Partial Fractions $\frac{3x}{(x-1)(x+2)}$. Write short answers to any EIGHT questions: 5. $(2 \times 8 = 16)$ ii- Define the term Partial Fraction. iii- Write the first four terms of the sequence, if $a_n - a_{n-1} = n+2$, $a_1 = 2$ iv- If 5, 8 are two A.Ms between a and b, find a and b. Find the sum of infinite Geometric Series $\frac{9}{4} + \frac{3}{2} + 1 + \frac{2}{3} + \dots$ Find the 8th term of H.P; $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$, ... vii- Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$ viii- Find the value of n when ${}^{11}P_n = 11.10.9$ What is the probability that a slip of numbers divisible by 4 are picked from the slips bearing numbers 1,2,3,, 10? x- Prove that the inequality $n^2 > n + 3$ for n = 3, 4 xi- Calculate (9.9)⁵ by means of Bionomial Theorem. xii- Expand $(1-x)^{1/2}$ upto 4 terms. Write short answers to any NINE questions: $(2 \times 9 = 18)$ i- Find r when $\ell = 5$ cm, $\theta = \frac{1}{2}$ radian Evaluate $\frac{\tan\frac{\pi}{3} - \tan\frac{\pi}{6}}{1 + \tan\frac{\pi}{3} \cdot \tan\frac{\pi}{6}}$

Page 14 of 44

Prove that $Sin(\alpha + \beta) Sin(\alpha - \beta) = Cos^2\beta - Cos^2\alpha$

(Turn Over)

iv- Prove that
$$\frac{\cos 8^{\circ} - \sin 8^{\circ}}{\cos 8^{\circ} + \sin 8^{\circ}} = \tan 37^{\circ}$$

- Express as product : $\cos 7\theta \cos \theta$
- Define Periodicity.
- Find period of $3\cos\frac{x}{5}$
- Draw graph of Sinx when $x \in [0, \pi]$ viii-
 - Find a and c for the right angle triangle ABC, when $\alpha = 58^{\circ}13'$, b = 125.7, $\gamma = 90^{\circ}$
 - A vertical pole is 8m high and length of its shadow is 6m. What is angle of elevation of the sum at that moment?
- Solve the triangle ABC if b = 125, $\gamma = 53^{\circ}$, $\alpha = 47^{\circ}$
- Show that $tan(Sin^{-1}x) = \frac{x}{\sqrt{1 x^2}}$
- Solve the trignometric equation $Sinx = -\frac{\sqrt{3}}{2}$

Solve the system of linear equations by Cramer's Rule:

$$2x + 2y + z = 3$$

$$3x - 2y - 2z = 1$$

$$5x + y - 3z = 2$$

- 2x + 2y + z = 3 3x 2y 2z = 1 5x + y 3z = 2(b) Show that the roots of $(mx + c)^2 = 4ax$ will be equal if $c = \frac{a}{m}$, $m \neq 0$
- (a) Resolve $\frac{x^2 + x 1}{(x + 2)^3}$ into partial fractions.
 - (b) The sum of an infinite Geometric Series is 9 and the sum of the squares of its terms is $\frac{81}{5}$. Find the series.
- Two dice are thrown. E₁ is the event that the sum of their dots is an odd number and E₂ is the event that 1 is the dot on the top of the first die. Show that $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$
 - Find the term independent of x in expansion of $\left(\sqrt{x} + \frac{1}{2v^2}\right)^{10}$
- (a) Prove that $\sin \frac{\pi}{Q} \sin \frac{2\pi}{Q} \sin \frac{\pi}{Q} \sin \frac{4\pi}{Q} = \frac{3}{16}$ 5
 - **(b)** Show that $r_2 = 4R \cos \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\gamma}{2}$
- (a) Find x if $\tan^2 45^\circ \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ \tan 60^\circ$ 5
 - **(b)** Prove that $\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{12} + \sin^{-1}\frac{16}{65} = \frac{\pi}{2}$

214-1stA `-31000 5

5

5

5

5

5

5

5

Paper Code Number: 2197 INTERMEI		INTERMEDIA'	2024 (1st-A) TE PART-I (11	th Class)	Roll No:		
MA	THEMATICS PA	APER-I GROU	<u>}</u>				
TIM	E ALLOWED: 30		OBJEC'		XIMUM MAR	r - saverarous o	
Q.No	.1 You have four	choices for each object that bubble in front of t	ive type question	as A, B, C and	D. The choice wheet. Use mark	nich you think er or pen to	
	fill the bubbles	s. Cutting or filling two	or more bubbles	will result in ze	ro mark in that	question.	
S.#	QUE	STIONS	A	<u> </u>	C	υ	
1	Inverse of square m	atrix exists if it is:	Singular	Non-singular	Null	Symmetric	
2	If A is skew symm	tetric, then A^2 will be	Symmetric	Skew symmetric	Hermitian	Skew Hermitian	
3	Product of roots of	$x^2 - 5x + 6 = 0$ is:	-6	6	5	-5	
4	Roots of equation complex if:	$cx^2 + ax + b = 0 \text{ are}$	$b^2 - 4ac < 0$	$c^2 - 4ab < 0$	$a^2 - 4bc < 0$	$a^2 - 4ac < 0$	
5	$\frac{1}{x^3 + 1} = \frac{1}{x + 1} + {x^2}$	-x+1	Bx + c	В	C	B+C	
	(Numerator of x^2	-x+1)				260	
6	Next term of 1, 3, 1	2, 60, is:	120	180	240 3n-3	360	
7	General term of -	2, 1, 4, 7, is:	3 <i>n</i> −2 ●	3n-4	3n-3	3n – 5	
8	A die is rolled, prob on top are greater th		$\frac{1}{2}$	$\frac{1}{3}$	1/4	$\frac{1}{6}$	
9	Sum of odd coefficient of $(1+x)^4$ is:	ients in expansion	8	16	18	6	
10	-1035° is cotermi	nal with	60°	30°	45°	35°	
11	$\cos(\alpha+\beta)-\cos(\alpha+\beta)$	$(\alpha - \beta) =$	$-2\cos\alpha\cos\beta$	$2\cos\alpha\cos\beta$	$2\sin\alpha\sin\beta$	$-2\sin\alpha\sin\beta$	
12	Period of $\sec x$ is:			2π	3π	$\frac{\pi}{2}$	
13	$\sqrt{\frac{s(s-a)}{bc}} = \underline{\hspace{1cm}}$		cos $\frac{\alpha}{2}$	$\sin \frac{\alpha}{2}$	$\tan \frac{\alpha}{2}$	$\cot \frac{\alpha}{2}$	
14	$\tan[\tan^{-1}(-1)] = \frac{1}{2}$		pakcity.ord	-1	$\frac{\pi}{4}$	$-\frac{\pi}{4}$	
15	$\sin x \cos x = \frac{\sqrt{3}}{4},$	then $x = \underline{\hspace{1cm}}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	
16	$3x + y^2i = 1 - 2i^2$, t	hen value of x is:	$\frac{1}{3}$	1	3	Zero	
17	If $z = \sqrt{3} + i$, then	z =	4	$\sqrt{3}-1$	$-\sqrt{3}+i$	2	
18	Inverse of $p \rightarrow q$	is	$\sim p \rightarrow \sim q$	$\sim q \rightarrow \sim p$	$\sim q \rightarrow p$	$q \rightarrow \sim p$	
19	Set A contains 4 el of elements in its po	lements, then number ower set $P(A)$:	8	12	16	4	
20	$\{1, -1\}$ is group wi		Addition	Subtraction	Square root	Multiplication	
			13(C	bi)(公公公公)-2	024(1st-A)-22000	(MULTAN)	

TIME	CALLOWED: 2.30 Hours SUBJECT	CTIVE		MAXIMUM I	MARKS: 80
NOT	E: Write same question number and its parts number	on ansv	ver book,	as given in the q	uestion paper.
2. At	SECTION SECTION SECTION	V-1		8 7	2 = 16
(i)	Simplify $(2,6) \div (3,7)$	(ii)	Separate in	nto real and imagin	
(iii)	$\forall z \in C$, prove that $ -z = z = \overline{z} = -\overline{z} $	(iv)		ultiplicative invers	
(v)	Express $\{x \mid x \in N \land x \le 10\}$ in descriptive and tabular for	m.	,		
(vi)	Show $B-A$ by Venn diagram when $A \subseteq B$	(vii)	Find x a	and y if $\begin{bmatrix} x+3 \\ -3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 3y - 4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$
(viii)	If $A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$, $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find the values of a and b .	(ix)	Without ex	kpansion show that	$\begin{bmatrix} 1 \\ 3y - 4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = 0$
(x)	Find roots of the equation $5x^2 - 13x + 6 = 0$ by using quad-	ratic for	mula.		
(xi)	Find four 4 th roots of unity.	(xii)		equation $4^x = \frac{1}{2}$	
3. Att	empt any eight parts.	L			2 = 16
(i)	Define Rational fraction.				
(ii)	Write in to partial fractions $\frac{8x^2}{(x^2+1)^2(1-x^2)}$ without finding	constan	ts.		
(iii)	Write the first four terms of the sequence $a_n = (-1)^n (2n-3)$				
(iv)	How many terms are there in A.P in which $a_1 = 11$, $a_n = 6$				
(v)	Sum the series $1+4-7+10+13-16+19+22-25+$		to 3n term	ns.	
(vi)	Find the sum of the infinite series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$				
(vii)	How many signals can be made with 4-different flags when any	numbe	r of them ar	e to be used at a ti	me?
(viii)	If ${}^{n}C_{8} = {}^{n}C_{12}$, find n .		(0)		
(ix)	Determine the probability of getting 2 heads in two successive	tosses o	fa balanced	coin.	
(x)	Prove $2+6+18+$ $+2\times 3^{n-1}=3^n-1$ for $n=1$,	2	25)		
(xi)	Calculate (21) ⁵ by means of Binomial theorem.	90	(xii)	Expand $(1+x)$	$\frac{-1}{3}$ up to 4 terms.
	empt any nine parts.	****		9	× 2 = 18
(i)	In a right angle triangle ABC , prove that $\sin^2\theta + \cos^2\theta$:	= 1			
(ii)	Prove that $\cot^2 \theta - \cos^2 \theta = \cot^2 \theta \cos^2 \theta$		(iii)	Prove that sin 3	$\alpha = 3\sin\alpha - 4\sin^3\alpha$
(iv)	Express the product as sum or difference $\sin 12^\circ \sin 46^\circ$	3	(v)	Prove that $\tan \left(\frac{2}{4} \right)$	$\left(\frac{\pi}{4} - \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right) = 0$
(vi)	Define period of a trigonometric function.	1	(vii)	Find the period o	$f \cos ec \frac{x}{4}$
(viii)	Draw the graph of $y = \tan x$ for $-\pi \le x \le \pi$.				
(ix)	Find area of triangle ABC, if $a = 4.33$, $b = 9.25$, $\gamma =$	56°44	I'		
(x)	Find R , if sides of triangle ABC are $a = 13$, $b = 14$, c	= 15	(xi)	Show that $\frac{1}{2rR}$	$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$
(xii)	Without using calculator, show that $\cos^{-1} \frac{4}{5} = \cot^{-1} \frac{4}{3}$		(xiii)	Find the solution	of $\sin x \cos x = \frac{\sqrt{3}}{4}$
NOTE	SECTION	II 9	//		V 10 - 20
NOTE: 5.(a)	Attempt any three questions.	ond -	_ 2	3	× 10 = 30
J.(u)	Use synthetic division to find the values of p and q if $x+1$	and X	-2		
(b)	are the factors of the polynomial $x^3 + px^2 + qx + 6$ Use matrices to solve the system of equations $x = 2x + x = 6$	_ 1 ^	Day 24	24 6 2	2
6.(a)	Use matrices to solve the system of equations $x_1 - 2x_2 + x_3 = \frac{1}{1}$	4, 2	$-3x_1 - 3x_2 +$	$2x_3 = -0, 2x_1 +$	$2x_2 + x_3 = 3$
	Resolve into partial fractions $\frac{1}{(x-1)^2(x+1)}$				
(b) 7.(a)	Show that the sum of n A.Ms. between a and b is equal	to n	times their	A.M.	
(b)	Find values of n and r when ${}^{n}C_{r} = 35$, ${}^{n}P_{r} = 210$. 27	0n+l 1	for all man man	hua intagan- 44
8.(a)	Using Mathematical induction to show that $1+2+2^2+$ Prove without using calculator $\sin 19^o \cos 11^o + \sin 71^o \sin 11^o$	1	= 2 -1	ior all non-negati	ive integers n.
(b)	Solve the triangle ABC in which $a = 36.21$, $c = 30.14$ and	2	°10′.		
9.(a)	Prove that $\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \tan \theta + \sec \theta$ (b) Prove			$\sin^{-1}\frac{5}{13} + \sin^{-1}\frac{1}{6}$	$\frac{6}{5} = \frac{\pi}{2}$
11th	Class Mathematics Subjective Paper Group 1 Mult	an Bo	ard 202/1	3-2024(1st-A)-22	2000 (MIII.TAN)

	er Code aber: 2198	INTERMEDIA	2024 (1st-A) TE PART-I (11	Ith Class)	Roll No:	
	Number: 2198 INTERMEDIATE PART-I (11 th Class) Roll No: MATHEMATICS PAPER-I GROUP-II					
	E ALLOWED: 30		OBJEC	TIVE	MAXIMUM MA	RKS: 20
Q.No	0.1 You have four	choices for each objec	tive type questio	n as A, B, C a	nd D. The choice w	hich you think
	is correct, fill t	hat bubble in front of . Cutting or filling two	that question nu	mber, on bub	ble sheet. Use mark	ker or pen to
S.#		STIONS	A	B	C	D
1	Sum of binomial co		2 ⁿ	n	2 <i>n</i>	n^2
2	Trigonometric ratio	of -330° is same as:	60°	30°	45°	90"
3	$\frac{3\pi}{2} + \theta$ lies in quad	drant:	1 st	2 nd	3 rd	4 th
4	Range of $y = \sin x$	is:	(-1, 1)	[-1, 1)	[-1, 1]	(-1, 1]
5	In right triangle, no	angle is greater than:	45°	80°	60°	90"
6	Domain of $y = \sin x$	$^{-1}(x)$ is:	$-1 \le x \le 1$	$-1 \ge x \ge$	$1 \qquad -1 < x < 1$	$0 \le x \le 1$
7	If $cox x = \frac{1}{\sqrt{2}}$, the	en reference angle is:	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
8	Every non-recurring decimals represents:		Rational number	Natural number		Whole number
9	The multiplicative in number (0, 1) is:	nverse of complex	(0, -1)	(0,1)	(-1, 0)	(0,0)
10	How many inverse of to each element of g		At least two	Two	At least one	Only one
11	Set containing elemented by:	ents A or B is	A∩B	$A \cup B$	$A \subseteq B$	$B \supseteq A$
12	$p \rightarrow q$ is called con	iverse of:	$\sim p \rightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$\sim q \rightarrow p$
13	The inverse of squaris:	re matrix exists if A	Singular	Non-singula	ar Symmetric	Rectangular
14	If A is a square mathem $ KA $ equals:	trix of order 2 × 2	Accord a Verifico S transpire Day Merion	$\frac{1}{K} A $	$K^2 A $	2 <i>K</i> <i>A</i>
15	If $4^x = \frac{1}{2}$ then x	is equal to:	nakcity ord	-2	$\frac{1}{2}$	$\frac{1}{4}$
16	The roots of the equare:	$ation x^2 - 5x + 6 = 0$	2, -3	-2, -3	2, 3	-2, 3
17	The fraction $\frac{x-3}{x+1}$	is:	[mproper	Proper	Identity	Equivalent
18	G.M between $\frac{1}{a}$ and	$\frac{1}{b}$ is:	$-\frac{1}{ab}$	$\pm\sqrt{\frac{1}{ab}}$	ab	$-\sqrt{ab}$
19	$\sum_{k=1}^{n} 1$ is equal to:		1	n^3	n 🌘	n ²
20	$\frac{3!}{0!}$ is equal to:		3	.6	<u>«</u>	12
			1.5//	1:1/44444	3)-2024(1st-A)-1700	(MIII.TAN)

TIM	E ALLOWED: 2.30 Hours E: Write same question number and its parts	number		er book, as		MUM MARKS: 80 the question paper.
2 4		ECTIO	N-I			9 v 2 16
(i)	ttempt any eight parts. Simplify (2, 6) ÷ (3, 7)	(ii)	Find mul	tiplicative in	verse of	$8 \times 2 = 16$ $a + ib$
(iii)	Show that for all $z \in C$, $z\overline{z} = z ^2$	(iv)		$\frac{3}{\sqrt{6}-\sqrt{-12}}$	iverse or	a pakcity.org
(v)	For $A=\{1, 2, 3, 4\}$, state the domain and range of	of relatio				
(vi)	Define Semi group.	(vii)		$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$, find	A^{-1}	organis de la composition della composition dell
(viii)	If $A = \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$, then show that $4A - 3A = A$	(ix)	If $A = \begin{bmatrix} - \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ 2 & -2 & 1 \end{bmatrix},$	then find	A_{12}, A_{22}
(x)	Discuss the nature of roots of $2x^2 + 5x + 1 = 0$	(xi)	Evaluate	$(1+\omega-\omega$	2)8	
(xii)	Solve by completing the square $x^2 + 6x - 567 =$	= 0				
	ttempt any eight parts.	-		**************************************		8 × 2 = 16
(i)	Define Identity. Give one example.					
(ii)	Write $\frac{2x-3}{x(2x+3)(x-1)}$ in partial fraction form with	-	_			
(iii)	If $a_{n-3} = 2n-5$, then find <i>nth</i> term of sequence					.Ms. between a and b.
(v)	If $y=1+\frac{x}{2}+\frac{x^2}{4}+\frac{x^2}{4}$, then find the interval in	n which	the series i	s convergen	t.	
(vi)	If $\frac{1}{k}$, $\frac{1}{2k+1}$, $\frac{1}{4k-1}$ are in H.P, then find k .					
(vii)	In how many ways can 4 keys be arranged on a ci	rcular ke	y ring?			
(viii)	Find the number of diagonals of 12 sided figure.					
(ix)	If $P(A) = \frac{1}{2}$; $P(B) = \frac{1}{2}$; $P(A \cap B) = \frac{1}{3}$, then find P			700	<u>)</u>	
(x)	Prove that $4^n > 3^n + 2^{n-1}$ for $n = 2$ and $n = 3$	(xi	Expan	d $3a - \frac{x}{3a}$	by bin	nomial theorem.
(xii)	If x is so small that its square and higher powers	s be negl	lected, ther	show that	$\sqrt{\frac{1-x}{1+x}} = 1$	-x
4. At	tempt any nine parts.	745				9 × 2 = 18
(i)	Prove that $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4} = 2$	20,5	(ii)	Show that	$\frac{1}{1+\sin\theta}$	$+\frac{1}{1-\sin\theta}=2\sec^2\theta$
(iii)	Prove that $\sin(180^{\circ} + \alpha)$. $\sin(90^{\circ} - \alpha) = -\sin \alpha$	$\cos \alpha$	(iv)	Find the va	lue of co	os 105°
(v)	Prove that $\sin(180^{\circ} + \alpha)$. $\sin(90^{\circ} - \alpha) = -\alpha$. Show that $\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta} = 2$. Find the period of $\tan 4x$.	×	(vi)	Write dom	ain and ra	$\operatorname{enge of } y = \sin x$
(vii)	Find the period of $\tan 4x$		(viii)	Draw the g	raph of	$y = \sin x$ from 0 to π
(ix)	In $\triangle ABC$ if $\beta = 60^\circ$; $\gamma = 15^\circ$; $b = \sqrt{6}$, then if	find a a	and y			
(x)	Find area of $\triangle ABC$ in which $\alpha = 45^{\circ}17'$;			b = 25.4	(xi)	Define inscribed circle
(xii)	Find the value of $\sec \left[\sin^{-1}\left(-\frac{1}{2}\right)\right]$	Accarata Newton's Law Mor	ii) Defi		etric equa	tion. Give one example.
TO TEX		CTION	-11			2 × 10 = 30
	2: Attempt any three questions.	1 1 1 1 1	- V	//		$3 \times 10 = 30$
5.(a)	Find the inverse of $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{bmatrix}$ and show that $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{bmatrix}$	$A^{-1}A = I$	org			
(b)	Prove that $\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$ will have equal roots	oots, if	$c^2 = a^2 m^2$	$+b^2$; $a\neq 0$,	<i>b</i> ≠0	
5.(a)	Resolve $\frac{x^2+1}{x^3+1}$ into partial fractions. (b)	The sum Find the	of three numbers.	umbers in a	n A.P is 2	4 and their product is 440
7.(a) (b)	A number is chosen out of first fifty natural number	rs. What	is probabi	lity that chos	sen numb	er is multiple of 3 or of 5.
(0)	Show that $\left[\frac{n}{2(n+N)}\right]^{\frac{1}{2}} = \frac{8n}{9n-N} - \frac{n+N}{4n}$ when	re n an	d N are n	early equal.		
.(a)	Prove without using calculator that sin19° cos11°	+ sin 71	sin 1 1° = -	1 2		
(b)	Find the area of the triangle ABC , when $\alpha = 35$	°17′, γ	= 45°13′ a	b = 42.1		
(b)	Prove the identity and state the domain of $\theta = \sin^6 \theta$	$\theta + \cos^6$	$\theta = 1 - 3 \sin^2 \theta$	$\theta^2 \theta \cos^2 \theta$		
. 7	Prove that $\tan^{-1}\frac{1}{11} + \tan^{-1}\frac{5}{6} = \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{2}$	156.10			2024(1 st	

11th Class Mathematics Subjective Paper Group 2 Multan Board 2024 15-2024(1st-A)-17000 (MULTAN)

Roll No

HSSC-(P-I)-A/2024 (For All Sessions)

Mathematics(Objective)

Group-I

Marks: 20 Time: 30 Minutes

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

- Four 4th roots of 625 are:
- ±4,±4i
- $\pm 5, \pm 5i$
- (C)
- ±16, ±16i
- (D)
- $\pm 25, \pm 25i$

- Partial fractions of $\frac{x^2+1}{(x+1)(x-1)}$ are of the form:
- (B)

(B)

- (C)
- (D)

- A. M between x 3 and x + 5 is: 3.

- x-3
- (D)
- x + 5

- No term of a G. P can be:
- (B)
- 1
- (C)

(C)

- -1
- (D)
- i

- 8.7.6 =5.
 - (A)

x+1

- (B)
- 8! 7!
- (C)
- (D)

- $4^n > 3^n + 4$ is true for integers:
- $n \ge 2$
- (B)
- $n \ge 3$
- (C)
- (D)

- If sin heta < 0 and cos heta > 0, then terminal arm of heta lies in quadrant: 7.

- (D)
- IV

5!

 $n \ge 5$

- $sin\theta$
- (B)

- $\cos \theta$
- (D)
- $\cos^2\frac{\theta}{2}$

(D)

(D)

- Range of y = tanx is: 9.
 - $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$
- < y < ∞
- (C)
- $-\infty < x < \infty$ (D)

- $2R \sin \alpha =$ 10.
- $Sin\left(\cos^{-1}\frac{\sqrt{3}}{2}\right) =$ 11.

- (B)

(B)

- (D)

а

.1

2

- (B)
- (C) (C)

Δ

- Reference Angle for $1 2 \sin x = 0$ is: 12. $\forall Z \in C$, which one is true: 13.
- (B)
- = pakcit(c)oro

- (D)

- A prime number can be factor of a square only if it occurs in it at least. 14. **Twice**
 - (A)
- Once

- (C)
- Thrice
- (D)

(D)

(D)

Four times

- If A and B are disjoint sets, then A -15.
- (B)
- (C)
- B A
- (D)

- The converse of $\sim p \rightarrow q$ is: 16.
 - (A)
- (B)
- $p \rightarrow q$
- (C)
- (D)
- $p \rightarrow \sim q$

Equivalence

p ∧ q is called: 17.

 $(AB)^t =$

18.

- (A)
 - Conjunction
- Disjunction (B)
- (C)
- Conditional

AB

Rt At

- (B) A^tB^t A square matrix A is anti-symmetric if:
- (B)
- $A^t = A$

At B

(C)

(C)

- A = A
- $\bar{A} = -A$ (D)

 $1 + \omega + \omega^2 =$

Page 20 of 44

- (B)

- (C) 825-11-A
- ω^2
- (D)
- 0

Roll No

HSSC-(P-I)-A/2024 (For All Sessions)

Marks pakcity.org Time: 2:30 hours

Mathematics (Subjective)

(GROUP-I)

SECTION-I

Write short answers of any eight parts from the following: 2.

(8x2=16)

- Define a complex number. Is 0 a complex number? i.
- Whether the set $\{0, -1\}$ is closed or not w.r.t addition and multiplication. ii.
- Factorize: $3x^2 + 3y^2$ iii.
- Find multiplicative inverse of -3 5iiv.
- Construct truth table of $\sim (p \rightarrow q) \rightarrow p$ ٧.
- Define monoid. vi.
- Find the matrix X if: $X\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$ vii.
- If A and B are square matrices of the same order, then explain why in general $(A + B)^2 \neq A^2 + 2AB + B^2$ VIII.

ix. If
$$A = \begin{bmatrix} 1 \\ 1+i \\ i \end{bmatrix}$$
, find $A(\bar{A})^t$

- Find four fourth roots of 81 X.
- XI.
- If α , β are the roots of $3x^2 2x + 4 = 0$, find the value of β XII.

Write short answers of any eight parts from the following: 3.

(8x2=16)

- Define conditional equation. i.
- Resolve $\frac{x^2+15}{(x^4+2x+5)(x-1)}$ into partial fraction without finding constants. ii.
- Find the first four terms of the sequence $a_n = \frac{n}{2n+1}$ iii.
- Determine whether -19 is a term of 17, 13, 9, ...iv.
- Find the 5th term of the G.P 3, 6, 12, ٧.
- Sum the series $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots + a_{13}$ vi.
- Prove from the first principle that ${}^{n}P_{r}=n$. ${}^{n-1}P_{r-1}$ vii.
- Find the value of n when ${}^{n}C_{12} = {}^{n}C_{6}$ viii.
- Determine the probability of getting dots less than 5 when a die is rolled. ix.
- Prove that $n! > 2^n 1$ for n = 4, 5X.
- Calculate (2.02)⁴ by means of binomial theorem. χi.
- Expand $(1 + 2x)^{-1}$ up to 4 terms. XII.

Write short answers of any nine parts from the following: 4.

Write values of trigonometric functions for $\theta = \frac{-9}{2}\pi$.

Plage
$$\theta = \cos^2 \theta = \cot^2 \theta \cos^2 \theta$$
.

(9x2=18)

- Prove that $sin(\theta + 270) = -cos\theta$. iii.
- Prove that $sin2\theta = 2sin\theta \cos\theta$. IV.
- Express $sin12^{\circ}$ $sin46^{\circ}$ as sum or difference. ٧.
- Write domain and range of $\cos x$. vi.
- Find period of $\sin \frac{x}{3}$. VII.
- Draw the graph of tanx for $x \in (0, \pi)$ viii.
- Prove that $r = (s b) \tan \frac{\beta}{2}$. IX.
- Write any two half angle formulae. X.
- When angle between ground and sun is 30° , flag pole casts a shadow of 40m long. Find height of top of flag. χi.
- Show that $cos(sin^{-1}x) = \sqrt{1-x^2}$. XII.
- Solve the equation $4 \cos^2 x 3 = 0$ XIII.

SECTION-II

Attempt any three questions. Each question carries equal marks: Note:

(10x3=30)

- If \propto and β are the roots of $x^2 3x + 5 = 0$, form the equation whose roots are 5.(a)
 - Find the rank of m rix $\begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & -6 & 5 & 1 \\ 3 & 5 & 4 & -3 \end{bmatrix}$ Resolve
- Resolve $\frac{1}{(x-1)^2(x^2+2)}$ into partial fractions. 6. (a)
 - Find six arithmetic means between 2 and 5. (b)
- A die is thrown. Find the probability that the no. of dots on the top are prime numbers or odd numbers. 7. (a)
 - If x is so small that its cube or higher powers can be neglected, show that $\sqrt{\frac{1-x}{1+x}} \approx 1 x + \frac{1}{2}x^2$ (b)
- Solve the triangle ABC, given that $\propto = 35^{\circ} 17^{\circ} \beta = 45^{\circ} 13^{\circ}$, $b = 421^{\circ}$. 8. (a)
 - Reduce $\cos^4\theta$ to an expression involving only function of multiples of θ , raised to the first power. (b)
- A circular wire of radius 6 cm is cut straightened and then bent so as to lie along the circumference of a 9. (a) hoop of radius 24 cm. Find the measure of the angle which it subtends at the center of the hoop.
 - Prove that: $tan^{-1}\frac{1}{4} + tan^{-1}\frac{1}{5} = tan^{-1}\frac{9}{19}$

HSSC-(P-I)-A/2024 (For All Sessions)

Paper Code	6	1	9	2

Mathematics(Objective)

Group-II

Time: 30 Minutes

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

(C)

A complex number 1 + i can also be expressed as:

(A)
$$2(\cos 45^{\circ} + i \sin 45^{\circ})$$
 (B)

(B)
$$\sqrt{2}(\cos 45^{\circ} - i \sin 45^{\circ})$$

$$\sqrt{2}(\cos 45^{\circ} - i \sin 45^{\circ})$$
 (C) $\sqrt{2}(\cos 45^{\circ} + i \sin 45^{\circ})$

$$2(\cos 45^{\circ} - i \sin 45^{\circ})$$

If Z is a complex number and $Z = \overline{Z}$ then Z must be:

The set $\{(a,b)\}$ is called: 3.

Drawing conclusion from premises believed to be true is called:

If p is a logical statement $p \land \sim p$ is always: 5.

6. If
$$A = [a \ b \ c]$$
, then order of A^t is:

(C)

(C)

If the matrix $\begin{bmatrix} \lambda & 1 \\ -2 & 1 \end{bmatrix}$ is singular then $\lambda =$

IF $4^{3x} = \frac{1}{3}$ then x is equal to: 8.

(B)

$$\frac{1}{6}$$

If
$$\omega$$
 is cube root of unity, then $\omega + \omega^2 =$

(D)

(D)

$$\frac{1}{\omega}$$

2

6

2), value of B is: From the identity 5x + 4 = A(x - 1) + B(x)

1

Which of the term cannot be a term of G.F. 11.

(D)

K is equal to:

$$\frac{n+1}{2}$$

$$\frac{n(n+1)}{2}$$

$$\frac{n(n+1)(2n+1)}{6}$$

$$\frac{n(n-2)}{2}$$

 $\frac{"Pr}{r!}$ is equal to:

$$^{n}C_{r-1}$$

$$^{n+1}C_r$$

8th

(D)

(D)

$$^{n-1}C_r$$

9th

In expansion of $(a + b)^{16}$ middle term will be: 14.

Which of the following is **NOT** Quadrantal angle? 15.

(B)

 13π

16. The angle
$$\frac{3\pi}{2} - \theta$$
 lies in quadrant:

18.

$$(A)$$
 $[-1,1]$

$$[-1, 0]$$

$$[-2, 2]$$

IV

(A)
$$\frac{abc}{4\Lambda}$$

$$\frac{S}{\Delta}$$

$$\frac{\Delta}{S-a}$$

III

19.
$$Cos\left(sin^{-1}\frac{1}{\sqrt{2}}\right)$$
 is equal to:

827-11-A

(B)

$$\frac{\pi}{4}$$

(D)
$$-\frac{1}{2}$$

Page 23 of
$$\frac{1}{4}$$
, then reference angle is:

(A)
$$\frac{1}{2}$$
 (A) $\frac{\pi}{3}$

Roll No

to be filled in by the candidate

HSSC-(P-I)-A/2024 (For All Sessions)

Marks: 80

Time: 2:30 hours

Mathematics (Subjective)

(GROUP-II) SECTION-I

Write short answers of any eight parts from the following: 2.

(8x2=16)

- Does the set $\{1, -1\}$ possess closure property w.r.t multiplication? Construct the multiplication table. i.
- If $\frac{a}{b} = \frac{c}{d}$, prove that ad = bc
- Factorize $a^2 + 4b^2$ iii.
- Simplify by expressing in the form a + bi: $(2 + \sqrt{-3})(3 + \sqrt{-3})$ iv.
- If $B = \{1, 2, 3\}$ then write down the power set of B٧.
- Determine whether the statement $p \to (q \to p)$ is a tautology or not. Vİ.
- Under what conditions, the determinant of a square matrix A is zero. Write any two conditions. VII.
- If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b. viii.
- Determine whether the matrix $A = \begin{bmatrix} 1 & 1+i \\ 1-i & 2 \end{bmatrix}$ is hermitian matrix or skew-hermitian matrix.
- X.
- Xİ.
- Show that the roots of equation will be rational $px^2 (p-a)x = 0$ Write short answers of any eight parts from the following:

 Define an identify with XII.
- 3.

(8x2=16)

- Define an identity with example. i.
- Resolve into partial fraction $\frac{1}{r^2-1}$ ii.
- The 7th and 10th terms of an H.P are $\frac{1}{3}$ and $\frac{5}{21}$ respectively, find its 14th term. iii.
- Find the sum of first 15 terms of geometric sequence $1, \frac{1}{3}, \frac{1}{9}, \dots$ iv.
- Insert two G.M's between 2 and 16
- How many terms of the series $-7 + (-5) + (-3) + \cdots$ amount to 65 Vİ.
- A card in drawn from a deck of 52 playing cards What is the probability that it is a diamond card or an ace? VII. pakcity.org
- Find n, if ${}^nC_8 = {}^nC_{12}$ VIII.
- How many different 4-digit numbers can be formed out of the digits 1, 2, 3, 4, 5, 6, when no digit is repeated? ix.
- Use mathematical induction to prove that $3 + 3.5 + 3.5^2 + \cdots + 3.5^n = \frac{3(5^{n+1}-1)}{4}$ for n = 1,2
- Calculate by means of binomial theorem (2.02)⁴ Xİ.
- Expand upto 4 terms $(1-x)^{1/2}$ XII.

Write short answers of any nine parts from the following: 4.

(9x2=18)

- Find r, when l = 56cm, $\theta = 45^{\circ}$ i.
- Verify that $sin2\theta = 2sin\theta cos\theta$ for $\theta = 45^{\circ}$ ii.
- Write the fundamental law of trigonometry.

- Show that $cos(\alpha + \beta) cos(\alpha \beta) = cos^2 \alpha sin^2 \beta$. iv.
- Express sin5x + sin7x as a product. ٧.
- Define the period of trigonometric function. Vi.
- Write down the domain and range of tangent function. VII.
- Find the period of $\sin \frac{x}{3}$ viii.
- Solve the right triangle ABC, in which $\gamma = 90^{\circ}$, a = 3.28, b = 5.74. IX.
- Define half angle formulas for tangent. X.
- Define Hero's formula. Xİ.
- Find the value of $sin(tan^{-1}(-1))$ XII.
- Solve the equation sin2x = cosx where $x \in [0, 2\pi]$ XIII.

SECTION-II

Attempt any three questions. Each question carries equal marks: Note:

(10x3=30)

5.(a) Show that
$$\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3$$

- (b) Prove that $\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$ will have equal roots if $c^2 = a^2m^2 + b^2$; $a \neq 0, b \neq 0$
- Resolve into partial fractions $\frac{6x^3+5x^2-7}{2x^2-x-1}$
 - The A. M between the two numbers is 5 and their positive G. M. is 4 find the numbers.
- Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
 - Find the coefficient of x^5 in the expansion of $\left(x^2 \frac{3}{3}\right)^{10}$
- Reduce $sin^4\theta$ to an expression involving only functions of multiples of θ raised to the first power. 8. (a)
 - With usual notations, prove that $r = s.\tan^{\alpha}/2 \cdot \tan^{\beta}/2 \cdot \tan^{\gamma}/2$
- If $cot\theta = \frac{5}{2}$, and θ is in quadrant 1. find the value of $\frac{3sin\theta + 4cos\theta}{cos\theta sin\theta}$ 9. (a)
 - Prove that $\cos^{-1}\frac{63}{65} + 2\tan^{-1}\frac{1}{5} = \sin^{-1}\frac{3}{5}$

828-11-A

1124 Warning:- Please write your Roll No. in the space provided and sign. Roll No.

(Inter Part - I)

(Session 2020-22 to 2023-25)

Sig. of Student

Mathematics (Objective)

Group I

Paper (I)

Time Allowed: - 30 minutes

PAPER CODE 2191

Maximum Marks:- 20

Note:- You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the Answer Sheet and fill bubbles accordingly, otherwise the student will be responsible for the situation. Use of Ink Remover or white correcting fluid is not allowed.

1) The modulus of Complex number 4 + 5i is

(A)
$$\sqrt{41}$$

(B)
$$-\sqrt{41}$$

(C)
$$\sqrt{31}$$

(D)
$$-\sqrt{31}$$

2) Multiplicative inverse of (2, 0) is

(A)
$$\left(\frac{1}{2}, 0\right)$$
 (B) $\left(\frac{1}{2}, -2\right)$

(B)
$$(\frac{1}{2}, -2)$$

(C)
$$\left(\frac{1}{4}, 0\right)$$

(D)
$$\left(-\frac{1}{4},0\right)$$

3) If $A \subset B$, then $A \cap B$ equals

4) Disjunction of two Logical statements p and q is

(A)
$$p \cup q$$

(B)
$$p \wedge q$$

(D)
$$P \cap q$$

5) The solution of linear equation ax = b where $a_{2}/b \in G$

(A)
$$x = ab$$

(B)
$$x = ab^{-1}$$

$$(C) x = a^{-1}b^{-1}$$

(D)
$$x = a^{-1}b$$

6) If $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 1 \end{bmatrix}$, then A_{23} will be

(A) 1

- (D) 2

7) For square matrix A, if $A^t = A$, then A is called

- (A) Symmetric Matrix (B) Skew Symmetric
- (C) Skew Hermitian
- (D) Hermitian Matrix

Matrix

8) The product of four fourth root of unity is

(A) 1

- (B) -1
- (C) 0

(D) 4

9) If α and β are roots of $7x^2 - x - 2 = 0$, then $\alpha + \beta$ will be

(A) $-\frac{1}{7}$

(B) $\frac{1}{7}$

(C) $\frac{2}{7}$

(D) $-\frac{2}{7}$

1125 -- 1124 -- 11000(1) P.T.O

city.org

10) Rational fraction	$\frac{x^2 + 2x + 3}{Q(x)}$	will be improper fraction if degree of $Q(x)$ is
-----------------------	-----------------------------	--

(A) 3

(B)4

- $(C)_2$
- (D) 5

11) If in an A.P. $a_1 = 11$, $a_n = 68$, d = 3, then n will be equal to

(A) 30

(B) -20

(C) -30

(D) 20

12) If 3,9,27,... are in G.P. then r =

(A) 1

(B) 2

(C)4

(D) 3

13) The probability of non-occurrence of event E is

- (A) 1+P(E)
- (B) 1-P(E)
- (C) $1+P(\overline{E})$
- (D) P(E)-1

14) The expansion $(1-3x)^{1/2}$ will be valid if

- (D) |x| < -3

15) If $\cot \theta = \frac{5}{2}$; $0 < \theta < \frac{\pi}{2}$, then $\csc^2 \theta$ is

(C) $x < \frac{1}{3}$ (A) $\frac{-29}{2}$

- (A) $\frac{-29}{4}$

- (C) $\frac{29}{4}$
- (D) $\frac{-4}{29}$

16) $\sin(\theta + 270^{\circ}) =$

- (A) $\sin \theta$
- (B) $-\sin\theta$
- $\cos\theta$
- (D) $-\cos\theta$

17) Period of $\sin \frac{x}{3}$ is

- (A) 6π
- (B) 3π

- (D) -3π

18) $\frac{4\Delta}{abc}$ =

- (A) $\frac{1}{P}$
- (B) $\frac{1}{x}$

(C) R

(D) r

19) $\cos (2 \sin^{-1} x)$ will be equal to:

- (A) $2x^2 1$
- (B) $1 + 2x^2$
- (C) 2x+1
- (D) $1-2x^2$

20) Reference angle always lies in quadrant

(A) II

(B) I

(C) III

(D) IV

1125 -- 1124 -- 11000 (1)

pakcity.org

11th Class Mathematics Subjective Paper Group 1 Sargodha Board 2024

1124 Warning:- Please, do not write anything on this question paper except your Roll No. pakcity.org

Mathematics (Subjective)

(Session 2020-22to 2023-25)

Paper (I)

Time Allowed: 2.30 hours

(Inter Part - I) Group I

Maximum Marks: 80

Section -----I

Answer briefly any Eight parts from the followings:-2.

 $8 \times 2 = 16$

- Prove that $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ (i)
- Find the multiplicative inverse of (-4, 7) (ii)
- (iii) Factorize $9a^2 + 16b^2$
- Prove that product of any two conjugate complex numbers is a real number. (iv)
- Show that $A B \subseteq A \cap B'$ (v)
- (vi) Let (G..) be a group and $a, b \in G$, then prove that $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$
- If $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$, then find A_{12} and A_{22}
- Given A and B are two non singular matrices, show that $(AB)^{-1} = B^{-1}A^{-1}$ (viii)
- If $A = \begin{bmatrix} i & 1+i \\ 1 & -i \end{bmatrix}$, then find $A (\overline{A})^i$ (ix)
- If $A = \begin{bmatrix} i & 1+i \\ 1 & -i \end{bmatrix}$, then find $A (\overline{A})'$ (x) Find the fourth roots of unity. When $x^3 + 2x^2 + kx + 4$ is divided by x 2, then remainder is 14. Find value of k(xi)
- Show that the roots of equation $x^2 2\left(m x + 3 = 0\right)$ are real where $m \neq 0$ (xii)
 - 3.

- $8 \times 2 = 16$
- Answer briefly any Eight parts from the followings:- 8×2 Resolve $\frac{x^2+1}{(x-1)(x+1)}$ into partial fraction (ii) Define conditional equation. (i)
- Determine whether -19 is term of A.P 17,13,9,... (iv) Find geometric mean between -2i and 8i(iii)
- Sum the infinite geometric series $4+2\sqrt{2}+2+\sqrt{2}+...$ (v)
- Find 12th term of H.P $\frac{1}{3}$, $\frac{2}{9}$, $\frac{1}{6}$, ... pakcity.or (vii) Evaluate ${}^{10}p_7$ (vi)
- How many ways can 4 keys be arranged on a circular key ring. (viiis
- How many diagonals can be formed by joining vertices of 5 sided figure (ix)
- Expand $\left(x-1-\frac{1}{x}\right)^3$ (xi) Expand upte four terms $(1+x)^{-3}$ (2)
- Find term involving x^5 in expansion of $\left(x^2 \frac{3}{2r}\right)^{10}$ (xii)

1126 - 1124 - 11000

Answer briefly any Nine parts from the followings:- $9 \times 2 = 18$

$$9 \times 2 = 18$$

4. Express 75° in radians.

(i)

- (ii) Prove that $\frac{\sin \theta}{1 + \cos \theta} + \cot \theta = \csc \theta$
- If α, β, γ are angles of a triangle, then prove that $\cos\left(\frac{\alpha + \beta}{2}\right) = \sin\frac{\gamma}{2}$ (iii)
- Without using calculator, find the value of tan 105° (iv)
- Prove that $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$ (v)
- (vi) Write the domain and range of $y = \cos x$

Define periodicity. (vii)

- (viii) Find the period of $3\cos\frac{x}{c}$
- At the top of a cliff 80 m high, the angle of depression of a boat is 12°. How far is the boat from the (ix) cliff?
- Find area of a triangle ABC in which a = 18, b = 24, c = 30(x)
- Show that $r_2 = s \tan \frac{\beta}{2}$ (xi)

(a)

Show that $\cos(\sin^{-1} x) = \sqrt{1 - x^2}$ (xii)

(xiii) Solve the equation $\cos x = 0$ for general solution.

 $(10 \times 3 = 30)$

- Note: Attempt any three questions.
- Find the inverse of the matrix $A = \begin{bmatrix} 2 & 5 & 1 \\ 3 & 4 & 2 \\ 1 & 2 & -2 \end{bmatrix}$ Solve the system of equations $2x^2 + 3 = xy$ Resolve $\frac{x^4}{1-x^4}$ into Partial Fractions Resolve $\frac{x^4}{1-x^4}$ into Partial Fractions. (a)
 - The A.M of two positive integral numbers exceeds their (positive) G.M by 2 and their sum is 20, **(b)** find the numbers.
- Prove that ${}^{n-1}C_r + {}^{n-1}C_{r-1} = {}^nC_r$ (a) 7.
 - If $y = \frac{1}{3} + \frac{1.3}{2!} \left(\frac{1}{3}\right)^2 + \frac{1.3.5}{3!} \left(\frac{1}{3}\right)^3 + \dots$ then prove that $y^2 + 2y 2 = 0$
- Reduce $\cos^4\theta$ to an expression involving only function of multiples of θ , raised to the first (a)
 - Prove that $r_1 + r_2 + r_3 r = 4R$
- Prove that $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta \tan\theta$, where θ is not an odd multiple of $\frac{\pi}{2}$
 - Prove that $\sin^{-1}\frac{77}{85} \sin^{-1}\frac{3}{5} = \cos^{-1}\frac{15}{17}$

1126 -- 1124 -- 11000

	11th Class N	Mathematics Objective Pape	r Group 2 Sargodha Board 2	₀₂₄
			pace provided and sign.	Roll No
		ssion 2020-22 to 2023	-25) Sig. o	f Student
	ematics (Objective)	(Group-II)	-	Paper (I)
Note:- that circ result in Answer white co	cle in front of that question not zero mark in that question. V	umber. Use marker or pen to Write PAPER CODE, which lingly, otherwise the student of the student	A, B, C and D. The choice of fill the circles. Cutting or fi is printed on this question r	which you think is correct; fill illing two or more circles will paper, on the both sides of the pation. Use of Ink Remover or Q. 1
	(A) Square matrix	(B) Diagonal matrix	(C) Rectangular matrix	(D) Scalar matrix
2)	$1-\omega+\omega^2=$			
	(A) -1	(B) 0	(C) $-\omega$	(D) −2ω ●
3)	The quadratic equation with	th roots $3-\sqrt{3}$, $3+\sqrt{3}$	is	
	(A) $x^2 + 4x + 1 = 0$	(B) $x^2 - 4x + 1 = 0$	(C) $x^2 - 6x + 6 = 0$	(D) $x^2 - 6x - 6 = 0$
4)	The reflexive property o	f equality of real number	rs is that \forall $\alpha \in \mathbb{R}$	
	The reflexive property of (A) $a = a$	(B) $a \neq a$	(C) a a	(D) $a > a$
5)	171^{2}		3:1100	
	(A) Z^2	(B) $Z\overline{Z}$	(C) \overline{Z}^2	(D) Z(D) Non-discriptive method
6)	$\{x \mid x \in \mathbb{N}, x \le 10\}$ is the	e Mala		
	(A) Discriptive method	(B) Rabular method	(C) Set builder method	(D) Non-discriptive metho
	p: 4 < 7, $q: 6 > 11$,	the disjunction $p \vee q$ is		
	(A) False	(B) True EDUCA	(C) Not valid	(D) unknown
8)	The identity element of	a set X with respect to in	tersection in P(X) is	
	(A) 0	(B) \$\phi\$	(C) Does not exist	(D) X •
9)	If $A = \begin{bmatrix} x & 1 \\ 1 & 1 \end{bmatrix}$ and $\frac{1}{ A } = \frac{1}{ A }$	=7, then $x =$	y.org	
	(A) $\frac{8}{7}$	(B) $\frac{7}{8}$	(C) $\frac{9}{7}$	(D) 7

P.T.O 1127 -- 1124 -- 11000 (4)

10)	r.	r.	r.	=
IU,	11	"	13	

(A) Rr^2

(B) rR^2

(C) RS^2

(D) YS

11) $2\cos^{-1}A =$

(A) $\sin^{-1}{2A^2-1}$ (B) $\sin^{-1}{A^2-2}$

(C) $\cos^{-1}{2A^2-1}$ (D) $\cos^{-1}{A^2-2}$

12) $\cos x = -\frac{1}{\sqrt{2}}$ and $x \in [0, \pi]$ then x =

(A) $\frac{3\pi}{4}$

(B) $\frac{5\pi}{4}$

(C) $\frac{\pi}{4}$

(D) $\frac{-\pi}{4}$

13) $(x-4)^2 = x^2 - 8x + 16$ is

(A) A linear equation

(B) Cubic equation

(C) An equation

(D) An identity

14) A number A is said to be the arithmatic mean between two numbers a and b if a, A, b is

(A) G.P

(B) A.P

(C) H.PO

(D) Not a sequence

15) If a = 3, r = 2 then nth term of the G.P is

(A) 3.2^{n-1}

 $(C) 3.2^n$

(D) 3.2^{n+1}

16) n(n-1)(n-2)(n-3)...(n-r+1) =

(A) n!r!

(D) n!

17) The sum of the odd coefficients in the expansion $(1+x)^3$ is

(A) 4

(B) 8

(D) 16

18) 120° = _____ radians

(A) $\frac{3\pi}{2}$

(D) 180π

19) $2\sin^2\left(\frac{\alpha}{2}\right) =$

(A) $1 + \sin \alpha$

(B) $1-\sin\alpha$

(C) $1 + \cos \alpha$

(D) $1-\cos\alpha$

20) The range of $\sin x$ is

(A) [-1, 1]

(B)]-1,1[

TH (C)

(D)]-1, 1]

1127 -- 1124 -- 11000

11th Class Mathematics Subjective Paper Group 2 Sargodha Board 2024

1124 Warning:- Please, do not write anything on this question paper except your Roll No.

Mathematics (Subjective)

(Session 2020-22 to 2023-25)

Paper (I)

Time Allowed: 2.30 hours

(Inter Part - I) (Group-II)

Maximum Marks: 80

Section ----- I

Answer briefly any Eight parts from the followings:-2.

$$8 \times 2 = 16$$

- Prove the rule of addition $\frac{a}{h} + \frac{c}{d} = \frac{ad + bc}{hd}$ (i)
- Separate real and imaginary parts $\frac{2-7i}{4+5i}$ (ii)
 - (iii) Find the multiplicative inverse of -3-5i
- (iv) For any complex number $z \in C$, prove that $z \cdot \overline{z} = |z|^2$
- If $S = \{0, 1, 2\}$, then show that S is an abelian group under addition. (v)
- Construct the truth table of the statement $(p \land \sim p) \rightarrow q$ (vi)
- If $B = \begin{vmatrix} 3 & -2 & 3 \\ 3 & -1 & 4 \\ -2 & 1 & -2 \end{vmatrix}$, then find B_{21} and B_{23} . (vii)
- If A is symmetric or skew-symmetric, show that A² is symmetric. (viii)
- Find the matrix X if $X \begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$ (ix)
- Show that the product of all the three cube roots of unity is unity. (x)
- If α , β are the roots of $x^2 px p c = 0$ prove that $(1 + \alpha)(1 + \beta) = 1 c$ (xi)
- Solve the equation $x^4 6x^2 + 8 = 0$ (xii)
 - Answer briefly any Eight parts from the followings:-3.

- Define a Rational Fraction with example. (i)
- Resolve into partial Fraction without determining the constants $\frac{3x^2 4x 5}{(x-2)(x^2 + 7x + 10)}$ (ii)
- If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in A.P, show that $b = \frac{2ac}{a+c}$ (iv) If $S_n = n(2n+1)$, then find the series (iii)
- A.M between two numbers is 5 and their positive G.M is 4. Find the numbers. (v)
- If 5 is Harmonic Mean between 2 and b. Find b (vii) Find the value of n, when ${}^{n}P_{4}: {}^{n-1}P_{3}=9:1$ (vi)
- A die is rolled, what is the probability that the top shows dot 3 or 4. (viii)
- Find the number of the diagonals of a 6 sided figure. (x)State the principle of Mathematical induction. (ix)
- (xii) Find the general term of $\left(\frac{a}{2} \frac{2}{a}\right)^{\alpha}$ Prove the formula 2+4+6+...2n = n(n+1)(xi)

1128 - 1124 - 11000 P.T.O

Answer briefly any Nine parts from the followings:-4.

 $9 \times 2 = 18$

- State fundamental identities. (i)
- (ii) Verify that $\sin^2 \frac{\pi}{6} : \sin^2 \frac{\pi}{4} : \sin^2 \frac{\pi}{3} : \sin^2 \frac{\pi}{2} = 1 : 2 : 3 : 4$
- Prove that $\cos 330^{\circ} \sin 600^{\circ} + \cos 120^{\circ} \sin 150^{\circ} = -1$ (iii)
- Show that $\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta 1}{\cot \alpha + \cot \beta}$ (iv)
- (v) Prove that $\sin(\alpha + \beta) \sin(\alpha \beta) = 2\cos\alpha\sin\beta$
- Write down the Domain and Range of secant function. (vii) Find the period of $\tan 4x$ (vi)
- Draw the graph of $y = \sin x$ from 0 to π (viii)
- Define the angles of elevation and depression. (x) What do you mean by oblique triangle. (ix)
- By using law of cosine, find α when a = 7, b = 3, c = 5(xi)
- Prove that $\sin^{-1} x = \frac{\pi}{2} \cos^{-1} x$ (xii)
- Solve the trigonometric equation $\cot^2 \theta = \frac{1}{3}$ (xiii)

Section ----- II

Note: Attempt any three questions.

- Attempt any three questions. (10 \times 3 = 30)

 Use Crammer's Rule to solve the systems of Linear equations $x_1 + x_2 x_3 = -4$ $-x_1 + 2x_2 x_3 = 1$ (a)
 - Find the values of a and b if -2 and 2 are the roots of the polynomial $x^3 4x^2 + ax + b$ (b)
- Resolve into partial fractions $\frac{x^2(+2x+2)}{(x^2+3)(x+1)(x-1)}$ (a)
 - How many terms of the series $-9 6 3 + 0 + \dots$ amount to 66?
- Find values of *n* and when ${}^{n-1}C_{r-1}: {}^{n}C_{r}: {}^{n+1}C_{r+1} = 3:6:11$
 - If $2y = \frac{1}{2^2} + \frac{1.3}{2!} + \frac{1}{2^4} + \frac{1.3.5}{3!} + \frac{1}{2^6} + \dots$ then prove that $4y^2 + 4y 1 = 0$
- Prove that $\sin 10^{\circ} \cdot \sin 30^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ} = \frac{1}{16}$ (a)
 - Using Law of tangents, solve the $\triangle ABC$ in which a = 36.21; c = 30.14; $\beta = 78^{\circ}10^{\circ}$
- (a) If $\csc \theta = \frac{m^2 + 1}{2m}$; m > 0; $0 < \theta < \frac{\pi}{2}$, then find the values of remaining trigonometric functions.
 - Prove that $2 \tan^{-1} (\frac{1}{3}) + \tan^{-1} (\frac{1}{7}) = \frac{\pi}{4}$

1128 -- 1124 -- 11000

Mathematics

(C)

Bahawalpur Board-2024

Ist - A - Exam - 2024

Paper Code No. 6195

Paper 1 Time

(Objective Type) 30 Minutes

Inter (Part - I)

Session (2022 - 24) & (2023 - 25)

Marks :

Note: Four choices A, B, C, D to each question are given. Which choice is correct fill that circle in front of that Question No. on the Objective Bubble Sheet. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

no accordant	
Q.No.1 (1)	If $A \subseteq B$ and $A - B = \emptyset$, then $n(A - B) = \dots$: ($\nearrow 0$ (B) $n(A)$ (C) $n(B)$ (D) $n(A) - n(B)$
(2)	The Property $\forall a \in R$, $a = a$ is called : (A) Symmetric (B) Transitive (\bigcirc Reflexive (D) Commutative
(3)	Modulus of 5 – 3i is : (A) $\sqrt{4}$ (B) $\sqrt{16}$ (C) $\sqrt{25}$ (D) $\sqrt{34}$
(4)	If p is a logical statement then p ∧ ~ p is always: (A Absurdity (B) Contigency (C) Tautology (D) Conditional
(5)	If $A = \begin{bmatrix} 1 & 1 \\ 1 & x \end{bmatrix}$, and $ A = 4$, then $x =$: (A) 2 (B) 3 (C) 4 (D) 5
(6)	A matrix of order m x 1 is called : (A) Row Matrix (B) Column Matrix (C) Diagonal Matrix (D) Null Matrix
(7)	Set containing elements of A or B is denoted by : (A) $A \cap B$ (B) $A \subseteq B$. (C) $A \cup B$ (D) $B \subseteq A$
(8)	Roots of the equation $x^2 - 5x + 6 = 0$ are: (A) 2, -3 (B) -2, -3 (C) 2,3 (D) -2,3
(9)	The Arithmetic Mean between $\sqrt{2}$ and $3\sqrt{2}$ is : (A) $2\sqrt{2}$ (B) $3\sqrt{2}$ (C) $4\sqrt{2}$ (D) $\sqrt{2}$
(10)	$\frac{x}{2x+3}$ is: : (A) Proper Fraction (B) Improper Fraction (C) Identity Fraction (D) Mixed Fraction
(11)	Degree of Constant Polynomial is (A) n (B) 2 (C) 1 (D) 0
(12)	$\sum_{K=1}^{n} K = \dots \qquad (A) \frac{n^{2}(n+1)^{2}}{4} \qquad (B) \frac{n(n+1)}{2} \qquad (C) \frac{n(n+1)(n+2)}{6} \qquad (D) \frac{n(n-1)}{2}$
(13)	Solution of Cot $\theta = \frac{1}{\sqrt{3}}$ in quad III is: (A) $\frac{5\pi}{3}$ (B) $\frac{7\pi}{6}$ (C) $\frac{4\pi}{3}$ (D) $\frac{7\pi}{3}$
(14)	Numbers of terms in the expansion of $(a + x)^{2n+1}$ are : (A) $2n + 2$ (B) $2n + 1$ (C) $2n$ (D) $n + 1$
(15)	Probability of an impossible event is: (A) 1 (B) 0.5 (C) 0.25 (D) 0
(16)	$Tan(\alpha-90^\circ)= : (A) Cot \alpha (B) - Cot \alpha (C) Tan \alpha (D) - Tan \alpha$
(17)	The Value of Sin ⁻¹ (Cos $\frac{\pi}{6}$) is equal to : (A) $\pi/2$ (B) $3\pi/2$ (C) $\pi/6$ (D) $\pi/3$
(18)	$Sec\left(\frac{\alpha}{2}\right) = \dots : (A) \sqrt{\frac{s(s-a)}{bc}} (B) \sqrt{\frac{bc}{s(s-a)}} (C) \frac{s}{\Delta} (D) \frac{\Delta}{s-b}$
(19)	Period of Cot 3x is : (A) π (B) $\frac{2\pi}{3}$ (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{3}$
(20)	If $\sin x = \frac{\sqrt{3}}{2}$ and $x \in [0, 2\pi]$, then x is : (A) $\frac{5\pi}{3}$, $\frac{4\pi}{3}$ (B) $\frac{\pi}{4}$, $\frac{3\pi}{4}$ (C) $\frac{\pi}{3}$, $\frac{2\pi}{3}$ (D) $\frac{\pi}{6}$, $\frac{5\pi}{6}$
	(A) $\frac{1}{3}$, $\frac{1}{3}$ (B) $\frac{1}{4}$, $\frac{1}{4}$ (C) $\frac{1}{3}$, $\frac{1}{3}$ (D) $\frac{1}{6}$, $\frac{1}{6}$

Roll No. Mathematics (Subjective)

1534 -)_6000 Inter (Part - I) Int - A - Exam - 2024 Session (2022 -24) & (2023 - 25)

Time 2:30 Hours Marks: 80

Note: It is compulsory to attempt any (8 - 8) Parts each from Q.No. 2 and Q.No. 3 while attempt any (9) Parts from Q.No. 4. Attempt any (3) Questions from Part - II , Write same Question No. and its Part No. as given in the Question Paper.

Bahawalpur Board-2024

Part - I

25 x 2 = 50

Baha	ıwa	A STATE OF THE PARTY OF THE PAR	ا ۳	S parcity.org	25 x 2 ≈ 50		
Q.No.2	(1)	Show that $\forall z \in \mathbb{C}$, $z = z ^2$					
	(11)	Show that $\forall z_1, z_2 \in \mathbb{C}$, $\overline{z_1}\overline{z_2} = \overline{z_1} \overline{z_2}$					
	(111)	Define Polar form of a Complex Number .					
parties to service to	(iv)	Prove that $\overline{z} = z$ iff z is real.					
	(v)	Write down the Power set of { a , { b , c }}					
	(vi)	Show that $(p \land q) \rightarrow p$ is a tautology.					
	(vii)	Solve the system of linear equations: $4x_1 + 3x_2 = 5$, $3x_1 - x_2 = 7$	(vili)	Write any two Properties	of Determinant.		
	(ix)	Define Hermitian Matrix .	(x)	Solve the equation by Co $x^2 + 4x - 1085 = 0$	mpleting Square		
	(xi)	Solve the equation by using quadratic formula, $16x^2 + 8x + 1 = 0$	(xii)	Prove that : $(-1 + \sqrt{-3})^4 + (-1 - \sqrt{-3})^4$	$-\sqrt{-3})^4 = -16$		
Q.No.3	(i)	Define Conditional equation and give example .					
	(ii)	Resolve $\frac{1}{x^2-1}$ into Partial Fraction.					
	(iii)	If $a_{n-2} = 3n - 11$, find the nth term of the Sequence.					
	(iv)	Find A.M between $3\sqrt{5}$ and $5\sqrt{5}$					
	(v)	If $S_n = n(2n-1)$, then find the series	es .				
	(vi)	With usual notation, show that G ² = AH					
	(vii)	Write $n(n-1)(n-2)(n-r+1)$ in the factorial form.	(viii)	What is the Fundamenta Counting?	l Principle of		
	(ix)	Two Coins are tossed twice each. Find the Probability that the head appears on the first toss and the same faces appear in the two tosses.	(x)	Calculate (0.97) ³ by Binomial Theorem.	means of		
	(xi)	Find the term involving x ⁴ in the	(xii)	Expand upto 4 terms, ta	king the values of		
		expression of $(3-2x)^7$	ty.c	x such that the expansion for $(1-x)^{\frac{1}{2}}$	on in case is valid		
Q.No.4	(i)	Convert $\frac{9\pi}{5}$ into the measure of Sexagesimal System .					
		If $tan\theta = \frac{8}{15}$ and $\theta \in III$ then find Sin θ and Cos θ .					
	(ii)	If $\tan \theta = \frac{1}{15}$ and $\theta \in III$ then find $\sin \theta$	and C	Cosθ.			

L.K.No. 1534

Bahawalpur Board-2024

(iv)	Find the Value of tan (105°) .
(v)	Write Triple angle identity for Cos3a.
(vi)	Find the Period of tanθ .
(vii)	Find the Period of Sin $(\frac{x}{3})$.
(viii)	Draw the graph of $y = 2\cos x$, $x \in [0, 2\pi]$
(ix)	Solve the right triangle ABC in which $\gamma = 90^{\circ}$, $\alpha = 37^{\circ} 20^{\prime}$, $a = 243$
(x)	Define Angle of Depression .
(xi)	By using Law of Cosine find the value of C if a = $\sqrt{3}$ – 1 , b = $\sqrt{3}$ + 1 , γ = 60°
(xii)	Find the value of Cos (Sin ⁻¹ ($\frac{1}{\sqrt{2}}$))
(xiii)	Solve the equation 1 + Cosx = 0

Part - II pakcity.org 3 x 10 = 30

Q.No.5	(a)	Show that $\begin{vmatrix} a+l & a & a \\ a & a+l & a \\ a & a & a+l \end{vmatrix} = \ell^2(3a+l)$	(5)
	(b)	Solve the Equation: $\sqrt{5x^2 + 7x + 2} - \sqrt{4x^2 + 7x + 18} = x - 4$	(5)
Q.No.6	(a)	2.14	(5)
	(b)	If the numbers 1, 4 and 3 are Subtracted from three Consecutive terms of an A.P, the resulting numbers are in G.P. Find the numbers if their Sum is 21.	(5)
Q.No.7	(a)	Find the values of n and r When "C _r = 35, and "p _r = 210	(5)
	(b)	Use Binomial Theorem to show that $1 + \frac{1}{4} + \frac{1 \cdot 3}{4 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12} + \dots = \sqrt{2}$ Prove that $\sin^6 \theta - \cos^6 \theta = (\sin^2 \theta - \cos^2 \theta)(1 - 3\sin^2 \theta \cos^2 \theta)$	(5)
Q.No.8	(a)	Prove that $\sin^6 \theta - \cos^6 \theta = (\sin^2 \theta - \cos^2 \theta)(1 - 3\sin^2 \theta \cos^2 \theta)$	(5)
	(b)	Prove that: $\sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$	(5)
Q.No.9	(a)	Reduce Sin θ to an expression involving only function of multiples of θ , raised to the first power.	(5)
	(b)	The Sides of a triangle are $x^2 + x + 1$, $2x + 1$ and $x^2 - 1$.	(5)
		Prove that the greatest angle of the triangle is 120°.	

09-05-2024

PAPER CODE - 6197 **MATHEMATICS** TIME: 30 MINUTES 11th CLASS - 1st Annual 2024 **MARKS: 20** GROUP: FIRST **OBJECTIVE**

You have four choices for each objective type question as A , B , C and D . The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero marks in that question.

DG Khan Board-2024

11th CLASS - 1st Annual 2024

MATHEMATICS GROUP: FIRST

SUBJECTIVE PART

TIME: 2 HRS 30 MINUTES

MARKS: 80

SECTION-I

	SECTION-I	
QUES	STION NO. 2 Write short answers any Eight (8) of the following pakcity.org	16
i	Simplify $(7, 9) + (3, -5)$	
ii	Find the multiplicative inverse of (-4 ,7)	
iii	$\forall z \in C$, prove that $z.\overline{z} = z ^2$	
iv	Simplify i ⁻¹⁰	
V	Write the power set of { 9 , 11}	
vi	Construct the truth table for $(p \land \sim p) \rightarrow q$	
vii	Find x and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$	
viii	If A and B are square matrices of the same order, then explain why in general $(A+B)^2 \neq A^2 + 2AB + B^2$	
ix	Without expansion show that $\begin{vmatrix} 6 & 7 & 8 \\ 3 & 4 & 5 \\ 2 & 3 & 4 \end{vmatrix} = 0$	
х	Solve the equation x^2 - $2x$ - $899 = 0$ by completing the square	
хi	Evaluate $\omega^{28} + \omega^{29} + 1$	
xii	Find the condition that one root of equation $x^2 + px + q = 0$ is double the other.	

QUESTION NO. 3 Write short answers any Eight (8) of the following

16

~	
i	Define an identity
ii	Change $\frac{6x^3+5x^2-7}{2x^2-x-1}$ in to proper fraction
iii	Find the next two terms 1, 3, 7, 15, 31,
iv	If $a_{n-3} = 2n-5$, find the nth term of the sequence
V	Show that the reciprocals of the terms of the geometric sequence a_1 , a_1r^2 , a_1r^4 ,
vi	Find A.M between $x-3$ and $x+5$
vii	Find the value of n when ${}^{n}P_{4}$: ${}^{n-1}P_{3} = 9:1$
viii	Find the value of n when ${}^{n}C_{10} = \frac{12 \times 11}{2!}$
ix	Determine the probability of getting 2 heads and 2 tails when a coin is tossed four times
х	Prove $1+4+7+\cdots+(3n-2)=\frac{n(3n-1)}{2}$
хi	Calculate by means of Binomial theorem (0.97) ³
xii	Expand (8 - 5x) ^{-2/3} up to four terms.

QUES	TION NO. 4 Write short answers any Nine (9) of the following 18
i	If $tan\theta = \frac{8}{15}$ and terminal arm of the angle is in the III quadrant, find the value of $sin\theta$ and $cos\theta$
ii	Prove that $\sec^2\theta$ - $\csc^2\theta$ = $\tan^2\theta$ - $\cot^2\theta$
iii	If α , β , γ are angles of a triangle ABC, Prove that $\tan(\alpha + \beta) + \tan \gamma = 0$ pakcity.org
iv	Find value of sec 75°, without using tables
V	Prove that $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$
vi	Write the domain and range of $y = \tan x$
vii	Find the period of $\csc 10x$
viii	Draw the graph of $y = \sin \frac{x}{2}$ for $0 \le x \le 2\pi$
ix	Find the smallest angle of the triangle ABC , when $a=37.34$, $b=3.24$, $c=35.06$
x	Find area of triangle ABC, if $a = 18$, $b = 24$, $c = 30$
хi	Prove that $r r_1 r_2 r_3 = \Delta^2$
xii	Without using calculator, show that $2 \cos^{-1} \frac{4}{5} = \sin^{-1} \frac{24}{25}$
xiii	Find the solution of equation $\csc\theta = 2$ which lies in $[0, 2\pi]$

SECTION-II

Note: Attempt any Three questions from this section

 $10 \times 3 = 30$

Q.5- (A)	For what values of m, will the roots of the equation	
	$x^2 - 2(1+3m)x + 7(3+2m) = 0$ be equal	
(B)	Solve the system linear equations by Cramer's Rule	
	$2x_1 - x_2 + x_3 = 8$	
	$x_1 + 2x_2 + 2x_3 = 6$	
	$x_1 - 2x_2 - x_3 = 1$	
Q.6- (A)	Passive into partial fractions	
Q.0 (7.)	Resolve into partial fractions $(1-ax)(1-bx)(1-cx)$	
(B)	If $y = \frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + \cdots$ and if $0 < x < \frac{3}{x}$, then show that $x = \frac{3y}{2(1+y)}$	
Q.7-(A)	Prove that $^{n-1}C_r + ^{n-1}C_{r-1} = {}^{n}C_r$	
(B)	If x is so small that its square and higher powers can be neglected, show that	
111	1-x 3	
	$\frac{1-x}{\sqrt{1+x}} \approx 1 - \frac{3}{2}x$	
Q.8-(A)	Show that $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{1}{8}$	
(B)	By using $\Delta = \frac{1}{2}$ bc sin α drive the Hero's formula	
Q.9-(A)	If $\cot \theta = \frac{5}{2}$ and the terminal arm of the angle is in the I quad,	
	find the value of $\frac{3 \sin\theta + 4 \cos\theta}{\cos\theta - \sin\theta}$	
(B)	Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$	

MATHEMATICS	PAPER CODE – 6196	TIME: 30 MINUTES
GROUP : SECOND	11 th CLASS – 1 st Annual 2024	MARKS: 20
	OBJECTIVE	

NOTE:

You have four choices for each objective type question as A , B , C and D . The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero marks in that question.

	the circles. Cutting or filling two or more circles will result in zero marks in that question.
QUE	STION NO. 1 @ pakcity.org
1	If polynomial $x^2 - 2x + 2$ is divided by $x - 1$, then remainder is
	(A) -1 (B) 1 (C) 0 (D) 2
2	Partial fraction of $\frac{x}{(x-1)(x+2)} = \frac{1}{3(x-1)} + \frac{B}{x+2}$, then value of B is
	(A) -3/2 (B) 3/2 (C) 2/3 (D) -2/3
3	Sum of n-arithmatic means between a and b is
	(A) $\frac{a+b}{2}$ (B) n(a+b) (C) (a+b) (D) n $\left(\frac{a+b}{2}\right)$
	2
4	Next term of sequence 7,9,12, Is (A) 14 (B) 15 (C) 16 (D) 18
5	Number of necklaces can be made from 6 beads
	(A) 720 (B) 120 (C) 90 (D) 60
6	Middle term in expansion of $(3 + x)^4$ is
	(A) $81 x^2$ (B) $54 x^2$ (C) $26 x^2$ (D) $108 x^2$
7	One degree is equal to radian
	(A) $\frac{180}{\pi}$ (B) $\frac{\pi}{180}$ (C) $\frac{\pi}{90}$ (D) π
8	
	$\cot (90 - \alpha) = \dots$ (A) $\tan \alpha \bullet (B) - \tan \alpha$ (C) $\cot \alpha$ (D) $\cot \alpha$
9	Period of sin x/3 is
	(A) 2π (B) $2\pi/3$ (C) 6π (D) 3π
10	$\cos \alpha/2 = \dots$
	Period of $\sin x/3$ is (A) 2π (B) $2\pi/3$ (C) 6π (D) 3π $\cos \alpha/2 = \dots$ (A) $\frac{s(s-a)}{bc}$ (B) $\frac{s(s-b)}{ac}$ (C) $\sqrt{\frac{s(s-b)}{bc}}$ (D) $\sqrt{\frac{s(s-b)}{ac}}$ $\sin (x) = \frac{1}{2} \sin (x)$ (D) $\sin (x)$
	bc ac V bc V ac
11	$sec(cos - \frac{1}{2}) =$
1 1	(A) 1/2 (B) 2 (C) 11/5 (D) 11/6
12	If $\cos x = -\sqrt{3}/2$, then value of x is
	(A) $\frac{5\pi}{6}$ (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{3}$
13	$a < b \Rightarrow -a > -b$, $a, b \in R$ property used is
	(A) Transitive (B) Additive (C) Multiplicative (D) Trichotomy
14	If $Z=1-i$, then $ Z =\dots$ pakeity.org
	(A) 2 (B) -2 (C) $\sqrt{-2}$ (D) $\sqrt{2}$
15	A and B are disjoint sets then (A) $A \cap B = \emptyset \bullet$ (B) $A \cup B = \emptyset$ (C) $A - B = \emptyset$ (D) $B - A = \emptyset$
	Tabular form of $\{x \mid x \in E \land 2 < x \le 4\}$
16	(A) $\{2,3,4\}$ (B) $\{2,4\}$ (C) $\{4\}$ (D) $\{\emptyset\}$
17	The set A has m elements, Number of elements in power set of A pakcity.org
-/	(A) 2 ^{m-1} (B) 2 ^m (C) 2 ^{m+1} (D) 2 ^{m/2}
10	Rank of $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is
18	(1 1)
	(A) Zero (B) 1 • (C) -1 (D) 2
19	Determinant of [-5] is (A) Zero (B) Not possible (C) - 5 (D) 5
اندا	α , β are roots of $ax^2 - bx + c = 0$, then $\alpha + \beta =$
20	$(a, b) = (b) = \frac{b}{c} = (c) = \frac{c}{c}$
	(A) $\frac{b}{a}$ (B) $-\frac{b}{a}$ (C) $\frac{c}{a}$ (D) $-\frac{c}{a}$
	11.7 (Obj) - 1 st Annual 2024 SEQUENCE - 3 (PAPER CODE - 6196)

DG Khan Board-2024

11th CLASS - 1st Annual 2024

MATHEMATICS GROUP: SECOND

TIME: 2 HRS 30 MINUTES

SUBJECTIVE PART MARKS: 80

SECTION-I Pakcity.org

QUESTION NO. 2 Write short answer	rs any Eight (8) of the following
-----------------------------------	-----------------------------------

16

QUL.	STION 180. 2 Write short answers any Light (b) of the following
i	Simplify (5, -4) (-3, -2)
ii	Separate into real and imaginary parts $\frac{2-7l}{4+5l}$
iii	Prove that $\bar{Z} = Z$ if Z is real
iv	Simplify $(a + b i)^2$
V	Write two proper subsets of { a , b , c }
vi	Show that $(p \land q) \rightarrow p$ is a tautology
vii	Find x and y if $\begin{bmatrix} 2 & 0 & x \\ 1 & y & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & x & y \\ 0 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 4 & -2 & 3 \\ 1 & 6 & 1 \end{bmatrix}$
viii	Find the matrix X if $\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix}$ X = $\begin{bmatrix} 2 & 1 \\ 5 & 10 \end{bmatrix}$
ix	If $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 1 \end{bmatrix}$, then find A_{12} and A_{32}
x	Evaluate $\omega^{28} + \omega^{29} + 1$
хi	Use remainder theorem to find the remainder when $x^2 + 3x + 7$ is divided by $x + 1$
xii	Discuss the nature of the roots of equation $2x^2 - 5x + 1 = 0$

QUESTION NO. 3 Write short answers any Eight (8) of the following

16

i	Define partial fraction resolution
ii	Suppose $\frac{7x+25}{(x+3)(x+4)} = \frac{A}{x+3} + \frac{B}{x+4}$ Find the values of A and B
iii	Write the first four terms of the following sequence, if $a_n = (-1)^n n^2$
iv	Which term of the A.P 5, 2, -1, is -85 ?
V	If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P. Show that the common ratio is $\pm \sqrt{\frac{a}{c}}$
vi	Show that $G^2 = AH$ if $a = 2i$, $b = 4i$
vii	Find the value of n if $^{n}P_{2} = 30$
viii	Find the number of the diagonals of a 6-sided figure
ix	A die is rolled. What is the probability that the dots on the top are greater than 4?
х	Prove that $4^k > 3^k + 4$ is true for $k = 2, 3$
хi	Calculate (0.97) ³ by means of binomial theorem
xii	Expand up to 4 terms $(1-x)^{1/2}$, taking the values of x such that the expansion is valid

QUESTION NO. 4	Write short answers and	v Nine (9) of the follo	wing
-----------------------	-------------------------	-------------------------	------

40-0	Tiot No. 4 Write short answers any little (5) of the following
i	Find ℓ , when θ = 65° 20 $^{\prime}$, r = 18 mm
ii	Verify that $2 \sin 45^\circ + \frac{1}{2} \csc 45^\circ = \frac{3}{\sqrt{2}}$
iii	Without using the tables , find the value of sec (- 300)
iv	Prove that $\frac{\cos 8^o - \sin 8^o}{\cos 8^o + \sin 8^o} = \tan 37^o$
V	Prove that $1 + \tan \alpha \tan 2 \alpha = \sec 2 \alpha$
vi	Write down the domain and range of $\sin x$
vii	Find the period of $\cot \frac{x}{2}$
viii	Draw the graph of $y = \cos x$ for $0 \le x \le 360^{\circ}$
ix	What is difference between right angle triangle and oblique triangle
х	Find the area of the triangle ABC , if $a=200$, $b=120$, $\gamma=150^{\circ}$
хi	Find the radius of in-circle if $a = 13$, $b = 14$, $c = 15$
xii	Without using calculator, show that $tan^{-1} \frac{5}{12} = sin^{-1} \frac{5}{13}$
xiii	Solve the equation $\sin x + \cos x = 0$

SECTION-11

Note: Attempt any Three questions from this section

 $10 \times 3 = 30$

Q.5- (A)	Solve the equation $\sqrt{5x^2 + 7x + 2} = \sqrt{4x^2 + 7x + 18} = x - 4$ pakcity.org				
(B)	Use matrices to solve the following system of equation				
	$2x_1 + x_2 + 3x_3 = 3$				
	$x_1 + x_2 - 2x_3 = 0$ $-3x_1 - x_2 + x_3 = -4$				
	$-3x_1 - x_2 + x_3 = -4$				
Q.6- (A)	Resolve the following into partial fractions $\frac{x^2}{(x-2)(x-1)^2}$				
(B)	Find n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the A.M. between a and b				
Q.7-(A)	A natural number is chosen out of the first fifty natural numbers. What is the probability				
	that the chosen number is multiple of 3 or 5 ?				
(B)	Expand $\left(\frac{x}{2} - \frac{2}{x^2}\right)^6$ by using binomial theorem				
Q.8-(A)	Show that $\cos 20^\circ \cos 40^\circ \cos 80^\circ = \frac{1}{8}$				
(B)	The sides of triangle are $x^2 + x + 1$, $2x + 1$ and $x^2 - 1$				
	Prove that the greatest angle of the triangle is 120°				
Q.9-(A)	Prove that : $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$				
	Where θ is not an odd multiple of $\frac{\pi}{2}$				
(B)	Prove that : $\cos^{-1} A + \cos^{-1} B = \cos^{-1} [AB - \sqrt{1 - A^2} \sqrt{1 - B^2}]$				

117 (Sub) - 1st Annual 2024

Sahiwal Board-2024

MATHEMATICS

HSSC (11th) 1st Annual 2024 Objective - (iii)

Roll No _____ (To be filled in by the candidate)

paper: I Paper Code Marks: 20 Time: 30 Minutes 9 Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in you answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

_	SECTION - A				
Q.1	Questions	A	В	C	D
1.	$2\sin 45^{\circ} + \frac{1}{2}\csc 45^{\circ} = $	1	-1	$\frac{3}{\sqrt{2}}$	$\sqrt{\frac{2}{3}}$
2.	The value of $\sec\left(\sin^{-1}\frac{\sqrt{3}}{2}\right) =$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	2	1/2
3.	In any triangle ABC, $\frac{c^2 + a^2 - b^2}{2ac} = \underline{\hspace{1cm}}$	cos α	cos β	cos γ	$\cos (\beta + \alpha)$
4.	If a = 1, b = 5 then A × H =	2/5	$\frac{5}{2}$	5	- 5
5.	sin(-300°) =	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{2}{\sqrt{3}}$	0
6.	If $\cos x = \frac{1}{\sqrt{2}}$, then reference angle is:	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
7.	Every non-recurring, non-terminating decimal represents number.	rational	irrational	whole	natural
8.	⁶ P ₃ =	3.65	18	36	120
9.	Range of $\sin\left(\frac{x}{2}\right)$ is:	[2,-1/2]	[-2, 2]	[2, -2]	[-1, 1]
10.	If $a_{n-2} = 3n - 11$, then nth term is:	3n+2	3n-5	3n + 5	3n – 3
	$(\mathbf{A} \cup \mathbf{B})^{\mathbf{c}} = \underline{\hspace{1cm}}$	A∪B	A∩B	$A^c \cup B^c$	A°∩B°
12.		ED2GAI	(ON 3	1	-1
13.	If $4^x = \frac{1}{2}$ then $x = $	1/4	1/2	⁻¹ / ₂ ●	2
14.	[1 0]	pa ² co/.	org 🗐	0	√-1
15.	If $\begin{vmatrix} k & 4 \\ 4 & k \end{vmatrix} = 20$ then $k = $	±36	±24	±16	±6 ●
16.		A – B	B − A	$A \cap B$	$A \cup B$
17.	(B-Universal): $\frac{A}{x-1} + \frac{B}{x+1}$ is a partial fraction of:	$\frac{1}{x^3-1}$	$\frac{1}{x^2-1}$	$\frac{1}{1-x^2}$	$\frac{1}{x^2+1}$
18.	1	0	i	1	-1
	Multiplicative inverse of $(0, -1) \in \mathbb{C}$, is:	(0,1)	(1,0)	(-1,0)	(1,1)
20.	(r+1) th term in the expansion of $(a+b)$ th	$\binom{n}{r}a^{n-r}b^r$	$\binom{n}{r}a^{n-r}b^{r-1}$	$\binom{n}{r}a^{n+r}b^r$	$\binom{n}{r}a^{n+r}b^{r+r}$
	is:			-	-

	Sahiw	al Board-	2024		Roll No	(To	be filled in by the candidate
MA	THEMATICS	HSSC (11th) 1st	Annual	2024	Kon	Marks: 80	Time: 2:30 Hou
Pape	er: I	Subje	ctive		om Sectio	n C.	2:30 Hous
Note	er: I e: Section B is compulsory	. Attempt any THE	REE ques	tions In	OIII See		
		34					number. (8×2
Q2.	Write short answers to an	Eight parts.	(ii) De	fine mo	dulus of a	complex r	
(i)	Factorize 9a ² + 16b ³ .	muses of (-4, 7).	(iv) Ex	press t	he comp	lex numbe	er 1 + i√3 in Pol
(iii)	Find the multiplicative i	nverse or (17					
(v)	form. Write the set $\{x \mid x \in Q\}$	$\wedge x^3 = 2\}.$	(vi) Co	nvert (/	VOB) -	CD ino.	ogical form.
(vii)	D.C., discard matrix	and give an examp	le.				
(viii)		gular matrix A. (A	, ,,,	Salve	$x^{\frac{1}{2}} - x^{\frac{1}{4}} -$	-6 = 0	
(ix)	Define co-factor of an e	lement.	(x)	Show	that x3 - Y	y = (x - y)($(x - \omega y)(x - \omega t)$
(xi)	Reduce $x^{-2} - 10 = 3x^{-1}$	o quadratic form.	(XII)	Show	2		(8×2 - 1
Q3.	Write short answers to any	Eight parts.	(1)) Ch	ange X	into pr	$(x - \omega y)(x - \omega^2 y)$. $(8 \times 2 = 1)$ oper fraction.
(i)	Define improper fraction	1.	(, -	- 2i h	- 1 = 4i show	that G2 = A
(iii)	Define improper fraction Find 9th term of the sequ	ence $-\frac{1}{5}, -\frac{1}{3}, -1$	(i	(2)	ra = 21, 0	41, 3110	a. O - A × H,
(v)	Find the first term of the	geometric series i	if a, = (-	$-3)(\frac{1}{5})$			
(vi)	111	that the comm	on ratio i	is ± V=	. (v	ii) If "C _g	= "C ₁₂ , find n.
(viii)	How many triangles and	diagonals can be	formed b	y joinir	ig the vett	ces 01 0-310	aca polygon?
(ix)	Define cicular permutati	on.					
(x)	From the expansion of	$\left(\frac{3x}{2} - \frac{1}{3x}\right)^n$, find	the sixth	term fr	om the en	d.	
(xi)	Expand (8 - 5x)-2 up t		(xii)	Evaluat	e ∜31 co	rrect to thr	ee decimal places.
04.	Write short answers to any	Nine parts.			(P)		(9×2=
(i)	Express $\theta = 120'40''$ in r	adians.		6	113		
(ii)	Express $\theta = 120'40''$ in r If $\sin \theta = \frac{12}{13}$ and termination from the value of $\sin(-30')$	al arm of angle is	in quadra	ant I, fi	nd tanθ ar	id $\cos\theta$.	$(0,\pi)$
iii)	Find the value of sin(-30)0°).	CONT	iv) Pr	ove that s	in (0+ 6)	$+\cos\left(\theta+\frac{\pi}{3}\right)=\cos\left(\frac{\pi}{3}\right)$
v)	Write down the half angl	e identity for tan	2	A 1			onometric function.
vii)	Prove that period of sin f	unction is 2π .				the domain	n and range for y≐tal
ix)	Solve the right triangle A	BC in which y =	90°, a = :	3.28, b	= 5.74.		
x)	Write half angle formula	$\sin\left(\frac{\gamma}{2}\right)$ and co	$s\left(\frac{\gamma}{2}\right)$. (2)	xi) De	efine and	draw an ob	olique triangle.
	Find the value of sin co	$s^{-1}\frac{\sqrt{3}}{2}$.					$[0, 2\pi]$, $\sin x = -\frac{\sqrt{1}}{2}$
12)		SEC	TION	- C			
ote:	Attempt any THREE quest	ions. Each question	n carries	s (5+5	=10) mar	ks.	

Q5.

(a) Solve the system of linear equations by Cramer's Rule.

$$2x_1 - x_2 + x_3 = 8$$
 ; $x_1 + 2x_2 + x_3 = 6$; $x_1 - 2x_2 - x_3 = 1$

(b) Solve systems of equations. x + y = 5, $x^2 + 2y^2 = 17$

(a) Resolve $\frac{x^2 - 10x + 13}{(x - 1)(x^2 - 5x + 6)}$ into partial fraction. Q6.

(b) Show that the sum of 'n' A.Ms between a and b is equal to n times their A.M.

(a) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$. Q7.

(b) If x is nearly equal to 1 then prove that $px^p - qx^q = (p - q)x^{p+q}$.

(a) Prove that $\frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1} = \tan\theta + \sec\theta$ (b) Prove that $\tan^{-1} \frac{120}{119} = 2\cos^{-1} \frac{12}{13}$ Q8.

(a) If $\alpha + \beta + \gamma = 180^\circ$, show that $\cot \alpha \cot \beta + \cot \beta \cot \gamma + \cot \gamma \cot \alpha = 1$. Q9.

(b) Prove that $r_1 + r_2 + r_3 - r = 4R$